1
|
Li L, Li H, Chen B. Chronobiological and neuroendocrine insights into dry eye. Trends Mol Med 2024:S1471-4914(24)00279-X. [PMID: 39551666 DOI: 10.1016/j.molmed.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/09/2024] [Accepted: 10/22/2024] [Indexed: 11/19/2024]
Abstract
Dry eye, a prevalent ocular surface disease, is significantly influenced by modern lifestyle factors such as night-shift work and extended screen time. Emerging evidence suggests a strong correlation between disturbances in circadian rhythm, sleep disorders, and dry eye. However, the precise underlying mechanisms remain unclear. Recent studies have underscored the crucial role of circadian rhythms and neuroendocrine regulation in maintaining ocular surface health. Advances in treatment strategies targeting neuroendocrine pathways have shown promising developments. This review explores the interplay between circadian rhythms, neuroendocrine regulation, and the ocular surface, examines the impact of circadian disruption on the pathophysiology of dry eye, and proposes intervention strategies to alleviate dry eye associated with disturbances in circadian rhythms.
Collapse
Affiliation(s)
- Licheng Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Haoyu Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Baihua Chen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China.
| |
Collapse
|
2
|
Sato S, Ogawa Y, Wong CW, Le HL, Yee RW, Gombos DS, Negishi K, Hirayama M. Mineralocorticoid receptor expression and the effects of the mineralocorticoid receptor antagonist spironolactone in a murine model of graft-versus-host disease. Ocul Surf 2024; 34:477-488. [PMID: 39424225 DOI: 10.1016/j.jtos.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/23/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
PURPOSE The topical administration of spironolactone, a mineralocorticoid receptor antagonist (MRA) improves dry eye symptoms in patients with ocular graft-versus-host disease (GVHD); however, the detailed mechanism remains unclear. This study aimed to investigate the effects of spironolactone eyedrops on the ocular surface using a chronic GVHD (cGVHD) mouse model and to determine the expression of the mineralocorticoid receptor (MR). METHODS A cGVHD mouse model was established by allogeneic bone marrow transplantation (BMT) from B10.D2 mice to BALB/c mice. Subsequently, cGVHD mice were treated with either 0.005 % spironolactone or vehicle eyedrops. The eyelids, cornea and conjunctiva of the recipients were analyzed at 4-week intervals post-BMT in both groups. RESULTS Signs of ocular GVHD, such as corneal epithelial damage, depletion of meibomian glands, and inflammatory cell infiltration onto the ocular surface, were significantly decreased in cGVHD mice treated with spironolactone eyedrops. The expression of the MR NR3C2 in the corneal and conjunctival epithelia was significantly increased in cGVHD mice. HSP47+NR3C2+ MR-expressing fibroblasts, CD45+NR3C2+ MR-expressing leukocytes, and CD4+NR3C2+ MR-expressing T cells infiltrated the ocular surface tissue of cGVHD mice significantly more than that of syngeneic controls. CONCLUSIONS MR expression is increased in epithelial cells, fibroblasts, and T cells in a murine cGVHD model, whereas MRA and spironolactone eyedrops could attenuate the severity of ocular GVHD. These findings suggest that MR signaling partially contributes to the development of ocular GVHD in this mouse model.
Collapse
Affiliation(s)
- Shinri Sato
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.
| | - Yoko Ogawa
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.
| | - Calvin W Wong
- McGovern Medical School, University of Texas Health Sciences Center at Houston, Houston, TX, United States
| | | | - Richard W Yee
- MD PLLC, Bellaire, TX, United States; Department of Ophthalmology, University of Texas M D Anderson Cancer Center, Houston, TX, United States
| | - Dan S Gombos
- Department of Ophthalmology, University of Texas M D Anderson Cancer Center, Houston, TX, United States
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Masatoshi Hirayama
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Alkozi HA, Alhudhayf HA, Alawad NMA. Association Between Dry Eye Disease with Anxiety and Depression Among Medical Sciences Students in Qassim Region: Cortisol Levels in Tears as a Stress Biomarker. J Multidiscip Healthc 2024; 17:4549-4557. [PMID: 39371400 PMCID: PMC11451453 DOI: 10.2147/jmdh.s488956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024] Open
Abstract
Purpose This study aimed to investigate the relationships between anxiety, depression, and ocular surface health. Cortisol levels were detected in human tears, and their relationship with anxiety levels was determined using a validated questionnaire. Patients and Methods In total, 112 participants were recruited for this study. All participants were healthy medical students at the Qassim University. Each participant signed an informed consent form after receiving detailed information about the study. Visual acuity examination, TBUT, Shirmer1 test were performed. Participants were asked to fill out three questionnaires: Taylor Manifest Anxiety Scale, Beck Depression Inventory, and The Ocular Surface Disease Index. Tear samples were extracted from the Schirmer strips and cortisol level was measured using ELISA kits. Results A total of 112 college students were included in the study, 58.9% of whom were females. The mean age was 21.9 ± 1.7 years. Subjective reported symptoms of anxiety levels were significantly correlated with depression scores, the OSDI, and reduced Schirmer test measurements. Moreover, cortisol levels detected in tears were positively associated with higher anxiety scores (r=0.328, P<0.05). Conclusion Ocular surface health is associated with symptoms of anxiety and depression. The use of tears to measure cortisol levels could be an interesting way to serve as an anxiety biomarker.
Collapse
Affiliation(s)
- Hanan Awad Alkozi
- Department of Optometry, College of Applied Medical Sciences, Qassim University, Buraydah, Qassim, Saudi Arabia
| | - Hanin Abdullah Alhudhayf
- Department of Optometry, College of Applied Medical Sciences, Qassim University, Buraydah, Qassim, Saudi Arabia
| | | |
Collapse
|
4
|
Zhang Y, Zheng XT, Zhang X, Pan J, Thean AVY. Hybrid Integration of Wearable Devices for Physiological Monitoring. Chem Rev 2024; 124:10386-10434. [PMID: 39189683 DOI: 10.1021/acs.chemrev.3c00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Wearable devices can provide timely, user-friendly, non- or minimally invasive, and continuous monitoring of human health. Recently, multidisciplinary scientific communities have made significant progress regarding fully integrated wearable devices such as sweat wearable sensors, saliva sensors, and wound sensors. However, the translation of these wearables into markets has been slow due to several reasons associated with the poor system-level performance of integrated wearables. The wearability consideration for wearable devices compromises many properties of the wearables. Besides, the limited power capacity of wearables hinders continuous monitoring for extended duration. Furthermore, peak-power operations for intensive computations can quickly create thermal issues in the compact form factor that interfere with wearability and sensor operations. Moreover, wearable devices are constantly subjected to environmental, mechanical, chemical, and electrical interferences and variables that can invalidate the collected data. This generates the need for sophisticated data analytics to contextually identify, include, and exclude data points per multisensor fusion to enable accurate data interpretation. This review synthesizes the challenges surrounding the wearable device integration from three aspects in terms of hardware, energy, and data, focuses on a discussion about hybrid integration of wearable devices, and seeks to provide comprehensive guidance for designing fully functional and stable wearable devices.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Xin Ting Zheng
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Xiangyu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Jieming Pan
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Aaron Voon-Yew Thean
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| |
Collapse
|
5
|
Blanco AR, Zasa G. Dry Eye Para-Inflammation Management: Preclinical and Clinical Evidence on a Novel 0.2% Hyaluronic Acid-Based Tear Substitute with 0.001% Hydrocortisone Sodium Phosphate. J Clin Med 2024; 13:5639. [PMID: 39337125 PMCID: PMC11433235 DOI: 10.3390/jcm13185639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Purpose: An innovative eyedrop formulation based on a combination of 0.2% hyaluronic acid and 0.001% hydrocortisone sodium phosphate (Idroflog®, Alfa Intes, Italy; HAC eyedrops) was granted a European Patent in 2016 and has been available on the market since 2019 in Europe and in other countries around the world. HAC eyedrops aim to synergize the moisturizing effects of hyaluronic acid with the mild anti-inflammatory properties of low-dose hydrocortisone, offering a more effective and safer alternative for treating dry eye disease (DED), targeting both tear film instability and dysfunctional para-inflammation. The activity of HAC eyedrops has been explored in different post-marketing clinical trials, in addition to preclinical studies. In this narrative review, we explored the available evidence on the use of HAC eyedrops for the management of para-inflammation in DED patients to provide a comprehensive overview of efficacy and safety data related to the use of this medical device in routine clinical practice. Methods: A literature search for preclinical and clinical data involving treatment with HAC eyedrops was conducted using PubMed/MEDLINE, considering only original research articles published in English, without time restrictions. Results: One preclinical and four clinical papers were retrieved. Preclinical evidence suggests that 0.001% hydrocortisone is able to control the expression of inflammatory markers, and this, together with the hydrating and lubricating properties of hyaluronic acid, leads to improvements in DED clinical signs, such as tear volume and the stability of the tear film. The results of clinical trials demonstrate that HAC eyedrops are able to improve the signs and symptoms of DED and that 0.001% low-dosage hydrocortisone can be helpful in preventing the progression to chronic stages of DED. Conclusions: HAC eyedrops represent a promising therapeutic strategy for the management of dysfunctional para-inflammation and offer a valuable addition to the armamentarium of treatments for DED.
Collapse
Affiliation(s)
- Anna Rita Blanco
- Alfa Intes Industria Terapeutica Splendore S.r.l, Casoria, 80026 Naples, Italy
| | - Giuseppe Zasa
- Alfa Intes Industria Terapeutica Splendore S.r.l, Casoria, 80026 Naples, Italy
| |
Collapse
|
6
|
Bhatia A, Hanna J, Stuart T, Kasper KA, Clausen DM, Gutruf P. Wireless Battery-free and Fully Implantable Organ Interfaces. Chem Rev 2024; 124:2205-2280. [PMID: 38382030 DOI: 10.1021/acs.chemrev.3c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Advances in soft materials, miniaturized electronics, sensors, stimulators, radios, and battery-free power supplies are resulting in a new generation of fully implantable organ interfaces that leverage volumetric reduction and soft mechanics by eliminating electrochemical power storage. This device class offers the ability to provide high-fidelity readouts of physiological processes, enables stimulation, and allows control over organs to realize new therapeutic and diagnostic paradigms. Driven by seamless integration with connected infrastructure, these devices enable personalized digital medicine. Key to advances are carefully designed material, electrophysical, electrochemical, and electromagnetic systems that form implantables with mechanical properties closely matched to the target organ to deliver functionality that supports high-fidelity sensors and stimulators. The elimination of electrochemical power supplies enables control over device operation, anywhere from acute, to lifetimes matching the target subject with physical dimensions that supports imperceptible operation. This review provides a comprehensive overview of the basic building blocks of battery-free organ interfaces and related topics such as implantation, delivery, sterilization, and user acceptance. State of the art examples categorized by organ system and an outlook of interconnection and advanced strategies for computation leveraging the consistent power influx to elevate functionality of this device class over current battery-powered strategies is highlighted.
Collapse
Affiliation(s)
- Aman Bhatia
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Jessica Hanna
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Tucker Stuart
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Kevin Albert Kasper
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - David Marshall Clausen
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Philipp Gutruf
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
- Department of Electrical and Computer Engineering, The University of Arizona, Tucson, Arizona 85721, United States
- Bio5 Institute, The University of Arizona, Tucson, Arizona 85721, United States
- Neuroscience Graduate Interdisciplinary Program (GIDP), The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
7
|
Fogagnolo P, Giannaccare G, Mencucci R, Villani E, Orfeo V, Aragona P. Effectiveness of a New Active Tear Substitute Containing 0.2% Hyaluronic Acid and 0.001% Hydrocortisone on Signs and Symptoms of Dry Eye Disease by Means of Low- and High-Tech Assessments. Ophthalmol Ther 2024; 13:251-266. [PMID: 37948015 PMCID: PMC10776550 DOI: 10.1007/s40123-023-00833-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/05/2023] [Indexed: 11/12/2023] Open
Abstract
INTRODUCTION An innovative eye drops formulation containing 0.2% hyaluronic acid and a low concentration of hydrocortisone (0.001%; hereafter HALH) has been recently placed on the market (Idroflog®, Alfa Intes, Italy) to manage the dysregulated parainflammation in patients with dry eye disease (DED). In the present paper, the effectiveness of HALH on the signs and symptoms of DED was retrospectively evaluated and compared with that one obtained using standard tear substitutes (STS) by means of low- and high-tech (Keratograph®) assessments. METHODS This was a multicenter retrospective study carried out between February and April 2023, involving adult patients with DED diagnosis owing to post-cataract surgery, meibomian gland dysfunction, allergy, or glaucoma medications. The primary aim was to compare the changes induced by different therapies on Keratograph® parameters (noninvasive Keratograph tear breakup time [NIKBUT], tear meniscus height [TMH], eyelid meibography, conjunctival hyperemia, and conjunctivochalasis) or collected by traditional low-tech measures (tear breakup time [TBUT], Schirmer test, Efron score, and epithelial alterations) and the Ocular Surface Disease Index score. RESULTS Data from 155 patients were analyzed. The effectiveness of HALH and STS was reported by both high- and low-tech measures. NIKBUT-first showed a significant improvement in the HALH group versus the STS one at 15 days (6.4 ± 3.6 vs 5.4 ± 3.7 s, p = 0.02), whereas this difference was latent with low-tech TBUT until 45 days (6.8 ± 2.6 vs 5.6 ± 2.3 s, p = 0.03). Patients with DED occurring after cataract surgery reported an enhanced activity of HALH versus STS, particularly for NIKBUT-first, TMH, Schirmer test, and hyperemia stage. CONCLUSION These findings highlighted the effectiveness of HALH in all DED subtypes, especially in patients with post-cataract surgery, as well as its superiority versus STS in terms of tear film stability improvement. We recommend longer observation (i.e., 3-6 months) to fully ascertain whether the early improvement detected by high-tech measures will be confirmed in subsequent time points even using low-tech tests.
Collapse
Affiliation(s)
- Paolo Fogagnolo
- Health Sciences Department, Università degli Studi di Milano, Milan, Italy.
| | - Giuseppe Giannaccare
- Department of Ophthalmology, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Rita Mencucci
- Department of Neurosciences, Psychology, Drug Research, and Child Health, Eye Clinic, University of Florence, AOU Careggi, 50139, Florence, Italy
| | - Edoardo Villani
- Department of Clinical Science and Community Health, University of Milan, Eye Clinic San Giuseppe Hospital, IRCCS Multimedica, Milan, Italy
| | - Vincenzo Orfeo
- Unità Operativa di Oculistica Clinica Mediterranea, Naples, Italy
| | - Pasquale Aragona
- Department of Biomedical Sciences, Eye Clinic, University of Messina, Messina, Italy
| |
Collapse
|
8
|
Borroni D, Mazzotta C, Rocha-de-Lossada C, Sánchez-González JM, Ballesteros-Sanchez A, García-Lorente M, Zamorano-Martín F, Spinelli A, Schiano-Lomoriello D, Tedesco GR. Dry Eye Para-Inflammation Treatment: Evaluation of a Novel Tear Substitute Containing Hyaluronic Acid and Low-Dose Hydrocortisone. Biomedicines 2023; 11:3277. [PMID: 38137498 PMCID: PMC10740799 DOI: 10.3390/biomedicines11123277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Purpose: The purpose of this study was to check the efficacy and safety of a novel tear substitute containing hyaluronic acid and low-dose hydrocortisone in the treatment of moderate dry eye disease. Methods: In this prospective randomized study, 38 patients with moderate dry eye disease were divided into two treatment groups: Group 1 received one drop of 0.2% sodium hyaluronate and 0.001% hydrocortisone four times daily for 3 months, while Group 2 received 0.15% sodium hyaluronate and 3% trehalose at the same dosage. OSDI and SANDE questionnaires, Non-Invasive Break-Up time (NIBUT), Tear Meniscus Height (TMH), meibography, Lipid Layer Thickness (LLT), Tear Break-Up Time (TBUT), Corneal Staining Score (CFS), and Intraocular Pressure (IOP) were evaluated at baseline and after 1, 2, and 3 months of treatment. Results: During the treatment period, Group 1 showed statistically significant improvement in OSDI score (p = 0.002), SANDE score (p = 0.01), NIBUT (p < 0.0001), LLT (p < 0.0001), TBUT (p = 0.01), and CFS (p = 0.02). In Group 2, significant improvement was observed only in the TBUT score (p < 0.05). Comparison of the two groups showed that NIBUT and LLT were significantly different at the end of treatment (p = 0.001 for both comparisons), with more favorable results for sodium hyaluronate and hydrocortisone than for sodium hyaluronate and trehalose. No significant variations in intraocular pressure were observed in either group during the treatment period (p > 0.05). Conclusions: The study confirms that a 3-months treatment with hyaluronic acid 0.2% in combination with low-dose hydrocortisone 0.001% improves the signs and symptoms of moderate DED and that a low-dosage 0.001% hydrocortisone can be helpful in preventing the progression to chronic stages of DED.
Collapse
Affiliation(s)
- Davide Borroni
- Centro Oculistico Borroni, Gallarate, 21013 Varese, Italy
- Eyemetagenomics Ltd., 71–75, Shelton Street, Covent Garden, London WC2H 9JQ, UK
| | - Cosimo Mazzotta
- Siena Crosslinking Center, 53035 Siena, Italy;
- Departmental Ophthalmology Unit, USL Toscana Sud Est l, 53100 Siena, Italy
- Postgraduate Ophthalmology School, University of Siena, 53100 Siena, Italy
| | - Carlos Rocha-de-Lossada
- Ophthalmology Department, QVision, Vithas Almería, 04120 Almería, Spain;
- Ophthalmology Department, Hospital Regional Universitario Málaga, 29016 Malaga, Spain; (M.G.-L.); (F.Z.-M.)
| | - José-María Sánchez-González
- Department of Physics of Condensed Matter, Optics Area, University of Seville, 41012 Seville, Spain; (J.-M.S.-G.); (A.B.-S.)
| | - Antonio Ballesteros-Sanchez
- Department of Physics of Condensed Matter, Optics Area, University of Seville, 41012 Seville, Spain; (J.-M.S.-G.); (A.B.-S.)
- Department of Ophthalmology, Clinica Novovision, 30008 Murcia, Spain
| | - María García-Lorente
- Ophthalmology Department, Hospital Regional Universitario Málaga, 29016 Malaga, Spain; (M.G.-L.); (F.Z.-M.)
| | - Francisco Zamorano-Martín
- Ophthalmology Department, Hospital Regional Universitario Málaga, 29016 Malaga, Spain; (M.G.-L.); (F.Z.-M.)
| | | | | | | |
Collapse
|
9
|
Rodrigues-Braz D, Zhu L, Gélizé E, Clarin JP, Chatagnon X, Benzine Y, Rampignon P, Thouvenin A, Bourges JL, Behar-Cohen F, Zhao M. Spironolactone Eyedrop Favors Restoration of Corneal Integrity after Wound Healing in the Rat. Pharmaceuticals (Basel) 2023; 16:1446. [PMID: 37895917 PMCID: PMC10609951 DOI: 10.3390/ph16101446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Abnormal corneal wound healing can compromise corneal transparency and lead to visual impairment. Mineralocorticoid receptor antagonists (MRA) are promising candidates to promote corneal remodeling with anti-inflammatory properties and lack gluococorticoids-associated side effects. In this preclinical study, a new polymer-free hydroxypropyl-gamma-cyclodextrin-based eyedrop containing 0.1% spironolactone (SPL), a potent but non-water-soluble MRA, was investigated for its ocular surface tolerance and efficacy in a rat model of corneal wound healing. SPL eyedrops were stable for up to 9 months at 4 °C. The formulation was well-tolerated since no morphological changes or inflammatory reactions were observed in the rat cornea after multiple daily instillations over 7 days. SPL eyedrops accelerated rat corneal wound healing, reduced corneal edema and inflammation, enhanced epithelial integrity, and improved nerve regeneration, suggesting restoration of corneal homeostasis, while potassium canrenoate, an active and soluble metabolite of SPL, had no effect. SPL eyedrops could benefit patients with impaired corneal wound healing, including that secondary to glucocorticoid therapy. Repurposing known drugs with known excipients will expedite translation to the clinic.
Collapse
Affiliation(s)
- Daniela Rodrigues-Braz
- Centre de Recherche des Cordeliers, Inserm, Université Paris Cité, Sorbonne Université, 75006 Paris, France; (D.R.-B.); (L.Z.); (E.G.); (J.-L.B.); (M.Z.)
| | - Linxin Zhu
- Centre de Recherche des Cordeliers, Inserm, Université Paris Cité, Sorbonne Université, 75006 Paris, France; (D.R.-B.); (L.Z.); (E.G.); (J.-L.B.); (M.Z.)
| | - Emmanuelle Gélizé
- Centre de Recherche des Cordeliers, Inserm, Université Paris Cité, Sorbonne Université, 75006 Paris, France; (D.R.-B.); (L.Z.); (E.G.); (J.-L.B.); (M.Z.)
| | | | | | | | | | - Agathe Thouvenin
- CNRS, Inserm, UTCBS, Université Paris Cité, 75006 Paris, France;
- Département Recherche et Développement Pharmaceutique, Agence Générale des Equipements et Produits de Santé (AGEPS), AP-HP, 75005 Paris, France
| | - Jean-Louis Bourges
- Centre de Recherche des Cordeliers, Inserm, Université Paris Cité, Sorbonne Université, 75006 Paris, France; (D.R.-B.); (L.Z.); (E.G.); (J.-L.B.); (M.Z.)
- Ophtalmopole, AP-HP, Cochin Hospital, 75014 Paris, France
| | - Francine Behar-Cohen
- Centre de Recherche des Cordeliers, Inserm, Université Paris Cité, Sorbonne Université, 75006 Paris, France; (D.R.-B.); (L.Z.); (E.G.); (J.-L.B.); (M.Z.)
- Ophtalmopole, AP-HP, Cochin Hospital, 75014 Paris, France
- Hôpital Foch, Service D’ophtalmologie, 92150 Suresnes, France
| | - Min Zhao
- Centre de Recherche des Cordeliers, Inserm, Université Paris Cité, Sorbonne Université, 75006 Paris, France; (D.R.-B.); (L.Z.); (E.G.); (J.-L.B.); (M.Z.)
| |
Collapse
|
10
|
Pikuleva IA. Challenges and Opportunities in P450 Research on the Eye. Drug Metab Dispos 2023; 51:1295-1307. [PMID: 36914277 PMCID: PMC10506698 DOI: 10.1124/dmd.122.001072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 02/14/2023] [Accepted: 03/06/2023] [Indexed: 03/15/2023] Open
Abstract
Of the 57 cytochrome P450 enzymes found in humans, at least 30 have ocular tissues as an expression site. Yet knowledge of the roles of these P450s in the eye is limited, in part because only very few P450 laboratories expanded their research interests to studies of the eye. Hence the goal of this review is to bring attention of the P450 community to the eye and encourage more ocular studies. This review is also intended to be educational for eye researchers and encourage their collaborations with P450 experts. The review starts with a description of the eye, a fascinating sensory organ, and is followed by sections on ocular P450 localizations, specifics of drug delivery to the eye, and individual P450s, which are grouped and presented based on their substrate preferences. In sections describing individual P450s, available eye-relevant information is summarized and concluded by the suggestions on the opportunities in ocular studies of the discussed enzymes. Potential challenges are addressed as well. The conclusion section outlines several practical suggestions on how to initiate eye-related research. SIGNIFICANCE STATEMENT: This review focuses on the cytochrome P450 enzymes in the eye to encourage their ocular investigations and collaborations between P450 and eye researchers.
Collapse
Affiliation(s)
- Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
11
|
Zola M, Bousquet E, Bourges JL, Azan F, Zhao M, Jaworski T, Pussard E, Behar-Cohen F. Ocular steroidome in human eyes and in eyes with complex central serous chorioretinopathy (CSCR). Sci Rep 2023; 13:14111. [PMID: 37644063 PMCID: PMC10465571 DOI: 10.1038/s41598-023-41126-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023] Open
Abstract
The exact link between systemic and ocular endogenous corticoids (steroidome) is unclear and whether the ocular steroidome is altered in CSCR eyes is unknown. The aims of this study were to analyze the human steroidome in the aqueous humor as a function of age, sex and time of the day, to correlate systemic and ocular steroidome and to analyze the ocular steroidome in long lasting complex inactive CSCR. Based on our results, we present two CSCR cases treated by the combination of oral mineralocorticoid antagonist and glucocorticoids drops. In a cross-sectional study, aqueous humor (AH) was collected between 8am and 6 pm from 50 unaffected individuals (25 men and 25 women) and from 14 patients with chronic CSCR, during cataract surgery. In addition, simultaneous serum and AH were collected from 27 individuals undergoing cataract surgery and, simultaneous AH and vitreous were collected from 9 patients undergoing cataract and vitrectomy to estimate corticoids levels in the different compartments. The steroidome was determined using a LC-MS/MS method that quantifies 13 endogenous corticoids from the gluco, mineralocorticoid and androgen pathways. In AH and vitreous, the highest corticoid level is reached by cortisol (F), that represents less than 10% of F serum level. The cortisol levels in the serum did not correlate with ocular cortisol levels. Serum and ocular cortisone (E) levels correlate, although less than 5% of circulating E reaches the eye. The only mineralocorticoids measured in the AH were corticosterone (B) and its inactive form, the 11-desoxycorticosterone (A). There was no influence of circadian rhythm on cortisol ocular levels and there was no correlation between the age or the sex and the level of F, E, A, and B. In eyes with chronic inactive CSCR, the levels of the active glucocorticoid form F was lower than in control eyes and the F/E ratio was reduced by 50% but the B/A ratio was higher indicating imbalance towards active mineralocorticoids. Base on this observation, we propose to combine an antagonist of the mineralocorticoid receptor together with topical glucocorticoids in two CSCR patients, resistant to all other treatments, with favorable outcome. Our results indicate that the ocular psteroidome is highly regulated suggesting a local metabolism of ocular corticoids. In eyes with long-lasting complex inactive CSCR, the steroidome analysis shows lower active glucocorticoids and higher active mineralocorticoids.
Collapse
Affiliation(s)
- Marta Zola
- Department of Ophthalmology, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris Cité, Paris, France
- Centre de Recherche des Cordeliers, INSERM, Physiopathology of Ocular Diseases: Therapeutic Innovations, University Paris Cité, Paris, France
- Department of Ophthalmology, Hôpital Foch, Suresnes, France
| | - Elodie Bousquet
- Department of Ophthalmology, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris Cité, Paris, France
- Centre de Recherche des Cordeliers, INSERM, Physiopathology of Ocular Diseases: Therapeutic Innovations, University Paris Cité, Paris, France
| | - Jean-Louis Bourges
- Department of Ophthalmology, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris Cité, Paris, France
- Centre de Recherche des Cordeliers, INSERM, Physiopathology of Ocular Diseases: Therapeutic Innovations, University Paris Cité, Paris, France
| | - Fréderic Azan
- Department of Ophthalmology, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris Cité, Paris, France
| | - Min Zhao
- Centre de Recherche des Cordeliers, INSERM, Physiopathology of Ocular Diseases: Therapeutic Innovations, University Paris Cité, Paris, France
| | - Thara Jaworski
- Centre de Recherche des Cordeliers, INSERM, Physiopathology of Ocular Diseases: Therapeutic Innovations, University Paris Cité, Paris, France
| | - Eric Pussard
- Department of Genetic and Hormonology, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris-Saclay, Le Kremlin Bicêtre, France
| | - Francine Behar-Cohen
- Department of Ophthalmology, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris Cité, Paris, France.
- Centre de Recherche des Cordeliers, INSERM, Physiopathology of Ocular Diseases: Therapeutic Innovations, University Paris Cité, Paris, France.
- Department of Ophthalmology, Hôpital Foch, Suresnes, France.
| |
Collapse
|
12
|
Dealing with the Persistent Pathogenic Issues of Dry Eye Disease: The Importance of External and Internal Stimuli and Tissue Responses. J Clin Med 2023; 12:jcm12062205. [PMID: 36983208 PMCID: PMC10055091 DOI: 10.3390/jcm12062205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/08/2023] [Accepted: 03/11/2023] [Indexed: 03/14/2023] Open
Abstract
The immune system plays a central role in protecting the ocular surface from exogenous and endogenous insults, maintaining tissue homeostasis thanks to the mechanism of para-inflammation. This physiological adaptive response may induce resident macrophages/monocytes to produce cytokines and growth factors in order to promote epithelial cell recovery. In case of well-controlled para-inflammation, caused by a low amount of stress, cell viability and function are maintained. When stress becomes too intense, there is a response characterized by the activation of autophagic pathways and consequent cell death. Dysregulated homeostasis and chronic sub-clinical inflammation are the starting points for the development of a stable, chronic inflammatory disease, which leads to ocular surface damage, and, in turn, to the onset or progression of chronic dry eye disease (DED). The long-term management of DED should consider all of the pathogenic issues involved in the disease, including the control of persistent external or internal stresses that are capable of activating and maintaining the para-inflammatory adaptive mechanisms, potentially leading to full-blown inflammation. Dysregulated para-inflammation can be corrected by means of the prolonged use of tear substitutes containing minimal doses of safe corticosteroids or other anti-inflammatory molecules (e.g., corticosteroid, cyclosporine) in order to re-equilibrate ocular surface homeostasis.
Collapse
|
13
|
Dry Eye Disease: What Is the Role of Vitamin D? Int J Mol Sci 2023; 24:ijms24021458. [PMID: 36674972 PMCID: PMC9860626 DOI: 10.3390/ijms24021458] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
Dry eye disease (DED) is a multifactorial condition resulting from reduced tear secretion from the lacrimal glands, increased tear water evaporation or the production of poor-quality tears. Such tear instability can lead to inflammation and damage of the ocular surface, as well as to abnormal nociception. Historically, tear substitutes and corticosteroids have been the bastion of DED therapy, but a substantial number of patients still suffer from residual symptoms even after being treated with traditional treatments. Aiming to find safe and effective alternative therapies, recent efforts have been focused on the role of vitamin D in the cellular physiology of the eye. Possibly because of its positive effect in modulating the immune and inflammatory responses, the systemic supplementation of vitamin D seems, indeed, to be an effective therapeutic strategy, especially, but not only, for patients affected by DED that does not respond to conventional treatments. In this context, this review focuses on the literature reporting on the pathogenesis and treatment of DED, with a special emphasis on the recent investigations reporting on the potential role of the systemic administration of vitamin D as a therapeutic approach in the management of such condition.
Collapse
|
14
|
Biochemistry of human tear film: A review. Exp Eye Res 2022; 220:109101. [DOI: 10.1016/j.exer.2022.109101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/18/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022]
|
15
|
Harrison KS, Jones C. Regulation of herpes simplex virus type 1 latency-reactivation cycle and ocular disease by cellular signaling pathways. Exp Eye Res 2022; 218:109017. [PMID: 35240194 PMCID: PMC9191828 DOI: 10.1016/j.exer.2022.109017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 11/04/2022]
Abstract
Following acute infection, herpes simplex virus type 1 (HSV-1) establishes life-long latency in sensory and other neurons. Recurrent ocular HSV-1 outbreaks are generally due to reactivation from latency. The HSV-1 latency-reactivation cycle is a complex virus-host relationship. The viral encoded latency-associated transcript (LAT) is abundantly expressed in latency and encodes several micro-RNAs and other small non-coding RNAs, which may regulate expression of key viral and cellular genes. Certain cellular signaling pathways, including Wnt/β-catenin and mTOR pathway, mediate certain aspect of the latency-reactivation cycle. Stress, via activation of the glucocorticoid receptor and other stress induced cellular transcription factors, are predicted to trigger reactivation from latency by stimulating viral gene expression and impairing immune responses and inflammation. These observations suggest stress and certain cellular signaling pathways play key roles in regulating the latency-reactivation cycle and recurrent ocular disease.
Collapse
Affiliation(s)
- Kelly S Harrison
- Oklahoma State University, College of Veterinary Medicine, Department of Veterinary Pathobiology, Rm 250 McElroy Hall, Stillwater, OK, 74078, USA.
| | - Clinton Jones
- Oklahoma State University, College of Veterinary Medicine, Department of Veterinary Pathobiology, Rm 250 McElroy Hall, Stillwater, OK, 74078, USA.
| |
Collapse
|
16
|
Evaluation of Ammonia Nitrogen Exposure in Immune Defenses Present on Spleen and Head-Kidney of Wuchang Bream ( Megalobrama amblycephala). Int J Mol Sci 2022; 23:ijms23063129. [PMID: 35328551 PMCID: PMC8953400 DOI: 10.3390/ijms23063129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
Ammonia is one of the most important environmental factors in aquatic ecosystems. However, there are limited studies on the effects of chronic or long-term ammonia stress and its potential molecular mechanism in fish. This study aimed to investigate the immune response and molecular mechanisms in the spleen and head-kidney of fish following chronic ammonia exposure. Megalobrama amblycephala (9.98 ± 0.48 g) were exposed to different concentrations of total ammonia nitrogen (0-30 mg/L) for 30 days. Ammonia exposure caused significant increases in cortisol levels and decreases in lysozyme and complement 3/4 concentrations in the serum, indicating inhibitory effects of ammonia stress on innate immune responses. Ammonia exposure also induced concentration-dependent increases in ammonia concentrations in tissue, pathological damage and indexes of spleen and head-kidney. Additionally, the contents of immunoglobulin M (IgM), interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α) as well as mRNA levels of toll-like receptors (TLRs)/Myeloid differentiation factor 88 (MyD88)-independent signaling molecules in the spleen and head-kidney were significantly downregulated after ammonia exposure. Our findings suggested that chronic ammonia exposure caused the suppression of innate and adaptive immune responses through downregulating TLR/MyD88-independent signaling. Adverse influences of chronic ammonia stress were more severe in the spleen than in the head-kidney.
Collapse
|
17
|
Rolando M, Barabino S. The Subtle Role of Para-inflammation in Modulating the Progression of Dry Eye Disease. Ocul Immunol Inflamm 2021; 29:811-816. [PMID: 34003707 DOI: 10.1080/09273948.2021.1906908] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In patients with DED, the continuous stimuli induced by excessive or persistent cold fiber sensors and overstimulation of nociceptors, as well as tear hyperosmolarity induced by evaporative stress, induce a transitory protective adaptation response called para-inflammation to restore ocular surface homeostasis. This mild subclinical inflammatory status (a type of hormetic response) can become chronic if the stimuli or tissue malfunction is present for a sustained period, causing persistent symptoms and damage to ocular surface epithelia.We review the mechanisms that characterize the transition from para-inflammation to a persistent inflammatory status of the ocular surface, including accumulation of biological waste and damaged/dysfunctional proteins, which, in normal conditions, are eliminated by autophagy, activation of the inflammasomes, and what is currently known about their role in DED pathogenesis. Furthermore, we analyze current treatments that can modulate the inflammatory response of the ocular surface and speculate about new possible therapies to treat para-inflammation.
Collapse
Affiliation(s)
| | - Stefano Barabino
- Ocular Surface and Dry Eye Center, ASST Fatebenefratelli-Sacco, Sacco Hospital - University of Milan, Milan, Italy
| |
Collapse
|
18
|
Aragona P, Baudouin C, Benitez Del Castillo JM, Messmer E, Barabino S, Merayo-Lloves J, Brignole-Baudouin F, Inferrera L, Rolando M, Mencucci R, Rescigno M, Bonini S, Labetoulle M. The ocular microbiome and microbiota and their effects on ocular surface pathophysiology and disorders. Surv Ophthalmol 2021; 66:907-925. [PMID: 33819460 DOI: 10.1016/j.survophthal.2021.03.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/17/2022]
Abstract
The ocular surface flora perform an important role in the defense mechanisms of the ocular surface system. Its regulation of the immunological activity and the barrier effect against pathogen invasion are remarkable. Composition of the flora differs according to the methods of investigation, because the microbiome, composed of the genetic material of bacteria, fungi, viruses, protozoa, and eukaryotes on the ocular surface, differs from the microbiota, which are the community of microorganisms that colonize the ocular surface. The observed composition of the ocular surface flora depends on harvesting and examining methods, whether with traditional culture or with more refined genetic analysis based on rRNA and DNA sequencing. Environment, diet, sex, and age influence the microbial flora composition, thus complicating the analysis of the baseline status. Moreover, potentially pathogenic organisms can affect its composition, as do various disorders, including chronic inflammation, and therapies applied to the ocular surface. A better understanding of the composition and function of microbial communities at the ocular surface could bring new insights and clarify the epidemiology and pathology of ocular surface dynamics in health and disease. The purpose of this review is to provide an up-to-date overview of knowledge about this topic.
Collapse
Affiliation(s)
- Pasquale Aragona
- Department of Biomedical Sciences, Ophthalmology Clinic, University of Messina, Messina, Italy.
| | - Christophe Baudouin
- Quinze-Vingts National Eye Hospital, IHU ForeSight, Paris Saclay University, Paris, France
| | - Jose M Benitez Del Castillo
- Departamento de Oftalmología, Hospital Clínico San Carlos, Clínica Rementeria, Instituto Investigaciones Oftalmologicas Ramon Castroviejo, Universidad Complutense, Madrid, Spain
| | - Elisabeth Messmer
- Department of Ophthalmology, Ludwig-Maximilians-University, Munich, Germany
| | - Stefano Barabino
- Ocular Surface and Dry Eye Center, Ospedale L. Sacco, University of Milan, Milan, Italy
| | - Jesus Merayo-Lloves
- Instituto Universitario Fernández-Vega, Universidad de Oviedo, Oviedo, Spain
| | - Francoise Brignole-Baudouin
- Sorbonne Université, INSERM UMR_S968, CNRS UMR7210, Institut de la Vision, Paris, France; CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Laboratoire de Biologie Médicale, Paris, France; Université de Paris, Faculté de Pharmacie de Paris, Département de Chimie-Toxicologie Analytique et Cellulaire, Paris, France
| | - Leandro Inferrera
- Department of Biomedical Sciences, Ophthalmology Clinic, University of Messina, Messina, Italy
| | - Maurizio Rolando
- Ocular Surface and Dry Eye Center, ISPRE Ophthalmics, Genoa, Italy
| | - Rita Mencucci
- Department of Neuroscience, Psychology, Pharmacology and Child Health (NEUROFARBA), Eye Clinic, University of Florence, Florence, Italy
| | - Maria Rescigno
- Humanitas Clinical and Research Center - IRCCS, Humanitas University Department of Biomedical Sciences, Milan, Italy
| | - Stefano Bonini
- Department of Ophthalmology, University of Rome Campus Biomedico, Rome, Italy
| | - Marc Labetoulle
- Ophthalmology Départment, Hôpitaux Universitaires Paris-Sud, APHP, Université Paris-Saclay, IDMIT Infrastructure, Fontenay-aux-Roses Cedex, France
| |
Collapse
|
19
|
Aragona P, Giannaccare G, Mencucci R, Rubino P, Cantera E, Rolando M. Modern approach to the treatment of dry eye, a complex multifactorial disease: a P.I.C.A.S.S.O. board review. Br J Ophthalmol 2021; 105:446-453. [PMID: 32703782 PMCID: PMC8005804 DOI: 10.1136/bjophthalmol-2019-315747] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/18/2020] [Accepted: 06/01/2020] [Indexed: 12/30/2022]
Abstract
Dry eye disease (DED) is a growing public health concern affecting quality of life and visual function, with a significant socio-economic impact. It is characterised by the loss of homoeostasis, resulting in tear film instability, hyperosmolarity and inflammation of the ocular surface. If the innate immune response is unable to cope with internal bodily or environmental adverse conditions, the persistent, self-maintaining vicious circle of inflammation leads to the chronic form of the disease. Treatment of DED should be aimed at the restoration of the homoeostasis of the ocular surface system. A proper diagnostic approach is fundamental to define the relevance and importance of each of the DED main pathogenic factors, namely tear film instability, epithelial damage and inflammation. Consideration also needs to be given concerning two other pathogenic elements: lid margin changes and nerve damage. All the factors that maintain the vicious circle of DED in the patient's clinical presentation have to be considered and possibly treated simultaneously. The treatment should be long-lasting and personalised since it has to be adapted to the different clinical conditions observed along the course of the disease. Since DED treatment is frequently unable to provide fast and complete relief from symptoms, empathy with patients and willingness to explain to them the natural history of the disease are mandatory to improve patients' compliance. Furthermore, patients should be instructed about the possible need to increase the frequency and/or change the type of treatment according to the fluctuation of symptoms, following a preplanned rescue regimen.
Collapse
Affiliation(s)
- Pasquale Aragona
- Department of Biomedical Sciences, Ophthalmology Clinic, University of Messina, Messina, Italy
| | | | | | | | | | | |
Collapse
|
20
|
Krajčíková K, Skirková M, Moravská M, Birková A, Tomečková V. Native fluorescence of tear fluid as a tool for diagnostics of glaucoma. RSC Adv 2021; 11:10842-10846. [PMID: 35423590 PMCID: PMC8695866 DOI: 10.1039/d1ra00473e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/07/2021] [Indexed: 12/25/2022] Open
Abstract
Glaucoma is one of the leading causes of irreversible vision loss worldwide. There is an enormous need for the detection of its early stages and also speeding up and simplifying regular examinations. Among the new diagnostic approaches, the use of tear fluid has been intensively investigated in recent years. For this purpose, we analyzed the tear fluid of patients with glaucoma and related diseases. To sensitively capture the subtle ocular abnormalities related to glaucoma and manifested in tear fluid, we used synchronous fluorescence spectroscopy. In this observational case-control study, we detected significant differences in the intensity of tear fluid fluorescence located at λ ex/Δλ = 280/70 nm between the groups of primary open-angle glaucoma (p < 0.01), suspected glaucoma (p < 0.0001), and ocular hypertension (p < 0.05), when compared to the healthy control group. The signal was not significantly higher in women than in men (p = 0.05), and no correlation was found with age (r = -0.05, p > 0.05), nor treatment (p > 0.05). Taken together, tear fluid fluorescence could serve as a discriminative parameter between patients with glaucoma, related diseases, and healthy control subjects and might contribute to the improvement of diagnostics of these diseases.
Collapse
Affiliation(s)
- Kristína Krajčíková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice Trieda SNP 1 Košice 040 11 Slovakia
| | - Miriama Skirková
- Department of Ophthalmology, University Hospital Louis Pasteur, Pavol Jozef Šafárik University in Košice Trieda SNP 1 Košice 040 11 Slovakia
| | - Monika Moravská
- Department of Ophthalmology, University Hospital Louis Pasteur, Pavol Jozef Šafárik University in Košice Trieda SNP 1 Košice 040 11 Slovakia
| | - Anna Birková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice Trieda SNP 1 Košice 040 11 Slovakia
| | - Vladimíra Tomečková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice Trieda SNP 1 Košice 040 11 Slovakia
| |
Collapse
|
21
|
Sharma S, Murthy SI, Rathi V. Bilateral limbal stem cell disease in a patient with Addison's disease. BMJ Case Rep 2021; 14:e240959. [PMID: 33509896 PMCID: PMC7845711 DOI: 10.1136/bcr-2020-240959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2021] [Indexed: 01/30/2023] Open
Affiliation(s)
- Supriya Sharma
- GPR-ICARE, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | | | - Varsha Rathi
- GPR-ICARE, LV Prasad Eye Institute, Hyderabad, Telangana, India
| |
Collapse
|
22
|
Signaling lipids as diagnostic biomarkers for ocular surface cicatrizing conjunctivitis. J Mol Med (Berl) 2020; 98:751-760. [PMID: 32313985 PMCID: PMC7220886 DOI: 10.1007/s00109-020-01907-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/24/2020] [Accepted: 04/02/2020] [Indexed: 12/23/2022]
Abstract
Abstract Metabolomics has been applied to diagnose diseases, predict disease progression, and design therapeutic strategies in various areas of medicine. However, it remains to be applied to the ocular surface diseases, where biological samples are often of limited quantities. We successfully performed proof-of-concept metabolomics assessment of volume-limited cytology samples from a clinical form of chronic inflammatory cicatrizing conjunctivitis, i.e., ocular MMP and discovered metabolic changes of signaling lipid mediators upon disease onset and progression. The metabolomics assessment revealed active oxylipins, lysophospholipids, fatty acids, and endocannabinoids alterations, from which potential biomarkers linked to inflammatory processes were identified. Possible underlying mechanisms such as dysregulated enzyme activities (e.g., lipoxygenases, cytochrome P450, and phospholipases) were suggested which may be considered as potential therapeutic targets in future studies. Key messages Metabolic profile of the ocular surface can be measured using impression cytology samples. Metabolomics analysis of ocular pemphigoid is presented for the first time. The metabolomics assessment of OCP patients revealed active oxylipins, lysophospholipids, fatty acids, and endocannabinoids alterations. Several oxylipins are identified as diagnostic biomarkers for OCP.
Collapse
|
23
|
Nirbhavane P, Sharma G, Singh B, Begum G, Jones MC, Rauz S, Vincent R, Denniston AK, Hill LJ, Katare OP. Triamcinolone acetonide loaded-cationic nano-lipoidal formulation for uveitis: Evidences of improved biopharmaceutical performance and anti-inflammatory activity. Colloids Surf B Biointerfaces 2020; 190:110902. [PMID: 32143010 DOI: 10.1016/j.colsurfb.2020.110902] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/05/2020] [Accepted: 02/24/2020] [Indexed: 12/28/2022]
Abstract
Topical administration of corticosteroids is the cornerstone treatment of anterior uveitis, but poor corneal penetration and retention cause hindrance in their therapeutic utility. The conventional eye drops are less valuable in conditions where inflammation reaches deeper regions of the eye. Therefore, there is a clear need for an effective drug delivery system, which can increase corticosteroid penetration after topical application. To address this, cationic nanostructured lipid carriers of the drug triamcinolone acetonide (cTA-NLC) were prepared. The cTA-NLC were prepared by a hot microemulsion method and evaluated for drug release, permeation, cell uptake, cytotoxicity, anti-inflammatory activity and ocular irritancy. The cTA-NLC are nanometric in size (< 200 nm), with a zeta potential of about +35 mv and % drug EE of 88 %. The nanocarriers exhibited slow and sustained release of around 84 % in 24 h and transcorneal drug permeation of 51 % in 8 h. The nanocarriers exhibited no cytotoxicity (% cell viability of>90 %). The cell uptake study showed that nanocarriers could retain inside the cells for 24 h. The developed formulation could significantly reduce the TNF-α level in LPS induced inflamed cells. The studies indicated that cTA-NLC could be a promising option for the topical treatment of uveitis.
Collapse
Affiliation(s)
- Pradip Nirbhavane
- University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Gajanand Sharma
- University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Bhupinder Singh
- University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Ghazala Begum
- Institute of Inflammation & Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Marie-Christine Jones
- School of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Saaeha Rauz
- Institute of Inflammation & Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Rachel Vincent
- Institute of Inflammation & Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Alastair K Denniston
- Institute of Inflammation & Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Lisa J Hill
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| | - O P Katare
- University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
24
|
Sulaiman RS, Kadmiel M, Cidlowski JA. Glucocorticoid receptor signaling in the eye. Steroids 2018; 133:60-66. [PMID: 29129720 PMCID: PMC5875721 DOI: 10.1016/j.steroids.2017.11.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/30/2017] [Accepted: 11/06/2017] [Indexed: 02/01/2023]
Abstract
Glucocorticoids (GCs) are essential steroid hormones that regulate numerous metabolic and homeostatic functions in almost all physiological systems. Synthetic glucocorticoids are among the most commonly prescribed drugs for the treatment of various conditions including autoimmune, allergic and inflammatory diseases. Glucocorticoids are mainly used for their potent anti-inflammatory and immunosuppressive activities mediated through signal transduction by their nuclear receptor, the glucocorticoid receptor (GR). Emerging evidence showing that diverse physiological and therapeutic actions of glucocorticoids are tissue-, cell-, and sex-specific, suggests more complex actions of glucocorticoids than previously anticipated. While several synthetic glucocorticoids are widely used in the ophthalmology clinic for the treatment of several ocular diseases, little is yet known about the mechanism of glucocorticoid signaling in different layers of the eye. GR has been shown to be expressed in different cell types of the eye such as cornea, lens, and retina, suggesting an important role of GR signaling in the physiology of these ocular tissues. In this review, we provide an update on the recent findings from in vitro and in vivo studies reported in the last 5 years that aim at understanding the role of GR signaling specifically in the eye. Advances in studying the physiological effects of glucocorticoids in the eye are vital for the elaboration of optimized and targeted GC therapies with potent anti-inflammatory potential while minimizing adverse effects.
Collapse
Affiliation(s)
- Rania S Sulaiman
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institute of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Mahita Kadmiel
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institute of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - John A Cidlowski
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institute of Health, Department of Health and Human Services, Research Triangle Park, NC, USA.
| |
Collapse
|
25
|
Na YJ, Choi KJ, Park SB, Sung HR, Jung WH, Kim HY, Rhee SD, Kim KY. Protective effects of carbenoxolone, an 11β-HSD1 inhibitor, against chemical induced dry eye syndrome. Apoptosis 2017; 22:1441-1453. [DOI: 10.1007/s10495-017-1419-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
26
|
Sullivan DA, Rocha EM, Aragona P, Clayton JA, Ding J, Golebiowski B, Hampel U, McDermott AM, Schaumberg DA, Srinivasan S, Versura P, Willcox MDP. TFOS DEWS II Sex, Gender, and Hormones Report. Ocul Surf 2017; 15:284-333. [PMID: 28736336 DOI: 10.1016/j.jtos.2017.04.001] [Citation(s) in RCA: 262] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 04/16/2017] [Indexed: 12/21/2022]
Abstract
One of the most compelling features of dry eye disease (DED) is that it occurs more frequently in women than men. In fact, the female sex is a significant risk factor for the development of DED. This sex-related difference in DED prevalence is attributed in large part to the effects of sex steroids (e.g. androgens, estrogens), hypothalamic-pituitary hormones, glucocorticoids, insulin, insulin-like growth factor 1 and thyroid hormones, as well as to the sex chromosome complement, sex-specific autosomal factors and epigenetics (e.g. microRNAs). In addition to sex, gender also appears to be a risk factor for DED. "Gender" and "sex" are words that are often used interchangeably, but they have distinct meanings. "Gender" refers to a person's self-representation as a man or woman, whereas "sex" distinguishes males and females based on their biological characteristics. Both gender and sex affect DED risk, presentation of the disease, immune responses, pain, care-seeking behaviors, service utilization, and myriad other facets of eye health. Overall, sex, gender and hormones play a major role in the regulation of ocular surface and adnexal tissues, and in the difference in DED prevalence between women and men. The purpose of this Subcommittee report is to review and critique the nature of this role, as well as to recommend areas for future research to advance our understanding of the interrelationships between sex, gender, hormones and DED.
Collapse
Affiliation(s)
- David A Sullivan
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.
| | - Eduardo M Rocha
- Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Pasquale Aragona
- Department of Biomedical Sciences, Ocular Surface Diseases Unit, University of Messina, Messina, Sicily, Italy
| | - Janine A Clayton
- National Institutes of Health Office of Research on Women's Health, Bethesda, MD, USA
| | - Juan Ding
- Schepens Eye Research Institute, Massachusetts Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Blanka Golebiowski
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Ulrike Hampel
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Alison M McDermott
- The Ocular Surface Institute, College of Optometry, University of Houston, Houston, TX, USA
| | - Debra A Schaumberg
- Harvard School of Public Health, Boston, MA, USA; University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Sruthi Srinivasan
- Centre for Contact Lens Research, School of Optometry, University of Waterloo, Ontario, Canada
| | - Piera Versura
- Department of Specialized, Experimental, and Diagnostic Medicine, University of Bologna, Bologna, Italy
| | - Mark D P Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| |
Collapse
|
27
|
Hart KA, Kitchings KM, Kimura S, Norton NA, Myrna KE. Measurement of cortisol concentration in the tears of horses and ponies with pituitary pars intermedia dysfunction. Am J Vet Res 2016; 77:1236-1244. [DOI: 10.2460/ajvr.77.11.1236] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Kadmiel M, Janoshazi A, Xu X, Cidlowski JA. Glucocorticoid action in human corneal epithelial cells establishes roles for corticosteroids in wound healing and barrier function of the eye. Exp Eye Res 2016; 152:10-33. [PMID: 27600171 DOI: 10.1016/j.exer.2016.08.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/24/2016] [Accepted: 08/31/2016] [Indexed: 12/23/2022]
Abstract
Glucocorticoids play diverse roles in almost all physiological systems of the body, including both anti-inflammatory and immunosuppressive roles. Synthetic glucocorticoids are one of the most widely prescribed drugs and are used in the treatment of conditions such as autoimmune diseases, allergies, ocular disorders and certain types of cancers. In the interest of investigating glucocorticoid actions in the cornea of the eye, we established that multiple cell types in mouse corneas express functional glucocorticoid receptor (GR) with corneal epithelial cells having robust expression. To define glucocorticoid actions in a cell type-specific manner, we employed immortalized human corneal epithelial (HCE) cell line to define the glucocorticoid transcriptome and elucidated its functions in corneal epithelial cells. Over 4000 genes were significantly regulated within 6 h of dexamethasone treatment, and genes associated with cell movement, cytoskeletal remodeling and permeability were highly regulated. Real-time in vitro wound healing assays revealed that glucocorticoids delay wound healing by attenuating cell migration. These functional alterations were associated with cytoskeletal remodeling at the wounded edge of a scratch-wounded monolayer. However, glucocorticoid treatment improved the organization of tight-junction proteins and enhanced the epithelial barrier function. Our results demonstrate that glucocorticoids profoundly alter corneal epithelial gene expression and many of these changes likely impact both wound healing and epithelial cell barrier function.
Collapse
Affiliation(s)
- Mahita Kadmiel
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Agnes Janoshazi
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Xiaojiang Xu
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - John A Cidlowski
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA.
| |
Collapse
|
29
|
Torres-Castro I, Arroyo-Camarena ÚD, Martínez-Reyes CP, Gómez-Arauz AY, Dueñas-Andrade Y, Hernández-Ruiz J, Béjar YL, Zaga-Clavellina V, Morales-Montor J, Terrazas LI, Kzhyshkowska J, Escobedo G. Human monocytes and macrophages undergo M1-type inflammatory polarization in response to high levels of glucose. Immunol Lett 2016; 176:81-9. [DOI: 10.1016/j.imlet.2016.06.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 05/27/2016] [Accepted: 06/03/2016] [Indexed: 12/17/2022]
|
30
|
Herpesvirus entry mediator on radiation-resistant cell lineages promotes ocular herpes simplex virus 1 pathogenesis in an entry-independent manner. mBio 2015; 6:e01532-15. [PMID: 26489863 PMCID: PMC4620471 DOI: 10.1128/mbio.01532-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ocular herpes simplex virus 1 (HSV-1) infection leads to a potentially blinding immunoinflammatory syndrome, herpes stromal keratitis (HSK). Herpesvirus entry mediator (HVEM), a widely expressed tumor necrosis factor (TNF) receptor superfamily member with diverse roles in immune signaling, facilitates viral entry through interactions with viral glycoprotein D (gD) and is important for HSV-1 pathogenesis. We subjected mice to corneal infection with an HSV-1 mutant in which HVEM-mediated entry was specifically abolished and found that the HVEM-entry mutant produced clinical disease comparable to that produced by the control virus. HVEM-mediated induction of corneal cytokines, which correlated with an HVEM-dependent increase in levels of corneal immune cell infiltrates, was also gD independent. Given the complexity of HVEM immune signaling, we used hematopoietic chimeric mice to determine which HVEM-expressing cells mediate HSV-1 pathogenesis in the eye. Regardless of whether the donor was a wild-type (WT) or HVEM knockout (KO) strain, HVEM KO recipients were protected from ocular HSV-1, suggesting that HVEM on radiation-resistant cell types, likely resident cells of the cornea, confers wild-type-like susceptibility to disease. Together, these data indicate that HVEM contributes to ocular pathogenesis independently of entry and point to an immunomodulatory role for this protein specifically on radiation-resistant cells. Immune privilege is maintained in the eye in order to protect specialized ocular tissues, such as the translucent cornea, from vision-reducing damage. Ocular herpes simplex virus 1 (HSV-1) infection can disrupt this immune privilege, provoking a host response that ultimately brings about the majority of the damage seen with the immunoinflammatory syndrome herpes stromal keratitis (HSK). Our previous work has shown that HVEM, a host TNF receptor superfamily member that also serves as a viral entry receptor, is a critical component contributing to ocular HSV-1 pathogenesis, although its precise role in this process remains unclear. We hypothesized that HVEM promotes an inflammatory microenvironment in the eye through immunomodulatory actions, enhancing disease after ocular inoculation of HSV-1. Investigating the mechanisms responsible for orchestrating this aberrant immune response shed light on the initiation and maintenance of HSK, one of the leading causes of infectious blindness in the developed world.
Collapse
|
31
|
Linardi RL, Megee SO, Mainardi SR, Senoo M, Galantino-Homer HL. Expression and localization of epithelial stem cell and differentiation markers in equine skin, eye and hoof. Vet Dermatol 2015; 26:213-e47. [PMID: 25963063 DOI: 10.1111/vde.12214] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND The limited characterization of equine skin, eye and hoof epithelial stem cell (ESC) and differentiation markers impedes the investigation of the physiology and pathophysiology of these tissues. HYPOTHESIS/OBJECTIVES To characterize ESC and differentiation marker expression in epithelial tissues of the equine eye, haired skin and hoof capsule. METHODS Indirect immunofluorescence microscopy and immunoblotting were used to detect expression and tissue localization of keratin (K) isoforms K3, K10, K14 and K124, the transcription factor p63 (a marker of ESCs) and phosphorylated p63 [pp63; a marker of ESC transition to transit-amplifying (TA) cell] in epithelial tissues of the foot (haired skin, hoof coronet and hoof lamellae) and the eye (limbus and cornea). RESULTS Expression of K14 was restricted to the basal layer of epidermal lamellae and to basal and adjacent suprabasal layers of the haired skin, coronet and corneal limbus. Coronary and lamellar epidermis was negative for both K3 and K10, which were expressed in the cornea/limbus epithelium and haired skin epidermis, respectively. Variable expression of p63 with relatively low to high levels of phosphorylation was detected in individual basal and suprabasal cells of all epithelial tissues examined. CONCLUSIONS To the best of the author's knowledge, this is the first report of the characterization of tissue-specific keratin marker expression and the localization of putative epithelial progenitor cell populations, including ESCs (high p63 expression with low pp63 levels) and TA cells (high expression of both p63 and pp63), in the horse. These results will aid further investigation of epidermal and corneal epithelial biology and regenerative therapies in horses.
Collapse
Affiliation(s)
- Renata L Linardi
- Department of Clinical Studies, New Bolton Center, 382 West Street Road, Kennett Square, PA, 19348, USA
| | - Susan O Megee
- Department of Clinical Studies, New Bolton Center, 382 West Street Road, Kennett Square, PA, 19348, USA
| | - Sarah R Mainardi
- Department of Clinical Studies, New Bolton Center, 382 West Street Road, Kennett Square, PA, 19348, USA
| | - Makoto Senoo
- Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA, 19104, USA
| | - Hannah L Galantino-Homer
- Department of Clinical Studies, New Bolton Center, 382 West Street Road, Kennett Square, PA, 19348, USA
| |
Collapse
|