1
|
A transient magnetic resonance spectroscopy peri-ischemic peak: a possible radiological biomarker of post-stroke neurogenesis. Neurol Sci 2023; 44:967-978. [PMID: 36348170 DOI: 10.1007/s10072-022-06479-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 10/22/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND AND AIMS In adult human brain, neurogenesis seems to persist throughout life and ischemic stroke was proved to stimulate this process. Using magnetic resonance spectroscopy (MRS), a 1.28-ppm peak, putative biomarker of neural progenitor cells (NPCs), was identified both in vitro and in vivo, i.e., in normal rat and healthy human brain. The aim of our study was to identify a 1.28-ppm peak in adult human ischemic brain by using 3.0 T multivoxel MRS. METHODS We studied 10 patients, six males, and four females, with a mean (± SD) age of 59.3 (± 17.3), at three different time points from ischemic stroke onset (T0: < 5 days; T14: 14 ± 2 days; T30: 30 ± 2 days). RESULTS In all patients except one, a 1.28-ppm peak at T14 was detected at the ischemic boundary (all p values < 0.05). MRS performed on six voluntary age-matched healthy subjects did not detect any 1.28-ppm peak. CONCLUSIONS The nature of this 1.28-pm peak is uncertain; however, our data support the hypothesis that it might represent a marker of NPCs in post-stroke human brain.
Collapse
|
2
|
Abdul Rashid K, Ibrahim K, Wong JHD, Mohd Ramli N. Lipid Alterations in Glioma: A Systematic Review. Metabolites 2022; 12:metabo12121280. [PMID: 36557318 PMCID: PMC9783089 DOI: 10.3390/metabo12121280] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/08/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Gliomas are highly lethal tumours characterised by heterogeneous molecular features, producing various metabolic phenotypes leading to therapeutic resistance. Lipid metabolism reprogramming is predominant and has contributed to the metabolic plasticity in glioma. This systematic review aims to discover lipids alteration and their biological roles in glioma and the identification of potential lipids biomarker. This systematic review was conducted using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. Extensive research articles search for the last 10 years, from 2011 to 2021, were conducted using four electronic databases, including PubMed, Web of Science, CINAHL and ScienceDirect. A total of 158 research articles were included in this study. All studies reported significant lipid alteration between glioma and control groups, impacting glioma cell growth, proliferation, drug resistance, patients' survival and metastasis. Different lipids demonstrated different biological roles, either beneficial or detrimental effects on glioma. Notably, prostaglandin (PGE2), triacylglycerol (TG), phosphatidylcholine (PC), and sphingosine-1-phosphate play significant roles in glioma development. Conversely, the most prominent anti-carcinogenic lipids include docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and vitamin D3 have been reported to have detrimental effects on glioma cells. Furthermore, high lipid signals were detected at 0.9 and 1.3 ppm in high-grade glioma relative to low-grade glioma. This evidence shows that lipid metabolisms were significantly dysregulated in glioma. Concurrent with this knowledge, the discovery of specific lipid classes altered in glioma will accelerate the development of potential lipid biomarkers and enhance future glioma therapeutics.
Collapse
Affiliation(s)
- Khairunnisa Abdul Rashid
- Department of Biomedical Imaging, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Kamariah Ibrahim
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Jeannie Hsiu Ding Wong
- Department of Biomedical Imaging, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Norlisah Mohd Ramli
- Department of Biomedical Imaging, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: ; Tel.: +60-379673238
| |
Collapse
|
3
|
Kaiser A, Reneman L, Solleveld MM, Coolen BF, Scherder EJA, Knutsson L, Bjørnerud A, van Osch MJP, Wijnen JP, Lucassen PJ, Schrantee A. A Randomized Controlled Trial on the Effects of a 12-Week High- vs. Low-Intensity Exercise Intervention on Hippocampal Structure and Function in Healthy, Young Adults. Front Psychiatry 2022; 12:780095. [PMID: 35126199 PMCID: PMC8814653 DOI: 10.3389/fpsyt.2021.780095] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/08/2021] [Indexed: 12/25/2022] Open
Abstract
Physical exercise affects hippocampal structure and function, but the underlying neural mechanisms and the effects of exercise intensity remain incompletely understood. Therefore, we undertook a comprehensive, multi-modal 3T and 7T MRI randomized controlled trial (Netherlands Trial Register - NL5847) in which we randomized 52 young, non-athletic volunteers to a 12-week low- or high-intensity exercise program. Using state-of-the-art methods, we investigated changes in hippocampal volume, as well as changes in vasculature, neuro-metabolites, and peripheral growth factors as potential underpinnings. Cardiorespiratory fitness improved over time (p < 0.001), but no interaction with exercise intensity was found (p = 0.48). Accordingly, we did not observe significant interactions between exercise condition and time on MRI measures (all p > 0.06). However, we found a significant decrease in right hippocampal volume (p < 0.01), an increase in left hippocampal glutathione (p < 0.01), and a decrease of left hippocampal cerebral blood volume (p = 0.01) over time, regardless of exercise condition. Additional exploratory analyses showed that changes in brain-derived neurotrophic factor (p = 0.01), insulin-like growth-factor (p = 0.03), and dorsal anterior cingulate cortex N-acetyl-aspartate levels (p = 0.01) were positively associated with cardiorespiratory fitness changes. Furthermore, a trend toward a positive association of fitness and gray-matter cerebral blood flow (p = 0.06) was found. Our results do not provide evidence for differential effects between high-intensity (aerobic) and low-intensity (toning) exercise on hippocampal structure and function in young adults. However, we show small but significant effects of exercise on hippocampal volume, neurometabolism and vasculature across exercise conditions. Moreover, our exploratory results suggest that exercise might not specifically only benefit hippocampal structure and function, but rather has a more widespread effect. These findings suggest that, in agreement with previous MRI studies demonstrating moderate to strong effects in elderly and diseased populations, but none to only mild effects in young healthy cohorts, the benefits of exercise on the studied brain measures may be age-dependent and restorative rather than stimulatory. Our study highlights the importance of a multi-modal, whole-brain approach to assess macroscopic and microscopic changes underlying exercise-induced brain changes, to better understand the role of exercise as a potential non-pharmacological intervention.
Collapse
Affiliation(s)
- Antonia Kaiser
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Liesbeth Reneman
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Michelle M. Solleveld
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Bram F. Coolen
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Erik J. A. Scherder
- Department of Clinical Neuropsychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Linda Knutsson
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Atle Bjørnerud
- Department of Diagnostic Physics, Oslo University Hospital, Oslo, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| | | | - Jannie P. Wijnen
- Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Paul J. Lucassen
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
- Center for Urban Mental Health, University of Amsterdam, Amsterdam, Netherlands
| | - Anouk Schrantee
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Center for Urban Mental Health, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
4
|
An X, Shi X. Effects of electroconvulsive shock on neuro-immune responses: Does neuro-damage occur? Psychiatry Res 2020; 292:113289. [PMID: 32702550 DOI: 10.1016/j.psychres.2020.113289] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 01/07/2023]
Abstract
Electroconvulsive therapy (ECT) is one of the most effective treatments for treatment-resistant depression. However, this treatment may produce memory impairment. The mechanisms of the cognitive adverse effects are not known. Neuroimmune response is related to the cognitive deficits. By reviewing the available animal literature, we examined the glia activation, inflammatory cytokines, neuron oxidative stress responses, and neural morphological changes following electroconvulsive shock (ECS) treatment. The studies showed that ECS activates microglia, upregulates neuro-inflammatory cytokines, and increases oxidative stress responses. But these effects are rapid and may be transient. They normalize as ECS treatment continues, suggesting endogenous neuroprotection may be mobilized. The transient changes are well in line with the clinical observations that ECT usually does not cause significant long-lasting retrograde amnesia. The longitudinal studies will be particularly important to explore the dynamic changes of neuroplasticity following ECT (Jonckheere et al., 2018). Investigating the neuroplasticity changes in animals that suffered chronic stress may also be crucial to giving support to the translation of preclinical research.
Collapse
Affiliation(s)
- Xianli An
- School of Educational Science, Yangzhou University, Yangzhou, JiangSu Province, China.
| | - Xiujian Shi
- School of Educational Science, Yangzhou University, Yangzhou, JiangSu Province, China
| |
Collapse
|
5
|
Cherix A, Brodier L, Poitry-Yamate C, Matter JM, Gruetter R. The Appearance of the Warburg Effect in the Developing Avian Eye Characterized In Ovo: How Neurogenesis Can Remodel Neuroenergetics. Invest Ophthalmol Vis Sci 2020; 61:3. [PMID: 32392312 PMCID: PMC7405834 DOI: 10.1167/iovs.61.5.3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/09/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose The avian eye is an established model for exploring mechanisms that coordinate morphogenesis and metabolism during embryonic development. Less is known, however, about trafficking of bioenergetic and metabolic signaling molecules that are involved in retinal neurogenesis. Methods Here we tested whether the known 3-day delayed neurogenesis occurring in the pigeon compared with the chick was associated with a deferred reshaping of eye metabolism in vivo. Developmental metabolic remodeling was explored using 1H-magnetic resonance spectroscopy of the whole eye and vitreous body, in ovo, in parallel with biochemical and molecular analyses of retinal, vitreous, and lens extracts from bird embryos. Results Cross-species comparisons enabled us to show that a major glycolytic switch in the retina is related to neurogenesis rather than to eye growth. We further show that the temporal emergence of an interlocking regulatory cascade controlling retinal oxidative phosphorylation and glycolysis results in the exchange of lactate and citrate between the retina and vitreous. Conclusions Our results point to the vitreous as a reservoir and buffer of energy metabolites that provides trophic support to oxidative neurons, such as retinal ganglion cells, in early development. Through its control of key glycolytic regulatory enzymes, citrate, exchanged between extracellular and intracellular compartments between the retina and vitreous, is a key metabolite in the initiation of a glycolytic switch.
Collapse
Affiliation(s)
- Antoine Cherix
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Laurent Brodier
- Department of Molecular Biology, Sciences III, Université de Genève, Geneva, Switzerland
- Department of Biochemistry, Sciences II, Université de Genève, Geneva, Switzerland
| | - Carole Poitry-Yamate
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jean-Marc Matter
- Department of Molecular Biology, Sciences III, Université de Genève, Geneva, Switzerland
- Department of Biochemistry, Sciences II, Université de Genève, Geneva, Switzerland
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
6
|
Lucassen PJ, Fitzsimons CP, Salta E, Maletic-Savatic M. Adult neurogenesis, human after all (again): Classic, optimized, and future approaches. Behav Brain Res 2020; 381:112458. [DOI: 10.1016/j.bbr.2019.112458] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 11/29/2019] [Accepted: 12/28/2019] [Indexed: 02/08/2023]
|
7
|
Seow P, Narayanan V, Romelean RJ, Wong JHD, Win MT, Chandran H, Chinna K, Rahmat K, Ramli N. Lipid Fraction Derived From MRI In- and Opposed-Phase Sequence as a Novel Biomarker for Predicting Survival Outcome of Glioma. Acad Radiol 2020; 27:180-187. [PMID: 31155487 DOI: 10.1016/j.acra.2019.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/03/2019] [Accepted: 04/08/2019] [Indexed: 12/29/2022]
Abstract
RATIONALE AND PURPOSE Our study evaluated the capability of magnetic resonance imaging in- and opposed-phase (IOP) derived lipid fraction as a novel prognostic biomarker of survival outcome in glioma. MATERIALS AND METHODS We analyzed 46 histologically proven glioma (WHO grades II-IV) patients using standard 3T magnetic resonance imaging brain tumor protocol and IOP sequence. Lipid fraction was derived from the IOP sequence signal-loss ratio. The lipid fraction of solid nonenhancing region of glioma was analyzed, using a three-group analysis approach based on volume under surface of receiver-operating characteristics to stratify the prognostic factors into three groups of low, medium, and high lipid fraction. The survival outcome was evaluated, using Kaplan-Meier survival analysis and Cox regression model. RESULTS Significant differences were seen between the three groups (low, medium, and high lipid fraction groups) stratified by the optimal cut-off point for overall survival (OS) (p ≤ 0.01) and time to progression (p ≤ 0.01) for solid nonenhancing region. The group with high lipid fraction had five times higher risk of poor survival and earlier time to progression compared to the low lipid fraction group. The OS plot stratified by lipid fraction also had a strong correlation with OS plot stratified by WHO grade (R = 0.61, p < 0.01), implying association to underlying histopathological changes. CONCLUSION The lipid fraction of solid nonenhancing region showed potential for prognostication of glioma. This method will be a useful adjunct in imaging protocol for treatment stratification and as a prognostic tool in glioma patients.
Collapse
Affiliation(s)
- Pohchoo Seow
- Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Jalan Universiti, Kuala Lumpur 50603, Malaysia; Faculty of Medicine, University of Malaya Research Imaging Centre, University of Malaya, Kuala Lumpur, Malaysia
| | - Vairavan Narayanan
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ronie J Romelean
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jeannie Hsiu Ding Wong
- Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Jalan Universiti, Kuala Lumpur 50603, Malaysia; Faculty of Medicine, University of Malaya Research Imaging Centre, University of Malaya, Kuala Lumpur, Malaysia
| | - Myint Tun Win
- Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Jalan Universiti, Kuala Lumpur 50603, Malaysia
| | - Hari Chandran
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Karuthan Chinna
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Malaysia
| | - Kartini Rahmat
- Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Jalan Universiti, Kuala Lumpur 50603, Malaysia; Faculty of Medicine, University of Malaya Research Imaging Centre, University of Malaya, Kuala Lumpur, Malaysia
| | - Norlisah Ramli
- Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Jalan Universiti, Kuala Lumpur 50603, Malaysia; Faculty of Medicine, University of Malaya Research Imaging Centre, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
8
|
Lazutkin A, Podgorny O, Enikolopov G. Modes of division and differentiation of neural stem cells. Behav Brain Res 2019; 374:112118. [PMID: 31369774 DOI: 10.1016/j.bbr.2019.112118] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/25/2019] [Accepted: 07/28/2019] [Indexed: 01/09/2023]
Abstract
Hippocampal neurogenesis presents an unorthodox form of neuronal plasticity and may be relevant for the normal or abnormal functioning of the human and animal brain. As production of new neurons decreases after birth, purposefully activating stem cells to create additional new neurons may augment brain function or slow a disease's progression. Here, we describe current models of hippocampal stem cell maintenance and differentiation, and emphasize key features of neural stem cells' turnover that may define hippocampal neurogenesis enhancement attempts' long-term consequences. We argue that even the basic blueprint of how stem cells are maintained, divide, differentiate, and are eliminated is still contentious, with different models potentially leading to vastly different outcomes in regard to neuronal production and stem cell pool preservation. We propose that to manipulate neurogenesis for a long-term benefit, we must first understand the outline of the neural stem cells' lifecycle.
Collapse
Affiliation(s)
- Alexander Lazutkin
- Center for Developmental Genetics and Department of Anesthesiology, Stony Brook University, Stony Brook, NY, United States; Moscow Institute of Physics and Technology, Moscow, Russia; P.K. Anokhin Institute for Normal Physiology, Moscow, Russia
| | - Oleg Podgorny
- Center for Developmental Genetics and Department of Anesthesiology, Stony Brook University, Stony Brook, NY, United States; Koltzov Institute of Developmental Biology, Moscow, Russia
| | - Grigori Enikolopov
- Center for Developmental Genetics and Department of Anesthesiology, Stony Brook University, Stony Brook, NY, United States.
| |
Collapse
|
9
|
Seow P, Wong JHD, Ahmad-Annuar A, Mahajan A, Abdullah NA, Ramli N. Quantitative magnetic resonance imaging and radiogenomic biomarkers for glioma characterisation: a systematic review. Br J Radiol 2018; 91:20170930. [PMID: 29902076 PMCID: PMC6319852 DOI: 10.1259/bjr.20170930] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 05/25/2018] [Accepted: 06/07/2018] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE: The diversity of tumour characteristics among glioma patients, even within same tumour grade, is a big challenge for disease outcome prediction. A possible approach for improved radiological imaging could come from combining information obtained at the molecular level. This review assembles recent evidence highlighting the value of using radiogenomic biomarkers to infer the underlying biology of gliomas and its correlation with imaging features. METHODS: A literature search was done for articles published between 2002 and 2017 on Medline electronic databases. Of 249 titles identified, 38 fulfilled the inclusion criteria, with 14 articles related to quantifiable imaging parameters (heterogeneity, vascularity, diffusion, cell density, infiltrations, perfusion, and metabolite changes) and 24 articles relevant to molecular biomarkers linked to imaging. RESULTS: Genes found to correlate with various imaging phenotypes were EGFR, MGMT, IDH1, VEGF, PDGF, TP53, and Ki-67. EGFR is the most studied gene related to imaging characteristics in the studies reviewed (41.7%), followed by MGMT (20.8%) and IDH1 (16.7%). A summary of the relationship amongst glioma morphology, gene expressions, imaging characteristics, prognosis and therapeutic response are presented. CONCLUSION: The use of radiogenomics can provide insights to understanding tumour biology and the underlying molecular pathways. Certain MRI characteristics that show strong correlations with EGFR, MGMT and IDH1 could be used as imaging biomarkers. Knowing the pathways involved in tumour progression and their associated imaging patterns may assist in diagnosis, prognosis and treatment management, while facilitating personalised medicine. ADVANCES IN KNOWLEDGE: Radiogenomics can offer clinicians better insight into diagnosis, prognosis, and prediction of therapeutic responses of glioma.
Collapse
Affiliation(s)
| | | | - Azlina Ahmad-Annuar
- Department of Biomedical Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Abhishek Mahajan
- Department of Radiodiagnosis and Imaging, Tata Memorial Hospital, Mumbai, India
| | - Nor Aniza Abdullah
- Department of Computer System and Technology, University of Malaya, Kuala Lumpur, Malaysia
| | | |
Collapse
|
10
|
Kuttner-Hirshler Y, Venkatasubramanian PN, Apolinario J, Bonds J, Wyrwicz AM, Lazarov O. Brain Biomarkers in Familial Alzheimer's Disease Mouse Models. J Alzheimers Dis 2018; 60:949-958. [PMID: 28922152 DOI: 10.3233/jad-170269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease (AD) is characterized by progressive loss of memory and cognitive deterioration. It is thought that the onset of the disease takes place several decades before memory deficits are apparent. Reliable biomarkers for the diagnosis or prognostication of the disease are highly desirable. Neural stem cells (NSC) exist in the adult brain throughout life and give rise to neural progenitor cells (NPC), which differentiate into neurons or glia. The level of NPC proliferation and new neuron formation is significantly compromised in mouse models of familial Alzheimer's disease (FAD). These deficits are readily detected in young adults, at 2-3 months of age, preceding amyloid deposition and cognitive impairments, which may indicate that impaired neurogenesis can be an early biomarker for cognitive deficits in AD. Recent studies suggest that NSC can be detected in live rodents, noninvasively, using proton magnetic resonance spectroscopy (1H-MRS) signal at 1.28 ppm. Here we examined the use of 1H-MRS for determining the extent of neurogenesis in the brains of FAD mice. We observed that the reduction in neurogenesis in the FAD mice as observed by immunohistochemistry, was not manifested by a reduction in the 1.28 ppm signal, suggesting that this marker is either not specific for neurogenesis or not sensitive enough for the detection of alterations in hippocampal neurogenesis in the brains of FAD mice.
Collapse
Affiliation(s)
- Yafit Kuttner-Hirshler
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| | | | - Joan Apolinario
- Center for Basic M.R. Research, Department of Radiology, NorthShore University HealthSystem, Evanston, IL, USA
| | - Jacqueline Bonds
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| | - Alice M Wyrwicz
- Center for Basic M.R. Research, Department of Radiology, NorthShore University HealthSystem, Evanston, IL, USA
| | - Orly Lazarov
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
11
|
Lugert S, Kremer T, Jagasia R, Herrmann A, Aigner S, Giachino C, Mendez-David I, Gardier AM, Carralot JP, Meistermann H, Augustin A, Saxe MD, Lamerz J, Duran-Pacheco G, Ducret A, Taylor V, David DJ, Czech C. Glypican-2 levels in cerebrospinal fluid predict the status of adult hippocampal neurogenesis. Sci Rep 2017; 7:46543. [PMID: 28440309 PMCID: PMC5404329 DOI: 10.1038/srep46543] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/17/2017] [Indexed: 12/20/2022] Open
Abstract
Adult hippocampal neurogenesis is a remarkable form of brain plasticity through which new neurons are generated throughout life. Despite its important roles in cognition and emotion and its modulation in various preclinical disease models, the functional importance of adult hippocampal neurogenesis in human health has not been revealed because of a lack of tools for monitoring adult neurogenesis in vivo. Therefore, we performed an unbiased proteomics screen to identify novel proteins expressed during neuronal differentiation using a human neural stem cell model, and we identified the proteoglycan Glypican-2 (Gpc2) as a putative secreted marker of immature neurons. Exogenous Gpc2 binds to FGF2 and inhibits FGF2-induced neural progenitor cell proliferation. Gpc2 is enriched in neurogenic regions of the adult brain. Its expression is increased by physiological stimuli that increase hippocampal neurogenesis and decreased in transgenic models in which neurogenesis is selectively ablated. Changes in neurogenesis also result in changes in Gpc2 protein level in cerebrospinal fluid (CSF). Gpc2 is detectable in adult human CSF, and first pilot experiments with a longitudinal cohort indicate a decrease over time. Thus, Gpc2 may serve as a potential marker to monitor adult neurogenesis in both animal and human physiology and disease, warranting future studies.
Collapse
Affiliation(s)
- S Lugert
- Roche Pharmaceutical Research and Early Development, NORD Discovery &Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - T Kremer
- Roche Pharmaceutical Research and Early Development, NORD Discovery &Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - R Jagasia
- Roche Pharmaceutical Research and Early Development, NORD Discovery &Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - A Herrmann
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - S Aigner
- Roche Pharmaceutical Research and Early Development, NORD Discovery &Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - C Giachino
- Embryology and Stem Cell Biology, Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland
| | - I Mendez-David
- CESP/UMR-S 1178, Univ. Paris-Sud, Fac. Pharmacie, INSERM, Université Paris-Saclay, Chatenay Malabry, 92290, France
| | - A M Gardier
- CESP/UMR-S 1178, Univ. Paris-Sud, Fac. Pharmacie, INSERM, Université Paris-Saclay, Chatenay Malabry, 92290, France
| | - J P Carralot
- Roche Pharmaceutical Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - H Meistermann
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - A Augustin
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - M D Saxe
- Roche Pharmaceutical Research and Early Development, NORD Discovery &Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - J Lamerz
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - G Duran-Pacheco
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - A Ducret
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - V Taylor
- Embryology and Stem Cell Biology, Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland
| | - D J David
- CESP/UMR-S 1178, Univ. Paris-Sud, Fac. Pharmacie, INSERM, Université Paris-Saclay, Chatenay Malabry, 92290, France
| | - C Czech
- Roche Pharmaceutical Research and Early Development, NORD Discovery &Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| |
Collapse
|
12
|
Busato A, Fumene Feruglio P, Parnigotto PP, Marzola P, Sbarbati A. In vivo imaging techniques: a new era for histochemical analysis. Eur J Histochem 2016; 60:2725. [PMID: 28076937 PMCID: PMC5159782 DOI: 10.4081/ejh.2016.2725] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 01/15/2023] Open
Abstract
In vivo imaging techniques can be integrated with classical histochemistry to create an actual histochemistry of water. In particular, Magnetic Resonance Imaging (MRI), an imaging technique primarily used as diagnostic tool in clinical/preclinical research, has excellent anatomical resolution, unlimited penetration depth and intrinsic soft tissue contrast. Thanks to the technological development, MRI is not only capable to provide morphological information but also and more interestingly functional, biophysical and molecular. In this paper we describe the main features of several advanced imaging techniques, such as MRI microscopy, Magnetic Resonance Spectroscopy, functional MRI, Diffusion Tensor Imaging and MRI with contrast agent as a useful support to classical histochemistry.
Collapse
Affiliation(s)
- A Busato
- University of Verona, Department of Computer Science.
| | | | | | | | | |
Collapse
|
13
|
Bowers M, Jessberger S. Linking adult hippocampal neurogenesis with human physiology and disease. Dev Dyn 2016; 245:702-9. [PMID: 26890418 DOI: 10.1002/dvdy.24396] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 02/12/2016] [Accepted: 02/12/2016] [Indexed: 01/13/2023] Open
Abstract
We here review the existing evidence linking adult hippocampal neurogenesis and human brain function in physiology and disease. Furthermore, we aim to point out where evidence is missing, highlight current promising avenues of investigation, and suggest future tools and approaches to foster the link between life-long neurogenesis and human brain function. Developmental Dynamics 245:702-709, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Megan Bowers
- Laboratory of Neural Plasticity, Faculty of Medicine and Science, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Sebastian Jessberger
- Laboratory of Neural Plasticity, Faculty of Medicine and Science, Brain Research Institute, University of Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Jorgensen A, Magnusson P, Hanson LG, Kirkegaard T, Benveniste H, Lee H, Svarer C, Mikkelsen JD, Fink-Jensen A, Knudsen GM, Paulson OB, Bolwig TG, Jorgensen MB. Regional brain volumes, diffusivity, and metabolite changes after electroconvulsive therapy for severe depression. Acta Psychiatr Scand 2016; 133:154-164. [PMID: 26138003 DOI: 10.1111/acps.12462] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/08/2015] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To investigate the role of hippocampal plasticity in the antidepressant effect of electroconvulsive therapy (ECT). METHOD We used magnetic resonance (MR) imaging including diffusion tensor imaging (DTI) and proton MR spectroscopy (1 H-MRS) to investigate hippocampal volume, diffusivity, and metabolite changes in 19 patients receiving ECT for severe depression. Other regions of interest included the amygdala, dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex, and hypothalamus. Patients received a 3T MR scan before ECT (TP1), 1 week (TP2), and 4 weeks (TP3) after ECT. RESULTS Hippocampal and amygdala volume increased significantly at TP2 and continued to be increased at TP3. DLPFC exhibited a transient volume reduction at TP2. DTI revealed a reduced anisotropy and diffusivity of the hippocampus at TP2. We found no significant post-ECT changes in brain metabolite concentrations, and we were unable to identify a spectral signature at ≈1.30 ppm previously suggested to reflect neurogenesis induced by ECT. None of the brain imaging measures correlated to the clinical response. CONCLUSION Our findings show that ECT causes a remodeling of brain structures involved in affective regulation, but due to their lack of correlation with the antidepressant effect, this remodeling does not appear to be directly underlying the antidepressant action of ECT.
Collapse
Affiliation(s)
- A Jorgensen
- Psychiatric Centre Copenhagen (Rigshospitalet), Denmark.,Department of Neuroscience and Pharmacology, Laboratory of Neuropsychiatry, University of Copenhagen, Copenhagen, Denmark
| | - P Magnusson
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark
| | - L G Hanson
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark.,Biomedical Engineering, DTU Elektro, Technical University of Denmark, Lyngby, Denmark
| | - T Kirkegaard
- Psychiatric Centre Copenhagen (Rigshospitalet), Denmark
| | - H Benveniste
- Department of Anesthesiology, Stony Brook Medicine, Stony Brook, NY, USA.,Department of Radiology, Stony Brook Medicine, Stony Brook, NY, USA
| | - H Lee
- Department of Anesthesiology, Stony Brook Medicine, Stony Brook, NY, USA.,Department of Radiology, Stony Brook Medicine, Stony Brook, NY, USA
| | - C Svarer
- Neurobiology Research Unit, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - J D Mikkelsen
- Neurobiology Research Unit, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - A Fink-Jensen
- Psychiatric Centre Copenhagen (Rigshospitalet), Denmark.,Department of Neuroscience and Pharmacology, Laboratory of Neuropsychiatry, University of Copenhagen, Copenhagen, Denmark
| | - G M Knudsen
- Neurobiology Research Unit, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - O B Paulson
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark.,Neurobiology Research Unit, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - T G Bolwig
- Psychiatric Centre Copenhagen (Rigshospitalet), Denmark
| | - M B Jorgensen
- Psychiatric Centre Copenhagen (Rigshospitalet), Denmark.,Department of Neuroscience and Pharmacology, Laboratory of Neuropsychiatry, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
In vivo HMRS and lipidomic profiling reveals comprehensive changes of hippocampal metabolism during aging in mice. Biochem Biophys Res Commun 2015; 470:9-14. [PMID: 26707637 DOI: 10.1016/j.bbrc.2015.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 12/03/2015] [Indexed: 01/04/2023]
Abstract
Aging is characterized by various cellular changes in the brain. Hippocampus is important for systemic aging and lifespan control. There is still a lack of comprehensive overview of metabolic changes in hippocampus during aging. In this study, we first created an accelerated brain aging mice model through the chronic administration of d-galactose. We then performed a multiplatform metabolomic profiling of mice hippocampus using the combination of in vivo 9.4 T HMRS and in vitro LC-MS/MS based lipidomics. We found N-acetylaspartic acid (NAA), gama-aminobutyric acid (GABA), glutamate/glutamine, taurine, choline, sphingolipids (SMs), phosphatidylethanolamines (PEs), phosphatidylinositols (PIs), phosphatidylglycerols (PGs) and phosphatidylserines (PSs), all of them decreasing with the aging process in mice hippocampus. The changes of sphingolipids and phospholipids were not limited to one single class or molecular species. In contrast, we found the significant accumulation of lactate, myoinositol and phosphatidylcholines (PCs) along with aging in hippocampus. SM (d18:1/20:2), PE (36:2), PG (34:1), PI (36:4), PS (18:0/20:4) and PC (36:0) have the most significant changes along with aging. Network analysis revealed the striking loss of biochemical connectivity and interactions between hippocampal metabolites with aging. The correlation pattern between metabolites in hippocampus could function as biomarkers for aging or diagnosis of aging-related diseases.
Collapse
|
16
|
Novel application of chemical shift gradient echo in- and opposed-phase sequences in 3 T MRI for the detection of H-MRS visible lipids and grading of glioma. Eur Radiol 2015; 26:2019-29. [PMID: 26560718 PMCID: PMC4902846 DOI: 10.1007/s00330-015-4045-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/19/2015] [Accepted: 09/23/2015] [Indexed: 11/23/2022]
Abstract
Objectives We evaluated the feasibility of using chemical shift gradient-echo (GE) in- and opposed-phase (IOP) imaging to grade glioma. Methods A phantom study was performed to investigate the correlation of 1H MRS-visible lipids with the signal loss ratio (SLR) obtained using IOP imaging. A cross-sectional study approved by the institutional review board was carried out in 22 patients with different glioma grades. The patients underwent scanning using IOP imaging and single-voxel spectroscopy (SVS) using 3T MRI. The brain spectra acquisitions from solid and cystic components were obtained and correlated with the SLR for different grades. Results The phantom study showed a positive linear correlation between lipid quantification at 0.9 parts per million (ppm) and 1.3 ppm with SLR (r = 0.79–0.99, p < 0.05). In the clinical study, we found that SLR at the solid portions was the best measure for differentiating glioma grades using optimal cut-points of 0.064 and 0.086 with classification probabilities for grade II (SII = 1), grade III (SIII = 0.50) and grade IV (SIV = 0.89). Conclusions The results underscore the lipid quantification differences in grades of glioma and provide a more comprehensive characterization by using SLR in chemical shift GE IOP imaging. SLR in IOP sequence demonstrates good performance in glioma grading. Key Points • Strong correlation was seen between lipid concentration and SLR obtained using IOP • IOP sequence demonstrates significant differences in signal loss within the glioma grades • SLR at solid tumour portions was the best measure for differentiation • This sequence is applicable in a research capacity for glioma staging armamentarium
Collapse
|
17
|
Brandt MD, Brandt K, Werner A, Schönfeld R, Loewenbrück K, Donix M, Schaich M, Bornhäuser M, von Kummer R, Leplow B, Storch A. Preventive brain radio-chemotherapy alters plasticity associated metabolite profile in the hippocampus but seems to not affect spatial memory in young leukemia patients. Brain Behav 2015; 5:e00368. [PMID: 26442754 PMCID: PMC4589814 DOI: 10.1002/brb3.368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/07/2015] [Accepted: 06/13/2015] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Neuronal plasticity leading to evolving reorganization of the neuronal network during entire lifespan plays an important role for brain function especially memory performance. Adult neurogenesis occurring in the dentate gyrus of the hippocampus represents the maximal way of network reorganization. Brain radio-chemotherapy strongly inhibits adult hippocampal neurogenesis in mice leading to impaired spatial memory. METHODS To elucidate the effects of CNS radio-chemotherapy on hippocampal plasticity and function in humans, we performed a longitudinal pilot study using 3T proton magnetic resonance spectroscopy ((1)H-MRS) and virtual water-maze-tests in 10 de-novo patients with acute lymphoblastic leukemia undergoing preventive whole brain radio-chemotherapy. Patients were examined before, during and after treatment. RESULTS CNS radio-chemotherapy did neither affect recall performance in probe trails nor flexible (reversal) relearning of a new target position over a time frame of 10 weeks measured by longitudinal virtual water-maze-testing, but provoked hippocampus-specific decrease in choline as a metabolite associated with cellular plasticity in (1)H-MRS. CONCLUSION Albeit this pilot study needs to be followed up to definitely resolve the question about the functional role of adult human neurogenesis, the presented data suggest that (1)H-MRS allows the detection of neurogenesis-associated plasticity in the human brain.
Collapse
Affiliation(s)
- Moritz D Brandt
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden 01307, Dresden, Germany ; German Center for Neurodegenerative Diseases (DZNE) Dresden 10307, Dresden, Germany ; Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden 01307, Dresden, Germany
| | - Kalina Brandt
- Department of Haematology and Oncology, University Hospital Dresden 01307, Dresden, Germany
| | - Annett Werner
- Department of Neuroradiology, Technische Universität Dresden 01307, Dresden, Germany
| | - Robby Schönfeld
- Institute for Psychology, University of Halle Halle, Germany
| | - Kai Loewenbrück
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden 01307, Dresden, Germany ; German Center for Neurodegenerative Diseases (DZNE) Dresden 10307, Dresden, Germany ; Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden 01307, Dresden, Germany
| | - Markus Donix
- German Center for Neurodegenerative Diseases (DZNE) Dresden 10307, Dresden, Germany ; Department of Psychiatry, University Hospital Dresden 01307, Dresden, Germany
| | - Markus Schaich
- Department of Haematology and Oncology, University Hospital Dresden 01307, Dresden, Germany
| | - Martin Bornhäuser
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden 01307, Dresden, Germany ; Department of Haematology and Oncology, University Hospital Dresden 01307, Dresden, Germany
| | - Rüdiger von Kummer
- Department of Neuroradiology, Technische Universität Dresden 01307, Dresden, Germany
| | - Bernd Leplow
- Institute for Psychology, University of Halle Halle, Germany
| | - Alexander Storch
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden 01307, Dresden, Germany ; German Center for Neurodegenerative Diseases (DZNE) Dresden 10307, Dresden, Germany ; Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden 01307, Dresden, Germany
| |
Collapse
|