1
|
Cyclic Nucleotide (cNMP) Analogues: Past, Present and Future. Int J Mol Sci 2021; 22:ijms222312879. [PMID: 34884683 PMCID: PMC8657615 DOI: 10.3390/ijms222312879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
Cyclic nucleotides are important second messengers involved in cellular events, and analogues of this type of molecules are promising drug candidates. Some cyclic nucleotide analogues have become standard tools for the investigation of biochemical and physiological signal transduction pathways, such as the Rp-diastereomers of adenosine and guanosine 3′,5′-cyclic monophosphorothioate, which are competitive inhibitors of cAMP- and cGMP-dependent protein kinases. Next generation analogues exhibit a higher membrane permeability, increased resistance against degradation, and improved target specificity, or are caged or photoactivatable for fast and/or targeted cellular imaging. Novel specific nucleotide analogues activating or inhibiting cyclic nucleotide-dependent ion channels, EPAC/GEF proteins, and bacterial target molecules have been developed, opening new avenues for basic and applied research. This review provides an overview of the current state of the field, what can be expected in the future and some practical considerations for the use of cyclic nucleotide analogues in biological systems.
Collapse
|
2
|
Yi W, Li X, Chen K, Li J, Chen K, Pan A. Effect of rNA interference on Oatp3a1 gene expression on biological characteristics and immune factors of ovarian granulosa cells in rats with PCOS. Am J Transl Res 2020; 12:4659-4668. [PMID: 32913539 PMCID: PMC7476111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrinal metabolic disease, and its pathogenesis has not yet been thoroughly studied. The purpose of this experiment was to investigate the effect of RNA interference on Oatp3a1 gene expression on the biological viability and immune factors of ovarian granulosa cells in rats with PCOS. First, rats were intragastrically administered 1 mg/kg letrozole to successfully construct PCOS model. Western blot, qRT-PCR, CCK8 and flow cytometry were used to detect the gene expression, immune factor protein expression, cell proliferation and apoptosis in ovarian granulosa cells transfected with siRNA Oatp3a1 in rats with PCOS, respectively. The results showed that follicle stimulating hormone receptor (FSHR) was located on the cell membrane of rat ovarian granulosa cells, and letrozole successfully induced PCOS rat model. In PCOS rat ovarian granulosa cells, the mRNA expression level of Oapta1 was higher than that in normal rat ovarian granulosa cells. At the same time, compared with the sham group, the protein expression of NF-κB, TGF-β1 and VEGF in si-Oatp3a1 group was significantly down-regulated (P < 0.05), and the cell proliferation rate was significantly decreased in si-Oatp3a1 group (P < 0.05) in comparison with the sham group. The apoptotic rate was increased obviously (P < 0.05), which was about 2.5 times that of the sham group. This indicates that in the ovarian granulosa cells of rats with PCOS, the interference of Oatp3a1 gene expression can significantly inhibit cell proliferation and promote apoptosis, while inhibiting the expression of immune factors TGF-β1 and VEGF can reduce the expression of NF-κB protein, thereby suppressing the activation of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Weimin Yi
- Department of Traditional Chinese Medicine, Sun Yat-sen Memory Hospital of Sun Yat-sen University Guangzhou 510120, P. R. China
| | - Xue Li
- Department of Traditional Chinese Medicine, Sun Yat-sen Memory Hospital of Sun Yat-sen University Guangzhou 510120, P. R. China
| | - Ke Chen
- Department of Traditional Chinese Medicine, Sun Yat-sen Memory Hospital of Sun Yat-sen University Guangzhou 510120, P. R. China
| | - Jianjun Li
- Department of Traditional Chinese Medicine, Sun Yat-sen Memory Hospital of Sun Yat-sen University Guangzhou 510120, P. R. China
| | - Kefang Chen
- Department of Traditional Chinese Medicine, Sun Yat-sen Memory Hospital of Sun Yat-sen University Guangzhou 510120, P. R. China
| | - Aizhen Pan
- Department of Traditional Chinese Medicine, Sun Yat-sen Memory Hospital of Sun Yat-sen University Guangzhou 510120, P. R. China
| |
Collapse
|
3
|
Chen G, Wang L, Li W, Zhang Q, Hu T. Nodularin induced oxidative stress contributes to developmental toxicity in zebrafish embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 194:110444. [PMID: 32169726 DOI: 10.1016/j.ecoenv.2020.110444] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
Nodularin (NOD) is a kind of cyanobacterial toxins. It is of concern due to elicit severe genotoxicity in humans and animals. The comprehensive evaluation of NOD-induced adverse effects in living organisms is urgently needed. This study is aimed to report the developmental toxicity and molecular mechanism using zebrafish embryos exposed to NOD. The embryonic toxicity induced by NOD is demonstrated by inhibition of embryo hatching, increase in mortality rate, abnormal heart rate, embryonic malformation as well as defects in angiogenesis and common cardinal vein remodeling. NOD triggered a decreased rate of angiogenesis through inhibiting endothelial cells migration. NOD induced embryonic cell apoptosis and DNA damage, which can be alleviated by antioxidant N-acetyl-L-cysteine. NOD significantly caused oxidative damage as indicated by changes in reactive oxygen species, superoxide dismutase, catalase, glutathione and malondialdehyde. NOD also altered the expression of vascular development-genes (DLL4, CDH5, VEGFA, VEGFC) and apoptosis-related genes (BAX, BCL-2, P53, CASPASE 3). Taken together, NOD induced adverse effect on zebrafish embryos development, which may be associated with oxidative stress and apoptosis through the activation of P53-BAX/BCL-2-CASPASE 3-mediated pathway.
Collapse
Affiliation(s)
- Guoliang Chen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Linping Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Wenping Li
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Qian Zhang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Tingzhang Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
4
|
Luchowska-Stańska U, Morgan D, Yarwood SJ, Barker G. Selective small-molecule EPAC activators. Biochem Soc Trans 2019; 47:1415-1427. [PMID: 31671184 PMCID: PMC6824682 DOI: 10.1042/bst20190254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/22/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023]
Abstract
The cellular signalling enzymes, EPAC1 and EPAC2, have emerged as key intracellular sensors of the secondary messenger cyclic 3',5'-adenosine monophosphate (cyclic adenosine monophosphate) alongside protein kinase A. Interest has been galvanised in recent years thanks to the emergence of these species as potential targets for new cardiovascular disease therapies, including vascular inflammation and insulin resistance in vascular endothelial cells. We herein summarise the current state-of-the-art in small-molecule EPAC activity modulators, including cyclic nucleotides, sulphonylureas, and N-acylsulphonamides.
Collapse
Affiliation(s)
- Urszula Luchowska-Stańska
- Institute of Biological Chemistry, Biophysics, and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | - David Morgan
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | - Stephen J. Yarwood
- Institute of Biological Chemistry, Biophysics, and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | - Graeme Barker
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| |
Collapse
|
5
|
Sivertsen Åsrud K, Pedersen L, Aesoy R, Muwonge H, Aasebø E, Nitschke Pettersen IK, Herfindal L, Dobie R, Jenkins S, Berge RK, Henderson NC, Selheim F, Døskeland SO, Bakke M. Mice depleted for Exchange Proteins Directly Activated by cAMP (Epac) exhibit irregular liver regeneration in response to partial hepatectomy. Sci Rep 2019; 9:13789. [PMID: 31551444 PMCID: PMC6760117 DOI: 10.1038/s41598-019-50219-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023] Open
Abstract
The exchange proteins directly activated by cAMP 1 and 2 (Epac1 and Epac2) are expressed in a cell specific manner in the liver, but their biological functions in this tissue are poorly understood. The current study was undertaken to begin to determine the potential roles of Epac1 and Epac2 in liver physiology and disease. Male C57BL/6J mice in which expression of Epac1 and/or Epac2 are deleted, were subjected to partial hepatectomy and the regenerating liver was analyzed with regard to lipid accumulation, cell replication and protein expression. In response to partial hepatectomy, deletion of Epac1 and/or Epac2 led to increased hepatocyte proliferation 36 h post surgery, and the transient steatosis observed in wild type mice was virtually absent in mice lacking both Epac1 and Epac2. The expression of the protein cytochrome P4504a14, which is implicated in hepatic steatosis and fibrosis, was substantially reduced upon deletion of Epac1/2, while a number of factors involved in lipid metabolism were significantly decreased. Moreover, the number of Küpffer cells was affected, and Epac2 expression was increased in the liver of wild type mice in response to partial hepatectomy, further supporting a role for these proteins in liver function. This study establishes hepatic phenotypic abnormalities in mice deleted for Epac1/2 for the first time, and introduces Epac1/2 as regulators of hepatocyte proliferation and lipid accumulation in the regenerative process.
Collapse
Affiliation(s)
| | - Line Pedersen
- Department of Biomedicine, The University of Bergen, Bergen, Norway
| | - Reidun Aesoy
- Department of Clinical Science, The University of Bergen, Bergen, Norway
| | - Haruna Muwonge
- Department of Biomedicine, The University of Bergen, Bergen, Norway
| | - Elise Aasebø
- Department of Clinical Science, The University of Bergen, Bergen, Norway
- Department of Biomedicine, The Proteomic Unit at The University of Bergen (PROBE), University of Bergen, 5009, Bergen, Norway
| | | | - Lars Herfindal
- Department of Clinical Science, The University of Bergen, Bergen, Norway
| | - Ross Dobie
- Centre for Inflammation Research, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Stephen Jenkins
- Centre for Inflammation Research, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Rolf Kristian Berge
- Department of Clinical Science, The University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Neil Cowan Henderson
- Centre for Inflammation Research, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Frode Selheim
- Department of Biomedicine, The University of Bergen, Bergen, Norway
- Department of Clinical Science, The University of Bergen, Bergen, Norway
| | | | - Marit Bakke
- Department of Biomedicine, The University of Bergen, Bergen, Norway
| |
Collapse
|
6
|
Isensee J, Kaufholz M, Knape MJ, Hasenauer J, Hammerich H, Gonczarowska-Jorge H, Zahedi RP, Schwede F, Herberg FW, Hucho T. PKA-RII subunit phosphorylation precedes activation by cAMP and regulates activity termination. J Cell Biol 2018; 217:2167-2184. [PMID: 29615473 PMCID: PMC5987717 DOI: 10.1083/jcb.201708053] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 02/18/2018] [Accepted: 03/15/2018] [Indexed: 11/22/2022] Open
Abstract
Activity of endogenous protein kinase A (PKA) could never be analyzed directly in the cellular environment. Isensee et al. used antibodies to quantify conformational changes leading to an open conformation of endogenous PKA-II holoenzymes, which allowed them to analyze and model its activation cycle in primary sensory neurons. Type II isoforms of cyclic adenosine monophosphate (cAMP)–dependent protein kinase A (PKA-II) contain a phosphorylatable epitope within the inhibitory domain of RII subunits (pRII) with still unclear function. In vitro, RII phosphorylation occurs in the absence of cAMP, whereas staining of cells with pRII-specific antibodies revealed a cAMP-dependent pattern. In sensory neurons, we found that increased pRII immunoreactivity reflects increased accessibility of the already phosphorylated RII epitope during cAMP-induced opening of the tetrameric RII2:C2 holoenzyme. Accordingly, induction of pRII by cAMP was sensitive to novel inhibitors of dissociation, whereas blocking catalytic activity was ineffective. Also in vitro, cAMP increased the binding of pRII antibodies to RII2:C2 holoenzymes. Identification of an antibody specific for the glycine-rich loop of catalytic subunits facing the pRII-epitope confirmed activity-dependent binding with similar kinetics, proving that the reassociation is rapid and precisely controlled. Mechanistic modeling further supported that RII phosphorylation precedes cAMP binding and controls the inactivation by modulating the reassociation involving the coordinated action of phosphodiesterases and phosphatases.
Collapse
Affiliation(s)
- Jörg Isensee
- Department of Anesthesiology and Intensive Care Medicine, Experimental Anesthesiology and Pain Research, University Hospital of Cologne, Cologne, Germany
| | - Melanie Kaufholz
- Department of Biochemistry, University of Kassel, Kassel, Germany
| | - Matthias J Knape
- Department of Biochemistry, University of Kassel, Kassel, Germany
| | - Jan Hasenauer
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Center for Mathematics, Technische Universität München, Garching, Germany
| | - Hanna Hammerich
- Department of Anesthesiology and Intensive Care Medicine, Experimental Anesthesiology and Pain Research, University Hospital of Cologne, Cologne, Germany
| | - Humberto Gonczarowska-Jorge
- ISAS, Leibniz-Institut für Analytische Wissenschaften, Dortmund, Germany.,CAPES Foundation, Ministry of Education of Brazil, Brasília, Brazil
| | - René P Zahedi
- ISAS, Leibniz-Institut für Analytische Wissenschaften, Dortmund, Germany
| | | | | | - Tim Hucho
- Department of Anesthesiology and Intensive Care Medicine, Experimental Anesthesiology and Pain Research, University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
7
|
Robichaux WG, Cheng X. Intracellular cAMP Sensor EPAC: Physiology, Pathophysiology, and Therapeutics Development. Physiol Rev 2018; 98:919-1053. [PMID: 29537337 PMCID: PMC6050347 DOI: 10.1152/physrev.00025.2017] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022] Open
Abstract
This review focuses on one family of the known cAMP receptors, the exchange proteins directly activated by cAMP (EPACs), also known as the cAMP-regulated guanine nucleotide exchange factors (cAMP-GEFs). Although EPAC proteins are fairly new additions to the growing list of cAMP effectors, and relatively "young" in the cAMP discovery timeline, the significance of an EPAC presence in different cell systems is extraordinary. The study of EPACs has considerably expanded the diversity and adaptive nature of cAMP signaling associated with numerous physiological and pathophysiological responses. This review comprehensively covers EPAC protein functions at the molecular, cellular, physiological, and pathophysiological levels; and in turn, the applications of employing EPAC-based biosensors as detection tools for dissecting cAMP signaling and the implications for targeting EPAC proteins for therapeutic development are also discussed.
Collapse
Affiliation(s)
- William G Robichaux
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| |
Collapse
|
8
|
Liu L, Jokela J, Herfindal L, Wahlsten M, Sinkkonen J, Permi P, Fewer DP, Døskeland SO, Sivonen K. 4-Methylproline guided natural product discovery: co-occurrence of 4-hydroxy- and 4-methylprolines in nostoweipeptins and nostopeptolides. ACS Chem Biol 2014; 9:2646-55. [PMID: 25203327 DOI: 10.1021/cb500436p] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
4-methylproline (4-mPro) is a rare nonproteinogenic amino acid produced by cyanobacteria through the action of a zinc-dependent long-chain dehydrogenase and a Δ(1)-pyrroline-5-carboxylic acid (P5C) reductase homologue. Here, we used the presence of 4-mPro biosynthetic genes to discover new bioactive compounds from cyanobacteria. Eight biosynthetic gene clusters containing the 4-mPro biosynthetic genes nosE and nosF were found from publicly available cyanobacteria genomes, showing that 4-mPro is a good marker to discover previously unknown nonribosomal peptides. A combination of polymerase chain reaction (PCR) and liquid chromatography-mass spectroscopy (LC-MS) methods was used to screen 116 cyanobacteria strains from 8 genera. The 4-mPro biosynthetic genes were detected in 30 of the 116 cyanobacteria strains, 12 which were confirmed to produce 4-mPro by amino acid analysis. Species from the genus Nostoc were responsible for 80% of the positive results. Altogether, 11 new nonribosomal cyclic peptides, nostoweipeptin W1-W7 and nostopeptolide L1-L4, were identified from Nostoc sp. XPORK 5A and Nostoc sp. UK2aImI, respectively, and their chemical structure was elucidated. Interestingly, screening with 4-mPro genes resulted in the detection of peptides that do not contain just one 4-mPro but also 4-hydroxylproline (nostopeptolides) and, in case of nostoweipeptins, two 4-mPros and two 4-hydroxyprolines. Peptides from both groups inhibit microcystin-induced apoptosis of hepatocytes HEK293. The cell experiments indicated that these cyclic peptides inhibit the uptake of microcystin by blocking the organic anion-transporters OATP1B1/B3. This study enriches the drug library of microcystin antitoxin.
Collapse
Affiliation(s)
- Liwei Liu
- Department
of Food and Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, P.O. Box 56, Viikki Biocenter, Viikinkaari 9, FI-00014 Helsinki, Finland
| | - Jouni Jokela
- Department
of Food and Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, P.O. Box 56, Viikki Biocenter, Viikinkaari 9, FI-00014 Helsinki, Finland
| | - Lars Herfindal
- Department
of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Matti Wahlsten
- Department
of Food and Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, P.O. Box 56, Viikki Biocenter, Viikinkaari 9, FI-00014 Helsinki, Finland
| | - Jari Sinkkonen
- Department
of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Perttu Permi
- Program
in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, FI-00014 Helsinki, Finland
| | - David P Fewer
- Department
of Food and Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, P.O. Box 56, Viikki Biocenter, Viikinkaari 9, FI-00014 Helsinki, Finland
| | - Stein Ove Døskeland
- Department
of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Kaarina Sivonen
- Department
of Food and Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, P.O. Box 56, Viikki Biocenter, Viikinkaari 9, FI-00014 Helsinki, Finland
| |
Collapse
|