1
|
Jiménez-Venegas J, Zamora-Leiva L, Univaso L, Soto J, Tapia Y, Paneque M. Profile of Bacterial Communities in Copper Mine Tailings Revealed through High-Throughput Sequencing. Microorganisms 2024; 12:1820. [PMID: 39338494 PMCID: PMC11433839 DOI: 10.3390/microorganisms12091820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Mine-tailing dumps are one of the leading sources of environmental degradation, often with public health and ecological consequences. Due to the complex ecosystems generated, they are ideal sites for exploring the bacterial diversity of specially adapted microorganisms. We investigated the concentrations of trace metals in solid copper (Cu) mine tailings from the Ovejería Tailings Dam of the National Copper Corporation of Chile and used high-throughput sequencing techniques to determine the microbial community diversity of the tailings using 16S rRNA gene-based amplicon sequence analysis. The concentrations of the detected metals were highest in the following order: iron (Fe) > Cu > manganese (Mn) > molybdenum (Mo) > lead (Pb) > chromium (Cr) > cadmium (Cd). Furthermore, 16S rRNA gene-based sequence analysis identified 12 phyla, 18 classes, 43 orders, 82 families, and 154 genera at the three sampling points. The phylum Proteobacteria was the most dominant, followed by Chlamydiota, Bacteroidetes, Actinobacteria, and Firmicutes. Genera, such as Bradyrhizobium, Aquabacterium, Paracoccus, Caulobacter, Azospira, and Neochlamydia, showed high relative abundance. These genera are known to possess adaptation mechanisms in high concentrations of metals, such as Cd, Cu, and Pb, along with nitrogen-fixation capacity. In addition to their tolerance to various metals, some of these genera may represent pathogens of amoeba or humans, which contributes to the complexity and resilience of bacterial communities in the studied Cu mining tailings. This study highlights the unique microbial diversity in the Ovejería Tailings Dam, including the discovery of the genus Neochlamydia, reported for the first time for heavy metal resistance. This underscores the importance of characterizing mining sites, particularly in Chile, to uncover novel bacterial mechanisms for potential biotechnological applications.
Collapse
Affiliation(s)
- Joseline Jiménez-Venegas
- Faculty of Agricultural Sciences, University of Chile, Santa Rosa 11315, La Pintana, Santiago 8820808, Chile; (J.J.-V.); (Y.T.)
- Master Program in Territorial Management of Natural Resources, University of Chile, Santa Rosa 11315, La Pintana, Santiago 8820808, Chile
| | - Leonardo Zamora-Leiva
- Fundación Bionostra Chile Research, Almirante Lynch 1179, San Miguel, Santiago 8920033, Chile; (L.Z.-L.); (L.U.); (J.S.)
| | - Luciano Univaso
- Fundación Bionostra Chile Research, Almirante Lynch 1179, San Miguel, Santiago 8920033, Chile; (L.Z.-L.); (L.U.); (J.S.)
| | - Jorge Soto
- Fundación Bionostra Chile Research, Almirante Lynch 1179, San Miguel, Santiago 8920033, Chile; (L.Z.-L.); (L.U.); (J.S.)
| | - Yasna Tapia
- Faculty of Agricultural Sciences, University of Chile, Santa Rosa 11315, La Pintana, Santiago 8820808, Chile; (J.J.-V.); (Y.T.)
| | - Manuel Paneque
- Faculty of Agricultural Sciences, University of Chile, Santa Rosa 11315, La Pintana, Santiago 8820808, Chile; (J.J.-V.); (Y.T.)
| |
Collapse
|
2
|
Cho A, Lax G, Livingston SJ, Masukagami Y, Naumova M, Millar O, Husnik F, Keeling PJ. Genomic analyses of Symbiomonas scintillans show no evidence for endosymbiotic bacteria but does reveal the presence of giant viruses. PLoS Genet 2024; 20:e1011218. [PMID: 38557755 PMCID: PMC11008856 DOI: 10.1371/journal.pgen.1011218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/11/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Symbiomonas scintillans Guillou et Chrétiennot-Dinet, 1999 is a tiny (1.4 μm) heterotrophic microbial eukaryote. The genus was named based on the presence of endosymbiotic bacteria in its endoplasmic reticulum, however, like most such endosymbionts neither the identity nor functional association with its host were known. We generated both amplification-free shotgun metagenomics and whole genome amplification sequencing data from S. scintillans strains RCC257 and RCC24, but were unable to detect any sequences from known lineages of endosymbiotic bacteria. The absence of endobacteria was further verified with FISH analyses. Instead, numerous contigs in assemblies from both RCC24 and RCC257 were closely related to prasinoviruses infecting the green algae Ostreococcus lucimarinus, Bathycoccus prasinos, and Micromonas pusilla (OlV, BpV, and MpV, respectively). Using the BpV genome as a reference, we assembled a near-complete 190 kbp draft genome encoding all hallmark prasinovirus genes, as well as two additional incomplete assemblies of closely related but distinct viruses from RCC257, and three similar draft viral genomes from RCC24, which we collectively call SsVs. A multi-gene tree showed the three SsV genome types branched within highly supported clades with each of BpV2, OlVs, and MpVs, respectively. Interestingly, transmission electron microscopy also revealed a 190 nm virus-like particle similar the morphology and size of the endosymbiont originally reported in S. scintillans. Overall, we conclude that S. scintillans currently does not harbour an endosymbiotic bacterium, but is associated with giant viruses.
Collapse
Affiliation(s)
- Anna Cho
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gordon Lax
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Samuel J. Livingston
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yumiko Masukagami
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Mariia Naumova
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Olivia Millar
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Filip Husnik
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Patrick J. Keeling
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Davison HR, Hurst GDD. Hidden from plain sight: Novel Simkaniaceae and Rhabdochlamydiaceae diversity emerging from screening genomic and metagenomic data. Syst Appl Microbiol 2023; 46:126468. [PMID: 37847957 DOI: 10.1016/j.syapm.2023.126468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023]
Abstract
Chlamydiota are an ancient and hyperdiverse phylum of obligate intracellular bacteria. The best characterized representatives are pathogens or parasites of mammals, but it is thought that their most common hosts are microeukaryotes like Amoebozoa. The diversity in taxonomy, evolution, and function of non-pathogenic Chlamydiota are slowly being described. Here we use data mining techniques and genomic analysis to extend our current knowledge of Chlamydiota diversity and its hosts, in particular the Order Parachlamydiales. We extract one Rhabdochlamydiaceae and three Simkaniaceae Metagenome-Assembled Genomes (MAGs) from NCBI Short Read Archive deposits of ciliate and algal genome sequencing projects. We then use these to identify a further 14 and 8 MAGs respectively amongst existing, unidentified environmental assemblies. From these data we identify two novel clades with host associated data, for which we propose the names "Sacchlamyda saccharinae" (Family Rhabdochlamydiaceae) and "Amphrikana amoebophyrae" (Family Simkaniaceae), as well as a third new clade of environmental MAGs "Acheromyda pituitae" (Family Rhabdochlamydiaceae). The extent of uncharacterized diversity within the Rhabdochlamydiaceae and Simkaniaceae is indicated by 16 of the 22 MAGs being evolutionarily distant from currently characterised genera. Within our limited data, there was great predicted diversity in Parachlamydiales metabolism and evolution, including the potential for metabolic and defensive symbioses as well as pathogenicity. These data provide an imperative to link genomic diversity in metagenomics data to their associated eukaryotic host, and to develop onward understanding of the functional significance of symbiosis with this hyperdiverse clade.
Collapse
Affiliation(s)
- Helen R Davison
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB UK.
| | - Gregory D D Hurst
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB UK
| |
Collapse
|
4
|
George EE, Barcytė D, Lax G, Livingston S, Tashyreva D, Husnik F, Lukeš J, Eliáš M, Keeling PJ. A single cryptomonad cell harbors a complex community of organelles, bacteria, a phage, and selfish elements. Curr Biol 2023; 33:1982-1996.e4. [PMID: 37116483 DOI: 10.1016/j.cub.2023.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/20/2023] [Accepted: 04/06/2023] [Indexed: 04/30/2023]
Abstract
Symbiosis between prokaryotes and microbial eukaryotes (protists) has broadly impacted both evolution and ecology. Endosymbiosis led to mitochondria and plastids, the latter spreading across the tree of eukaryotes by subsequent rounds of endosymbiosis. Present-day endosymbionts in protists remain both common and diverse, although what function they serve is often unknown. Here, we describe a highly complex community of endosymbionts and a bacteriophage (phage) within a single cryptomonad cell. Cryptomonads are a model for organelle evolution because their secondary plastid retains a relict endosymbiont nucleus, but only one previously unidentified Cryptomonas strain (SAG 25.80) is known to harbor bacterial endosymbionts. We carried out electron microscopy and FISH imaging as well as genomic sequencing on Cryptomonas SAG 25.80, which revealed a stable, complex community even after over 50 years in continuous cultivation. We identified the host strain as Cryptomonas gyropyrenoidosa, and sequenced genomes from its mitochondria, plastid, and nucleomorph (and partially its nucleus), as well as two symbionts, Megaira polyxenophila and Grellia numerosa, and one phage (MAnkyphage) infecting M. polyxenophila. Comparing closely related endosymbionts from other hosts revealed similar metabolic and genomic features, with the exception of abundant transposons and genome plasticity in M. polyxenophila from Cryptomonas. We found an abundance of eukaryote-interacting genes as well as many toxin-antitoxin systems, including in the MAnkyphage genome that also encodes several eukaryotic-like proteins. Overall, the Cryptomonas cell is an endosymbiotic conglomeration with seven distinct evolving genomes that all show evidence of inter-lineage conflict but nevertheless remain stable, even after more than 4,000 generations in culture.
Collapse
Affiliation(s)
- Emma E George
- University of British Columbia, Department of Botany, Vancouver V6T 1Z4, Canada.
| | - Dovilė Barcytė
- University of Ostrava, Faculty of Science, Department of Biology and Ecology, 701 00 Ostrava, Czech Republic; Okinawa Institute of Science and Technology, Okinawa, 904-0495, Japan
| | - Gordon Lax
- University of British Columbia, Department of Botany, Vancouver V6T 1Z4, Canada
| | - Sam Livingston
- University of British Columbia, Department of Botany, Vancouver V6T 1Z4, Canada
| | - Daria Tashyreva
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic
| | - Filip Husnik
- Okinawa Institute of Science and Technology, Okinawa, 904-0495, Japan
| | - Julius Lukeš
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic; University of South Bohemia, Faculty of Sciences, 370 05 České Budějovice (Budweis), Czech Republic
| | - Marek Eliáš
- University of Ostrava, Faculty of Science, Department of Biology and Ecology, 701 00 Ostrava, Czech Republic
| | - Patrick J Keeling
- University of British Columbia, Department of Botany, Vancouver V6T 1Z4, Canada
| |
Collapse
|
5
|
Dharamshi JE, Köstlbacher S, Schön ME, Collingro A, Ettema TJG, Horn M. Gene gain facilitated endosymbiotic evolution of Chlamydiae. Nat Microbiol 2023; 8:40-54. [PMID: 36604515 PMCID: PMC9816063 DOI: 10.1038/s41564-022-01284-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 11/07/2022] [Indexed: 01/07/2023]
Abstract
Chlamydiae is a bacterial phylum composed of obligate animal and protist endosymbionts. However, other members of the Planctomycetes-Verrucomicrobia-Chlamydiae superphylum are primarily free living. How Chlamydiae transitioned to an endosymbiotic lifestyle is still largely unresolved. Here we reconstructed Planctomycetes-Verrucomicrobia-Chlamydiae species relationships and modelled superphylum genome evolution. Gene content reconstruction from 11,996 gene families suggests a motile and facultatively anaerobic last common Chlamydiae ancestor that had already gained characteristic endosymbiont genes. Counter to expectations for genome streamlining in strict endosymbionts, we detected substantial gene gain within Chlamydiae. We found that divergence in energy metabolism and aerobiosis observed in extant lineages emerged later during chlamydial evolution. In particular, metabolic and aerobic genes characteristic of the more metabolically versatile protist-infecting chlamydiae were gained, such as respiratory chain complexes. Our results show that metabolic complexity can increase during endosymbiont evolution, adding an additional perspective for understanding symbiont evolutionary trajectories across the tree of life.
Collapse
Affiliation(s)
- Jennah E Dharamshi
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Stephan Köstlbacher
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Vienna, Austria
- University of Vienna, Doctoral School in Microbiology and Environmental Science, Vienna, Austria
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Max E Schön
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Astrid Collingro
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Vienna, Austria
| | - Thijs J G Ettema
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands.
| | - Matthias Horn
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Vienna, Austria.
| |
Collapse
|
6
|
DuBose JG, Robeson MS, Hoogshagen M, Olsen H, Haselkorn TS. Complexities of Inferring Symbiont Function: Paraburkholderia Symbiont Dynamics in Social Amoeba Populations and Their Impacts on the Amoeba Microbiota. Appl Environ Microbiol 2022; 88:e0128522. [PMID: 36043858 PMCID: PMC9499018 DOI: 10.1128/aem.01285-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/11/2022] [Indexed: 11/20/2022] Open
Abstract
The relationship between the social amoeba Dictyostelium discoideum and its endosymbiotic bacteria Paraburkholderia provides a model system for studying the development of symbiotic relationships. Laboratory experiments have shown that any of three species of the Paraburkholderia symbiont allow D. discoideum food bacteria to persist through the amoeba life cycle and survive in amoeba spores rather than being fully digested. This phenomenon is termed "farming," as it potentially allows spores dispersed to food-poor locations to grow their own. The occurrence and impact of farming in natural populations, however, have been a challenge to measure. Here, we surveyed natural D. discoideum populations and found that only one of the three symbiont species, Paraburkholderia agricolaris, remained prevalent. We then explored the effect of Paraburkholderia on the amoeba microbiota, expecting that by facilitating bacterial food carriage, it would diversify the microbiota. Contrary to our expectations, Paraburkholderia tended to infectiously dominate the D. discoideum microbiota, in some cases decreasing diversity. Similarly, we found little evidence for Paraburkholderia facilitating the carriage of particular food bacteria. These findings highlight the complexities of inferring symbiont function in nature and suggest the possibility that Paraburkholderia could be playing multiple roles for its host. IMPORTANCE The functions of symbionts in natural populations can be difficult to completely discern. The three Paraburkholderia bacterial farming symbionts of the social amoeba Dictyostelium discoideum have been shown in the laboratory environment to allow the amoebas to carry, rather than fully digest, food bacteria. This potentially provides a fitness benefit to the amoebas upon dispersal to food-poor environments, as they could grow their food. We expected that meaningful food carriage would manifest as a more diverse microbiota. Surprisingly, we found that Paraburkholderia tended to infectiously dominate the D. discoideum microbiota rather than diversifying it. We determined that only one of the three Paraburkholderia symbionts has increased in prevalence in natural populations in the past 20 years, suggesting that this symbiont may be beneficial, however. These findings suggest that Paraburkholderia may have an alternative function for its host, which drives its prevalence in natural populations.
Collapse
Affiliation(s)
- James G. DuBose
- Department of Biology, University of Central Arkansas, Conway, Arkansas, USA
| | - Michael S. Robeson
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | | | - Hunter Olsen
- Department of Biology, University of Central Arkansas, Conway, Arkansas, USA
| | - Tamara S. Haselkorn
- Department of Biology, University of Central Arkansas, Conway, Arkansas, USA
| |
Collapse
|
7
|
Corrochano-Monsalve M, González-Murua C, Estavillo JM, Estonba A, Zarraonaindia I. Impact of dimethylpyrazole-based nitrification inhibitors on soil-borne bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148374. [PMID: 34153750 DOI: 10.1016/j.scitotenv.2021.148374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/03/2021] [Accepted: 06/03/2021] [Indexed: 05/25/2023]
Abstract
Nitrogen (N) input from fertilizers modifies the properties of agricultural soils as well as bacterial community diversity, composition and relationships. This can lead to negative impacts such as the deterioration of system multifunctionality, whose maintenance is critical to normal nutrient cycling. Synthetic nitrification inhibitors (NIs) can be combined with fertilizers to improve the efficiency of N use by reducing N losses. However, analysis of their effects on non-target bacteria are scarce. This study aimed to analyze the effect of applying the NIs DMPP and DMPSA on the whole bacterial community. Through 16S rRNA amplicon sequencing we determined the differences between samples in terms of microbial diversity, composition and co-occurrence networks. The application of DMPP and DMPSA exerted little impact on the abundance of the dominant phyla. Nevertheless, several significant shifts were detected in bacterial diversity, co-occurrence networks, and the abundance of particular taxa, where soil water content played a key role. For instance, the application of NIs intensified the negative impact of N fertilization on bacterial diversity under high water-filled pore spaces (WFPS) (>64%), reducing community diversity, whereas alpha-diversity was not affected at low WFPS (<55%). Interestingly, despite NIs are known to inhibit ammonia monooxygenase (AMO) enzyme, both NIs almost exclusively inhibited Nitrosomonas genera among AMO holding nitrifiers. Thus, Nitrosomonas showed abundance reductions of up to 47% (DMPP) and 66% (DMPSA). Nonetheless, non-target bacterial abundances also shifted with NI application. Notably, DMPSA application partially alleviated the negative effect of fertilization on soil multifunctionality. A remarkable increase in populations related to system multifunctionality, such as Armatimonadetes (up to +21%), Cyanobacteria (up to +30%) and Fibrobacteres (up to +25%) was observed when DMPSA was applied. NI application substantially influenced microbial associations by decreasing the complexity of co-occurrence networks, decreasing the total edges and node connectivity, and increasing path distances.
Collapse
Affiliation(s)
- Mario Corrochano-Monsalve
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain.
| | - Carmen González-Murua
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain
| | - José-María Estavillo
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain
| | - Andone Estonba
- Department of Genetics, Physical Anthropology & Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Iratxe Zarraonaindia
- Department of Genetics, Physical Anthropology & Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
8
|
Haselkorn TS, Jimenez D, Bashir U, Sallinger E, Queller DC, Strassmann JE, DiSalvo S. Novel Chlamydiae and Amoebophilus endosymbionts are prevalent in wild isolates of the model social amoeba Dictyostelium discoideum. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:708-719. [PMID: 34159734 PMCID: PMC8518690 DOI: 10.1111/1758-2229.12985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 06/12/2021] [Indexed: 05/24/2023]
Abstract
Amoebae interact with bacteria in multifaceted ways. Amoeba predation can serve as a selective pressure for the development of bacterial virulence traits. Bacteria may also adapt to life inside amoebae, resulting in symbiotic relationships. Indeed, particular lineages of obligate bacterial endosymbionts have been found in different amoebae. Here, we screened an extensive collection of Dictyostelium discoideum wild isolates for the presence of these bacterial symbionts using endosymbiont specific PCR primers. We find that these symbionts are surprisingly common, identified in 42% of screened isolates (N = 730). Members of the Chlamydiae phylum are particularly prevalent, occurring in 27% of the amoeba isolated. They are novel and phylogenetically distinct from other Chlamydiae. We also found Amoebophilus symbionts in 8% of screened isolates (N = 730). Antibiotic-cured amoebae behave similarly to their Chlamydiae or Amoebophilus-infected counterparts, suggesting that these endosymbionts do not significantly impact host fitness, at least in the laboratory. We found several natural isolates were co-infected with multiple endosymbionts, with no obvious fitness effect of co-infection under laboratory conditions. The high prevalence and novelty of amoeba endosymbiont clades in the model organism D. discoideum opens the door to future research on the significance and mechanisms of amoeba-symbiont interactions.
Collapse
Affiliation(s)
- Tamara S. Haselkorn
- Department of BiologyUniversity of Central Arkansas201 Donaghey Avenue, ConwayAR72035USA
| | - Daniela Jimenez
- Department of BiologyWashington University in St. LouisOne Brookings Drive St. LouisMO63130USA
| | - Usman Bashir
- Department of BiologyWashington University in St. LouisOne Brookings Drive St. LouisMO63130USA
| | - Eleni Sallinger
- Department of BiologyUniversity of Central Arkansas201 Donaghey Avenue, ConwayAR72035USA
| | - David C. Queller
- Department of BiologyWashington University in St. LouisOne Brookings Drive St. LouisMO63130USA
| | - Joan E. Strassmann
- Department of BiologyWashington University in St. LouisOne Brookings Drive St. LouisMO63130USA
| | - Susanne DiSalvo
- Department of Biological SciencesSouthern Illinois University Edwardsville44 Circle Drive, EdwardsvilleIL62026USA
| |
Collapse
|
9
|
Husnik F, Tashyreva D, Boscaro V, George EE, Lukeš J, Keeling PJ. Bacterial and archaeal symbioses with protists. Curr Biol 2021; 31:R862-R877. [PMID: 34256922 DOI: 10.1016/j.cub.2021.05.049] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Most of the genetic, cellular, and biochemical diversity of life rests within single-celled organisms - the prokaryotes (bacteria and archaea) and microbial eukaryotes (protists). Very close interactions, or symbioses, between protists and prokaryotes are ubiquitous, ecologically significant, and date back at least two billion years ago to the origin of mitochondria. However, most of our knowledge about the evolution and functions of eukaryotic symbioses comes from the study of animal hosts, which represent only a small subset of eukaryotic diversity. Here, we take a broad view of bacterial and archaeal symbioses with protist hosts, focusing on their evolution, ecology, and cell biology, and also explore what functions (if any) the symbionts provide to their hosts. With the immense diversity of protist symbioses starting to come into focus, we can now begin to see how these systems will impact symbiosis theory more broadly.
Collapse
Affiliation(s)
- Filip Husnik
- Okinawa Institute of Science and Technology, Okinawa, 904-0495, Japan; Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Daria Tashyreva
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - Vittorio Boscaro
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Emma E George
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
10
|
Okude M, Matsuo J, Yamazaki T, Saito K, Furuta Y, Nakamura S, Thapa J, Okubo T, Higashi H, Yamaguchi H. Distribution of amoebal endosymbiotic environmental chlamydia Neochlamydia S13 via amoebal cytokinesis. Microbiol Immunol 2021; 65:115-124. [PMID: 33368645 DOI: 10.1111/1348-0421.12871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/01/2022]
Abstract
We previously isolated a symbiotic environmental amoeba, harboring an environmental chlamydia, Neochlamydia S13. Interestingly, this bacterium failed to survive outside of host cells and was immediately digested inside other amoebae, indicating bacterial distribution via cytokinesis. This may provide a model for understanding organelle development and chlamydial pathogenesis and evolution; therefore, we assessed our hypothesis of Neochlamydia S13 distribution via cytokinesis by comparative analysis with other environmental Chlamydiae (Protochlamydia R18 and Parachlamydia Bn9 ). Dual staining with 4',6-diamidino-2-phenylindole and phalloidin revealed that the progeny of Neochlamydia S13 and Protochlamydia R18 existed in both daughter cells with a contractile ring on the verge of separation. However, in contrast to other environmental Chlamydiae, little Neochlamydia S13 16S ribosomal DNA was amplified from the culture supernatant. Interestingly, Neochlamydia S13 failed to infect aposymbiotic amoebae, indicating an intimate interaction with the host cells. Furthermore, its infectious rates in cultures expanded from a single amoeba were always maintained at 100%, indicating distribution via cytokinesis. We concluded that unlike other environmental Chlamydiae, Neochlamydia S13 has a unique ability to divide its progeny only via host amoebal cytokinesis. This may be a suitable model to elucidate the mechanism of cell organelle distribution and of chlamydial pathogenesis and evolution.
Collapse
Affiliation(s)
- Miho Okude
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Junji Matsuo
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan.,School of Medical Technology, Health Sciences University of Hokkaido, Sapporo, Japan
| | - Tomohiro Yamazaki
- School of Medical Technology, Health Sciences University of Hokkaido, Sapporo, Japan
| | - Kentaro Saito
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Yoshikazu Furuta
- Division of Infection and Immunity, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Shinji Nakamura
- Division of Biomedical Imaging Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Jeewan Thapa
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Torahiko Okubo
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Hideaki Higashi
- Division of Infection and Immunity, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Hiroyuki Yamaguchi
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
11
|
Watanabe K, Higuchi Y, Shimmura M, Tachibana M, Fujishima M, Shimizu T, Watarai M. Peculiar Paramecium Hosts Fail to Establish a Stable Intracellular Relationship With Legionella pneumophila. Front Microbiol 2020; 11:596731. [PMID: 33193278 PMCID: PMC7644925 DOI: 10.3389/fmicb.2020.596731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/06/2020] [Indexed: 12/29/2022] Open
Abstract
Legionella pneumophila, an intracellular human pathogen, establishes intracellular relationships with several protist hosts, including Paramecium caudatum. L. pneumophila can escape the normal digestion process and establish intracellular relationships in Paramecium. In this study, we identify new Paramecium strains that significantly reduce the number of L. pneumophila during infection. As a result, stable intracellular relationships between L. pneumophila and these Paramecium strains were not observed. These digestion-type Paramecium also showed high efficiency for Escherichia coli elimination compared to other strains of Paramecium. These results suggest that the digestion-type strains identified have high non-specific digestion activity. Although we evaluated the maturation process of Legionella-containing vacuoles (LCVs) in the Paramecium strains using LysoTracker, there were no discriminative changes in these LCVs compared to other Paramecium strains. Detailed understanding of the mechanisms of high digestion efficiency in these strains could be applied to water purification technologies and L. pneumophila elimination from environmental water.
Collapse
Affiliation(s)
- Kenta Watanabe
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, Yamaguchi, Japan
| | - Yusei Higuchi
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, Yamaguchi, Japan
| | - Mizuki Shimmura
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, Yamaguchi, Japan
| | - Masato Tachibana
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, Yamaguchi, Japan.,Joint Faculty of Veterinary Medicine, Laboratory of National BioResource Project Paramecium, Yamaguchi University, Yamaguchi, Japan.,Department of Research Infrastructure, National BioResource Project of Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Masahiro Fujishima
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, Yamaguchi, Japan.,Joint Faculty of Veterinary Medicine, Laboratory of National BioResource Project Paramecium, Yamaguchi University, Yamaguchi, Japan.,Department of Research Infrastructure, National BioResource Project of Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Takashi Shimizu
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, Yamaguchi, Japan
| | - Masahisa Watarai
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
12
|
Draft Genome Sequences of Chlamydiales Bacterium STE3 and Neochlamydia sp. Strain AcF84, Endosymbionts of Acanthamoeba spp. Microbiol Resour Announc 2020; 9:9/20/e00220-20. [PMID: 32409535 PMCID: PMC7225534 DOI: 10.1128/mra.00220-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chlamydiales bacterium STE3 and Neochlamydia sp. strain AcF84 are obligate intracellular symbionts of Acanthamoeba spp. isolated from the biofilm of a littoral cave wall and gills from striped tiger leaf fish, respectively. We report the draft genome sequences of these two environmental chlamydiae affiliated with the family Parachlamydiaceae.
Collapse
|
13
|
George EE, Husnik F, Tashyreva D, Prokopchuk G, Horák A, Kwong WK, Lukeš J, Keeling PJ. Highly Reduced Genomes of Protist Endosymbionts Show Evolutionary Convergence. Curr Biol 2020; 30:925-933.e3. [PMID: 31978335 DOI: 10.1016/j.cub.2019.12.070] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/24/2019] [Accepted: 12/23/2019] [Indexed: 10/25/2022]
Abstract
Genome evolution in bacterial endosymbionts is notoriously extreme: the combined effects of strong genetic drift and unique selective pressures result in highly reduced genomes with distinctive adaptations to hosts [1-4]. These processes are mostly known from animal endosymbionts, where nutritional endosymbioses represent the best-studied systems. However, eukaryotic microbes, or protists, also harbor diverse bacterial endosymbionts, but their genome reduction and functional relationships with their hosts are largely unexplored [5-7]. We sequenced the genomes of four bacterial endosymbionts from three species of diplonemids, poorly studied but abundant and diverse heterotrophic protists [8-12]. The endosymbionts come from two bacterial families, Rickettsiaceae and Holosporaceae, that have invaded two families of diplonemids, and their genomes have converged on an extremely small size (605-632 kilobase pairs [kbp]), similar gene content (e.g., metabolite transporters and secretion systems), and reduced metabolic potential (e.g., loss of energy metabolism). These characteristics are generally found in both families, but the diplonemid endosymbionts have evolved greater extremes in parallel. They possess modified type VI secretion systems that could function in manipulating host metabolism or other intracellular interactions. Finally, modified cellular machinery like the ATP synthase without oxidative phosphorylation, and the reduced flagellar apparatus present in some diplonemid endosymbionts and nutritional animal endosymbionts, indicates that intracellular mechanisms have converged in bacterial endosymbionts with various functions and from different eukaryotic hosts across the tree of life.
Collapse
Affiliation(s)
- Emma E George
- University of British Columbia, Department of Botany, Vancouver, BC V6T 1Z4, Canada.
| | - Filip Husnik
- University of British Columbia, Department of Botany, Vancouver, BC V6T 1Z4, Canada
| | - Daria Tashyreva
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - Galina Prokopchuk
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - Aleš Horák
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic; University of South Bohemia, Faculty of Science, 370 05 České Budějovice, Czech Republic
| | - Waldan K Kwong
- University of British Columbia, Department of Botany, Vancouver, BC V6T 1Z4, Canada
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic; University of South Bohemia, Faculty of Science, 370 05 České Budějovice, Czech Republic
| | - Patrick J Keeling
- University of British Columbia, Department of Botany, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
14
|
Complete genome and bimodal genomic structure of the amoebal symbiont Neochlamydia strain S13 revealed by ultra-long reads obtained from MinION. J Hum Genet 2019; 65:41-48. [PMID: 31723216 DOI: 10.1038/s10038-019-0684-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 12/12/2022]
Abstract
Neochlamydia strain S13 is an amoebal symbiont of an Acanthamoeba sp. The symbiont confers resistance to Legionella pneumophila on its host; however, the molecular mechanism underlying this resistance is not completely understood. Genome analyses have been crucial for understanding the complicated host-symbiont relationship but segregating the host's genome DNA from the symbiont's DNA is often challenging. In this study, we successfully identified a bimodal genomic structure in Neochlamydia strain S13 using PacBio RS II supported by ultra-long reads derived from MinION. One mode consisted of circular sequences of 2,586,667 and 231,307 bp; the other was an integrated sequence of the two via long homologous regions. They encoded 2175 protein-coding regions, some of which were implied to be acquired via horizontal gene transfer. They were specifically conserved in the genus Neochlamydia and formed a cluster in the genome, presumably by multiplication through genome replication. Moreover, it was notable that the sequenced DNA was obtained without segregating the symbiont DNA from the host. This is an easy and versatile technique that facilitates the characterization of diverse hosts and symbionts in nature.
Collapse
|
15
|
Watanabe K, Suzuki H, Nishida T, Mishima M, Tachibana M, Fujishima M, Shimizu T, Watarai M. Identification of novel Legionella genes required for endosymbiosis in Paramecium based on comparative genome analysis with Holospora spp. FEMS Microbiol Ecol 2019; 94:5074368. [PMID: 30124811 DOI: 10.1093/femsec/fiy162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/11/2018] [Indexed: 12/20/2022] Open
Abstract
The relationship between Legionella and protist hosts has a huge impact when considering the infectious risk in humans because it facilitates the long-term replication and survival of Legionella in the environment. The ciliate Paramecium is considered to be a protist host for Legionella in natural environments, but the details of their endosymbiosis are largely unknown. In this study, we determined candidate Legionella pneumophila genes that are likely to be involved in the establishment of endosymbiosis in Paramecium caudatum by comparing the genomes of Legionella spp. and Holospora spp. that are obligate endosymbiotic bacteria in Paramecium spp. Among the candidate genes, each single deletion mutant for five genes (lpg0492, lpg0522, lpg0523, lpg2141 and lpg2398) failed to establish endosymbiosis in P. caudatum despite showing intracellular growth in human macrophages. The mutants exhibited no characteristic changes in terms of their morphology, multiplication rate or capacity for modulating the phagosomes in which they were contained, but their resistance to lysozyme decreased significantly. This study provides insights into novel factors required by L. pneumophila for endosymbiosis in P. caudatum, and suggests that endosymbiotic organisms within conspecific hosts may have shared genes related to effective endosymbiosis establishment.
Collapse
Affiliation(s)
- Kenta Watanabe
- The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan.,Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Haruo Suzuki
- Institute for Advanced Biosciences, Keio University, 5322 Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Takashi Nishida
- The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Manami Mishima
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Masato Tachibana
- Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Masahiro Fujishima
- Department of Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan.,Department of Research Infrastructure, National BioResource Project of Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Takashi Shimizu
- The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan.,Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Masahisa Watarai
- The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan.,Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| |
Collapse
|
16
|
Abstract
Bacterial pathogens are generally investigated in the context of disease. To prevent outbreaks, it is essential to understand their lifestyle and interactions with other microbes in their natural environment. Legionella pneumophila is an important human respiratory pathogen that survives and multiplies in biofilms or intracellularly within protists, such as amoebae. Importantly, transmission to humans occurs from these environmental sources. Legionella infection generally leads to rapid host cell lysis. It was therefore surprising to observe that amoebae, including fresh environmental isolates, were well protected during Legionella infection when the bacterial symbiont Protochlamydia amoebophila was also present. Legionella was not prevented from invading amoebae but was impeded in its ability to develop fully virulent progeny and were ultimately cleared in the presence of the symbiont. This study highlights how ecology and virulence of an important human pathogen is affected by a defensive amoeba symbiont, with possibly major consequences for public health. Legionella pneumophila is an important opportunistic pathogen for which environmental reservoirs are crucial for the infection of humans. In the environment, free-living amoebae represent key hosts providing nutrients and shelter for highly efficient intracellular proliferation of L. pneumophila, which eventually leads to lysis of the protist. However, the significance of other bacterial players for L. pneumophila ecology is poorly understood. In this study, we used a ubiquitous amoeba and bacterial endosymbiont to investigate the impact of this common association on L. pneumophila infection. We demonstrate that L. pneumophila proliferation was severely suppressed in Acanthamoeba castellanii harboring the chlamydial symbiont Protochlamydia amoebophila. The amoebae survived the infection and were able to resume growth. Different environmental amoeba isolates containing the symbiont were equally well protected as different L. pneumophila isolates were diminished, suggesting ecological relevance of this symbiont-mediated defense. Furthermore, protection was not mediated by impaired L. pneumophila uptake. Instead, we observed reduced virulence of L. pneumophila released from symbiont-containing amoebae. Pronounced gene expression changes in the presence of the symbiont indicate that interference with the transition to the transmissive phase impedes the L. pneumophila infection. Finally, our data show that the defensive response of amoebae harboring P. amoebophila leaves the amoebae with superior fitness reminiscent of immunological memory. Given that mutualistic associations between bacteria and amoebae are widely distributed, P. amoebophila and potentially other amoeba endosymbionts could be key in shaping environmental survival, abundance, and virulence of this important pathogen, thereby affecting the frequency of human infection.
Collapse
|
17
|
Samba-Louaka A, Delafont V, Rodier MH, Cateau E, Héchard Y. Free-living amoebae and squatters in the wild: ecological and molecular features. FEMS Microbiol Rev 2019; 43:415-434. [DOI: 10.1093/femsre/fuz011] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/30/2019] [Indexed: 02/06/2023] Open
Abstract
ABSTRACT
Free-living amoebae are protists frequently found in water and soils. They feed on other microorganisms, mainly bacteria, and digest them through phagocytosis. It is accepted that these amoebae play an important role in the microbial ecology of these environments. There is a renewed interest for the free-living amoebae since the discovery of pathogenic bacteria that can resist phagocytosis and of giant viruses, underlying that amoebae might play a role in the evolution of other microorganisms, including several human pathogens. Recent advances, using molecular methods, allow to bring together new information about free-living amoebae. This review aims to provide a comprehensive overview of the newly gathered insights into (1) the free-living amoeba diversity, assessed with molecular tools, (2) the gene functions described to decipher the biology of the amoebae and (3) their interactions with other microorganisms in the environment.
Collapse
Affiliation(s)
- Ascel Samba-Louaka
- Laboratoire Ecologie et Biologie des Interactions (EBI), Equipe Microbiologie de l'Eau, Université de Poitiers, UMR CNRS 7267, 1 rue Georges Bonnet, TSA51106, 86073 POITIERS Cedex 9, France
| | - Vincent Delafont
- Laboratoire Ecologie et Biologie des Interactions (EBI), Equipe Microbiologie de l'Eau, Université de Poitiers, UMR CNRS 7267, 1 rue Georges Bonnet, TSA51106, 86073 POITIERS Cedex 9, France
| | - Marie-Hélène Rodier
- Laboratoire Ecologie et Biologie des Interactions (EBI), Equipe Microbiologie de l'Eau, Université de Poitiers, UMR CNRS 7267, 1 rue Georges Bonnet, TSA51106, 86073 POITIERS Cedex 9, France
- Laboratoire de Parasitologie et Mycologie, CHU La Milétrie, 2 rue de la Milétrie, 86021 Poitiers Cedex, France
| | - Estelle Cateau
- Laboratoire Ecologie et Biologie des Interactions (EBI), Equipe Microbiologie de l'Eau, Université de Poitiers, UMR CNRS 7267, 1 rue Georges Bonnet, TSA51106, 86073 POITIERS Cedex 9, France
- Laboratoire de Parasitologie et Mycologie, CHU La Milétrie, 2 rue de la Milétrie, 86021 Poitiers Cedex, France
| | - Yann Héchard
- Laboratoire Ecologie et Biologie des Interactions (EBI), Equipe Microbiologie de l'Eau, Université de Poitiers, UMR CNRS 7267, 1 rue Georges Bonnet, TSA51106, 86073 POITIERS Cedex 9, France
| |
Collapse
|
18
|
Abstract
Within the human host, Legionella pneumophila replicates within alveolar macrophages, leading to pneumonia. However, L. pneumophila is an aquatic generalist pathogen that replicates within a wide variety of protist hosts, including amoebozoa, percolozoa, and ciliophora. The intracellular lifestyles of L. pneumophila within the two evolutionarily distant hosts macrophages and protists are remarkably similar. Coevolution with numerous protist hosts has shaped plasticity of the genome of L. pneumophila, which harbors numerous proteins encoded by genes acquired from primitive eukaryotic hosts through interkingdom horizontal gene transfer. The Dot/Icm type IVb translocation system translocates ∼6,000 effectors among Legionella species and >320 effector proteins in L. pneumophila into host cells to modulate a plethora of cellular processes to create proliferative niches. Since many of the effectors have likely evolved to modulate cellular processes of primitive eukaryotic hosts, it is not surprising that most of the effectors do not contribute to intracellular growth within human macrophages. Some of the effectors may modulate highly conserved eukaryotic processes, while others may target protist-specific processes that are absent in mammals. The lack of studies to determine the role of the effectors in adaptation of L. pneumophila to various protists has hampered the progress to determine the function of most of these effectors, which are routinely studied in mouse or human macrophages. Since many protists restrict L. pneumophila, utilization of such hosts can also be instrumental in deciphering the mechanisms of failure of L. pneumophila to overcome restriction of certain protist hosts. Here, we review the interaction of L. pneumophila with its permissive and restrictive protist environmental hosts and outline the accomplishments as well as gaps in our knowledge of L. pneumophila-protist host interaction and L. pneumophila's evolution to become a human pathogen.
Collapse
Affiliation(s)
- Ashley Best
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- Center for Predictive Medicine, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
19
|
Watanabe T, Yamazaki S, Maita C, Matushita M, Matsuo J, Okubo T, Yamaguchi H. Lateral Gene Transfer Between Protozoa-Related Giant Viruses of Family Mimiviridae and Chlamydiae. Evol Bioinform Online 2018; 14:1176934318788337. [PMID: 30038484 PMCID: PMC6050620 DOI: 10.1177/1176934318788337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/21/2018] [Indexed: 11/23/2022] Open
Abstract
Obligate intracellular chlamydiae diverged into pathogenic and environmental
chlamydiae 0.7-1.4 billion years ago. While pathogenic chlamydiae have adapted
to a wide range of vertebrates, environmental chlamydiae inhabit unicellular
amoebae, the free-living Acanthamoeba. However, how and why
this divergence occurred remains unclear. Meanwhile, giant viruses consisting of
protozoa-related and protozoa-unrelated viruses have been discovered, with the
former group being suggested to have more influenced environmental chlamydiae
during their evolution while cohabiting host amoebae. Against this background,
we attempted to visualize genes of giant viruses in chlamydial genomes by
bioinformatic analysis mainly with comparative genome and phylogenic analysis,
seeking genes present in chlamydiae that are specifically shared with
protozoa-related giant viruses. As a result, in contrast to protozoa-unrelated
giant viruses, the genes of protozoa-related giant viruses were significantly
shared in both the chlamydia genomes depending on the giant virus type. In
particular, the prevalence of Mimiviridae genes among the
protozoa-related giant virus genes in chlamydial genomes was significantly high.
Meanwhile, the prevalence of protozoa-related giant virus genes in pathogenic
chlamydia genomes was consistently higher than those of environmental
chlamydiae; the actual number of sequences similar to giant virus was also
significantly predominant compared with those in the environmental chlamydial
genomes. Among them, the most prevalent of giant virus was in the case of
chlamydiae with Megavirus chiliensis; total of 1338 genes of
the chlamydiae were found to be shared with the virus (444 genes specific to
environmental chlamydiae, 892 genes shared between both chlamydiae, only two
genes in the pathogenic chlamydiae). Phylogenic analysis with most prevalent
sets (Megavirus chiliensis and Protochlamydia
EI2 or Chlamydia trachomatis L2 434Bu) showed the presence of
orthologs between these with several clustered. In addition, Pearson’s single
regression analysis revealed that almost the prevalence of the genes from the
giant viruses in chlamydial genomes was negatively and specifically correlated
with the number of chlamydial open reading frames (ORFs). Thus, these results
indicated the trace of lateral gene transfer between protozoa-related giant
viruses of family Mimiviridae and chlamydiae. This is the first
demonstration of a putative linkage between chlamydiae and the giant viruses,
providing us with a hint to understand chlamydial evolution.
Collapse
Affiliation(s)
- Takanori Watanabe
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Sumire Yamazaki
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Chinatsu Maita
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Mizue Matushita
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Junji Matsuo
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Torahiko Okubo
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Hiroyuki Yamaguchi
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
20
|
Okubo T, Matsushita M, Nakamura S, Matsuo J, Nagai H, Yamaguchi H. Acanthamoeba S13WT relies on its bacterial endosymbiont to backpack human pathogenic bacteria and resist Legionella infection on solid media. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:344-354. [PMID: 29611898 DOI: 10.1111/1758-2229.12645] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 03/22/2018] [Indexed: 06/08/2023]
Abstract
Soil-borne amoeba Acanthamoeba S13WT has an endosymbiotic relationship with an environmental Neochlamydia bacterial strain. However, regardless of extensive experiments in liquid media, the biological advantage of the symbiosis remained elusive. We therefore explored the role of the endosymbiont in predator-prey interactions on solid media. A mixed culture of the symbiotic or aposymbiotic amoebae and GFP-expressing Escherichia coli or Salmonella Enteritidis was spotted onto the centre of a LB or B-CYE agar plate preinoculated with a ring of mCherry-expressing Legionella pneumophila (Legionella 'wall'). The spread of the amoebae on the plate was assessed using a fluorescence imaging system or scanning electron microscopy. As a result, in contrast to the aposymbiotic amoebae, the symbiotic amoebae backpacked these GFP-expressing bacteria and formed flower-like fluorescence patterns in an anticlockwise direction. Other bacteria (Pseudomonas aeruginosa and Stenotrophomonas maltophilia), but not Staphylococcus aureus, were also backpacked by the symbiotic amoebae on LB agar, although lacked the movement to anticlockwise direction. Furthermore, in contrast to the aposymbiotic amoebae, the symbiotic amoebae backpacking the E. coli broke through the Legionella 'wall' on B-CYE agar plates. Thus, we concluded that Acanthamoeba S13WT required the Neochlamydia endosymbiont to backpack human pathogenic bacteria and resist Legionella infection on solid agar.
Collapse
Affiliation(s)
- Torahiko Okubo
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, North-12, West-5, Kita-ku, Sapporo 060-0812, Japan
| | - Mizue Matsushita
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, North-12, West-5, Kita-ku, Sapporo 060-0812, Japan
| | - Shinji Nakamura
- Division of Biomedical Imaging Research, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Junji Matsuo
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, North-12, West-5, Kita-ku, Sapporo 060-0812, Japan
| | - Hiroki Nagai
- Department of Microbiology, Gifu University School of Medicine, Yanagido 1-1, Gifu, Gifu 501-1194, Japan
| | - Hiroyuki Yamaguchi
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, North-12, West-5, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
21
|
Pillonel T, Bertelli C, Greub G. Environmental Metagenomic Assemblies Reveal Seven New Highly Divergent Chlamydial Lineages and Hallmarks of a Conserved Intracellular Lifestyle. Front Microbiol 2018. [PMID: 29515524 PMCID: PMC5826181 DOI: 10.3389/fmicb.2018.00079] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Chlamydiae phylum exclusively encompasses bacteria sharing a similar obligate intracellular life cycle. Existing 16S rDNA data support a high diversity within the phylum, however genomic data remain scarce owing to the difficulty in isolating strains using culture systems with eukaryotic cells. Yet, Chlamydiae genome data extracted from large scale metagenomic studies might help fill this gap. This work compares 33 cultured and 27 environmental, uncultured chlamydial genomes, in order to clarify the phylogenetic relatedness of the new chlamydial clades and to investigate the genetic diversity of the Chlamydiae phylum. The analysis of published chlamydial genomes from metagenomics bins and single cell sequencing allowed the identification of seven new deeply branching chlamydial clades sharing genetic hallmarks of parasitic Chlamydiae. Comparative genomics suggests important biological differences between those clades, including loss of many proteins involved in cell division in the genus Similichlamydia, and loss of respiratory chain and tricarboxylic acid cycle in several species. Comparative analyses of chlamydial genomes with two proteobacterial orders, the Rhizobiales and the Rickettsiales showed that genomes of different Rhizobiales families are much more similar than genomes of different Rickettsiales families. On the other hand, the chlamydial 16S rRNAs exhibit a higher sequence conservation than their Rickettsiales counterparts, while chlamydial proteins exhibit increased sequence divergence. Studying the diversity and genome plasticity of the entire Chlamydiae phylum is of major interest to better understand the emergence and evolution of this ubiquitous and ancient clade of obligate intracellular bacteria.
Collapse
Affiliation(s)
- Trestan Pillonel
- Center for Research on Intracellular Bacteria, Institute of Microbiology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Claire Bertelli
- Center for Research on Intracellular Bacteria, Institute of Microbiology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Gilbert Greub
- Center for Research on Intracellular Bacteria, Institute of Microbiology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| |
Collapse
|
22
|
Maita C, Matsushita M, Miyoshi M, Okubo T, Nakamura S, Matsuo J, Takemura M, Miyake M, Nagai H, Yamaguchi H. Amoebal endosymbiont Neochlamydia protects host amoebae against Legionella pneumophila infection by preventing Legionella entry. Microbes Infect 2018; 20:236-244. [PMID: 29317310 DOI: 10.1016/j.micinf.2017.12.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 10/18/2022]
Abstract
Acanthamoeba isolated from environmental soil harbors the obligate intracellular symbiont Neochlamydia, which has a critical role in host amoebal defense against Legionella pneumophila infection. Here, by using morphological analysis with confocal laser scanning fluorescence microscopy and transmission electron microscopy, proteome analyses with two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) and liquid chromatography-mass spectrometry (LC/MS), and transcriptome analysis with DNA microarray, we explored the mechanism by which the Neochlamydia affected this defense. We observed that when rare uptake did occur, the symbiotic amoebae allowed Legionella to grow normally. However, the symbiotic amoebae had severely reduced uptake of Legionella when compared with the aposymbiotic amoebae. Also, in contrast to amoebae carrying the endosymbiont, the actin cytoskeleton was significantly disrupted by Legionella infection in aposymbiotic amoebae. Furthermore, despite Legionella exposure, there was little change in Neochlamydia gene expression. Taken together, we concluded that the endosymbiont, Neochlamydia prevents Legionella entry to the host amoeba, resulting in the host defense against Legionella infection.
Collapse
Affiliation(s)
- Chinatsu Maita
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, North-12, West-5, Kita-ku, Sapporo, 060-0812, Japan.
| | - Mizue Matsushita
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, North-12, West-5, Kita-ku, Sapporo, 060-0812, Japan.
| | - Masahiro Miyoshi
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, North-12, West-5, Kita-ku, Sapporo, 060-0812, Japan.
| | - Torahiko Okubo
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, North-12, West-5, Kita-ku, Sapporo, 060-0812, Japan.
| | - Shinji Nakamura
- Division of Biomedical Imaging Research, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Junji Matsuo
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, North-12, West-5, Kita-ku, Sapporo, 060-0812, Japan.
| | - Masaharu Takemura
- Laboratory of Biology, Department of Liberal Arts, Faculty of Science, Tokyo University of Science (RIKADAI), Kagurazaka 1-3, Shinjuku, Tokyo, 162-8601, Japan.
| | - Masaki Miyake
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan.
| | - Hiroki Nagai
- Gifu University School of Medicine, 1-1 Yanagido, Gifu City, 501-1193, Japan.
| | - Hiroyuki Yamaguchi
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, North-12, West-5, Kita-ku, Sapporo, 060-0812, Japan.
| |
Collapse
|
23
|
Bayramova F, Jacquier N, Greub G. Insight in the biology of Chlamydia-related bacteria. Microbes Infect 2017; 20:432-440. [PMID: 29269129 DOI: 10.1016/j.micinf.2017.11.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/14/2017] [Accepted: 11/21/2017] [Indexed: 01/21/2023]
Abstract
The Chlamydiales order is composed of obligate intracellular bacteria and includes the Chlamydiaceae family and several family-level lineages called Chlamydia-related bacteria. In this review we will highlight the conserved and distinct biological features between these two groups. We will show how a better characterization of Chlamydia-related bacteria may increase our understanding on the Chlamydiales order evolution, and may help identifying new therapeutic targets to treat chlamydial infections.
Collapse
Affiliation(s)
- Firuza Bayramova
- Centre for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Centre and University of Lausanne, Bugnon 48, 1011 Lausanne, Switzerland
| | - Nicolas Jacquier
- Centre for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Centre and University of Lausanne, Bugnon 48, 1011 Lausanne, Switzerland
| | - Gilbert Greub
- Centre for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Centre and University of Lausanne, Bugnon 48, 1011 Lausanne, Switzerland.
| |
Collapse
|
24
|
Boamah DK, Zhou G, Ensminger AW, O'Connor TJ. From Many Hosts, One Accidental Pathogen: The Diverse Protozoan Hosts of Legionella. Front Cell Infect Microbiol 2017; 7:477. [PMID: 29250488 PMCID: PMC5714891 DOI: 10.3389/fcimb.2017.00477] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/31/2017] [Indexed: 01/03/2023] Open
Abstract
The 1976 outbreak of Legionnaires' disease led to the discovery of the intracellular bacterial pathogen Legionella pneumophila. Given their impact on human health, Legionella species and the mechanisms responsible for their replication within host cells are often studied in alveolar macrophages, the primary human cell type associated with disease. Despite the potential severity of individual cases of disease, Legionella are not spread from person-to-person. Thus, from the pathogen's perspective, interactions with human cells are accidents of time and space—evolutionary dead ends with no impact on Legionella's long-term survival or pathogenic trajectory. To understand Legionella as a pathogen is to understand its interaction with its natural hosts: the polyphyletic protozoa, a group of unicellular eukaryotes with a staggering amount of evolutionary diversity. While much remains to be understood about these enigmatic hosts, we summarize the current state of knowledge concerning Legionella's natural host range, the diversity of Legionella-protozoa interactions, the factors influencing these interactions, the importance of avoiding the generalization of protozoan-bacterial interactions based on a limited number of model hosts and the central role of protozoa to the biology, evolution, and persistence of Legionella in the environment.
Collapse
Affiliation(s)
- David K Boamah
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Guangqi Zhou
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Alexander W Ensminger
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Public Health Ontario, Toronto, ON, Canada
| | - Tamara J O'Connor
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
25
|
Haferkamp I. Crossing the border - Solute entry into the chlamydial inclusion. Int J Med Microbiol 2017; 308:41-48. [PMID: 28864236 DOI: 10.1016/j.ijmm.2017.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/10/2017] [Accepted: 08/17/2017] [Indexed: 10/19/2022] Open
Abstract
Chlamydiales comprise important human and animal pathogens as well as endosymbionts of amoebae. Generally, these obligate intracellular living bacteria are characterized by a biphasic developmental cycle, a reduced genome and a restricted metabolic capacity. Because of their metabolic impairment, Chlamydiales essentially rely on the uptake of diverse metabolites from their hosts. Chlamydiales thrive in a special compartment, the inclusion, and hence are surrounded by an additional membrane. Solutes might enter the inclusion through pores and open channels or by redirection of host vesicles, which fuse with the inclusion membrane and release their internal cargo. Recent investigations shed new light on the chlamydia-host interaction and identified an additional way for nutrient uptake into the inclusion. Proteome studies and targeting analyses identified chlamydial and host solute carriers in inclusions of Chlamydia trachomatis infected cells. These transporters are involved in the provision of UDP-glucose and biotin, and probably deliver further metabolites to the inclusion. By the controlled recruitment of specific solute carriers to the inclusion, the chlamydial resident thus can actively manipulate the metabolite availability and composition in the inclusion. This review summarizes recent findings and new ideas on carrier mediated solute uptake into the chlamydial inclusion in the context of the bacterial and host metabolism.
Collapse
Affiliation(s)
- Ilka Haferkamp
- Universität Kaiserslautern, Pflanzenphysiologie, Erwin-Schrödinger Str. 22, 67663 Kaiserslautern, Germany.
| |
Collapse
|
26
|
Fukumoto T, Matsuo J, Okubo T, Nakamura S, Miyamoto K, Oka K, Takahashi M, Akizawa K, Shibuya H, Shimizu C, Yamaguchi H. Acanthamoeba containing endosymbiotic chlamydia isolated from hospital environments and its potential role in inflammatory exacerbation. BMC Microbiol 2016; 16:292. [PMID: 27978822 PMCID: PMC5160005 DOI: 10.1186/s12866-016-0906-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 11/29/2016] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Environmental chlamydiae belonging to the Parachlamydiaceae are obligate intracellular bacteria that infect Acanthamoeba, a free-living amoeba, and are a risk for hospital-acquired pneumonia. However, whether amoebae harboring environmental chlamydiae actually survive in hospital environments is unknown. We therefore isolated living amoebae with symbiotic chlamydiae from hospital environments. RESULTS One hundred smear samples were collected from Hokkaido University Hospital, Sapporo, Japan; 50 in winter (February to March, 2012) and 50 in summer (August, 2012), and used for the study. Acanthamoebae were isolated from the smear samples, and endosymbiotic chlamydial traits were assessed by infectivity, cytokine induction, and draft genomic analysis. From these, 23 amoebae were enriched on agar plates spread with heat-killed Escherichia coli. Amoeba prevalence was greater in the summer-collected samples (15/30, 50%) than those of the winter season (8/30, 26.7%), possibly indicating a seasonal variation (p = 0.096). Morphological assessment of cysts revealed 21 amoebae (21/23, 91%) to be Acanthamoeba, and cultures in PYG medium were established for 11 of these amoebae. Three amoebae contained environmental chlamydiae; however, only one amoeba (Acanthamoeba T4) with an environmental chlamydia (Protochlamydia W-9) was shown the infectious ability to Acanthamoeba C3 (reference amoebae). While Protochlamydia W-9 could infect C3 amoeba, it failed to replicate in immortal human epithelial, although exposure of HEp-2 cells to living bacteria induced the proinflammatory cytokine, IL-8. Comparative genome analysis with KEGG revealed similar genomic features compared with other Protochlamydia genomes (UWE25 and R18), except for a lack of genes encoding the type IV secretion system. Interestingly, resistance genes associated with several antibiotics and toxic compounds were identified. CONCLUSION These findings are the first demonstration of the distribution in a hospital of a living Acanthamoeba carrying an endosymbiotic chlamydial pathogen.
Collapse
Affiliation(s)
- Tatsuya Fukumoto
- Hokkaido University Hospital, Nishi-5 Kita-14 Jo, Kita-ku, Sapporo, Hokkaido 060-8648 Japan
| | - Junji Matsuo
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University Graduate School of Health Sciences, Nishi-5 Kita-12 Jo, Kita-ku, Sapporo, Hokkaido 060-0812 Japan
| | - Torahiko Okubo
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University Graduate School of Health Sciences, Nishi-5 Kita-12 Jo, Kita-ku, Sapporo, Hokkaido 060-0812 Japan
| | - Shinji Nakamura
- Division of Biomedical Imaging Research, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421 Japan
| | - Kentaro Miyamoto
- Miyarisan Pharmaceutical Co., Ltd., 2-3-13-209, Minami, Wako-shi, Saitama 351-0104 Japan
| | - Kentaro Oka
- Miyarisan Pharmaceutical Co., Ltd., 2-3-13-209, Minami, Wako-shi, Saitama 351-0104 Japan
| | - Motomichi Takahashi
- Miyarisan Pharmaceutical Co., Ltd., 2-3-13-209, Minami, Wako-shi, Saitama 351-0104 Japan
| | - Kouji Akizawa
- Hokkaido University Hospital, Nishi-5 Kita-14 Jo, Kita-ku, Sapporo, Hokkaido 060-8648 Japan
| | - Hitoshi Shibuya
- Hokkaido University Hospital, Nishi-5 Kita-14 Jo, Kita-ku, Sapporo, Hokkaido 060-8648 Japan
| | - Chikara Shimizu
- Hokkaido University Hospital, Nishi-5 Kita-14 Jo, Kita-ku, Sapporo, Hokkaido 060-8648 Japan
| | - Hiroyuki Yamaguchi
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University Graduate School of Health Sciences, Nishi-5 Kita-12 Jo, Kita-ku, Sapporo, Hokkaido 060-0812 Japan
| |
Collapse
|
27
|
Bertelli C, Cissé OH, Rusconi B, Kebbi-Beghdadi C, Croxatto A, Goesmann A, Collyn F, Greub G. CRISPR System Acquisition and Evolution of an Obligate Intracellular Chlamydia-Related Bacterium. Genome Biol Evol 2016; 8:2376-86. [PMID: 27516530 PMCID: PMC5010888 DOI: 10.1093/gbe/evw138] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Recently, a new Chlamydia-related organism, Protochlamydia naegleriophila KNic, was discovered within a Naegleria amoeba. To decipher the mechanisms at play in the modeling of genomes from the Protochlamydia genus, we sequenced the full genome of Pr. naegleriophila, which includes a 2,885,090 bp chromosome and a 145,285 bp megaplasmid. For the first time within the Chlamydiales order, we describe the presence of a clustered regularly interspaced short palindromic repeats (CRISPR) system, the immune system of bacteria, located on the chromosome. It is composed of a small CRISPR locus comprising eight repeats and associated cas-cse genes of the subtype I-E. A CRISPR locus is also present within Chlamydia sp. Diamant, another Pr. naegleriophila strain, suggesting that the CRISPR system was acquired by a common ancestor of Pr. naegleriophila, after its divergence from Pr. amoebophila. Both nucleotide bias and comparative genomics approaches identified probable horizontal gene acquisitions within two and four genomic islands in Pr. naegleriophila KNic and Diamant genomes, respectively. The plasmid encodes an F-type conjugative system highly similar to 1) that found in the Pam100G genomic island of Pr. amoebophila UWE25 chromosome, as well as on the plasmid of Rubidus massiliensis and 2) to the three genes remaining in the chromosome of Parachlamydia acanthamoebae strains. Therefore, this conjugative system was likely acquired on an ancestral plasmid before the divergence of Parachlamydiaceae Overall, this new complete Pr. naegleriophila genome sequence enables further investigation of the dynamic processes shaping the genomes of the family Parachlamydiaceae and the genus Protochlamydia.
Collapse
Affiliation(s)
- Claire Bertelli
- Center for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Center and University of Lausanne, Switzerland SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Ousmane H Cissé
- Center for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Center and University of Lausanne, Switzerland
| | - Brigida Rusconi
- Center for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Center and University of Lausanne, Switzerland
| | - Carole Kebbi-Beghdadi
- Center for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Center and University of Lausanne, Switzerland
| | - Antony Croxatto
- Center for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Center and University of Lausanne, Switzerland
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Germany
| | - François Collyn
- Center for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Center and University of Lausanne, Switzerland
| | - Gilbert Greub
- Center for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Center and University of Lausanne, Switzerland
| |
Collapse
|
28
|
Draft Genome Sequences of Legionella pneumophila JR32 and Lp01 Laboratory Strains Domesticated in Japan. GENOME ANNOUNCEMENTS 2016; 4:4/4/e00791-16. [PMID: 27491976 PMCID: PMC4974328 DOI: 10.1128/genomea.00791-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report here the draft genome sequences of two Legionella pneumophila variant strains (JR32 and Lp01_666) originally derived from a Philadelphia-1 clinical isolate, domesticated in Japan, with distinct susceptibility to amoebae. Detailed genomic analysis will allow us to better understand Legionella adaptation and survival mechanisms in host cells.
Collapse
|
29
|
Watanabe K, Nakao R, Fujishima M, Tachibana M, Shimizu T, Watarai M. Ciliate Paramecium is a natural reservoir of Legionella pneumophila. Sci Rep 2016; 6:24322. [PMID: 27079173 PMCID: PMC4832178 DOI: 10.1038/srep24322] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 03/24/2016] [Indexed: 01/02/2023] Open
Abstract
Legionella pneumophila, the causative agent of Legionnaires’ disease, replicates within alveolar macrophages and free-living amoebae. However, the lifestyle of L. pneumophila in the environment remains largely unknown. Here we established a novel natural host model of L. pneumophila endosymbiosis using the ciliate Paramecium caudatum. We also identified Legionella endosymbiosis-modulating factor A (LefA), which contributes to the change in life stage from endosymbiosis to host lysis, enabling escape to the environment. We isolated L. pneumophila strains from the environment, and they exhibited cytotoxicity toward P. caudatum and induced host lysis. Acidification of the Legionella-containing vacuole (LCV) was inhibited, and enlarged LCVs including numerous bacteria were observed in P. caudatum infected with L. pneumophila. An isogenic L. pneumophila lefA mutant exhibited decreased cytotoxicity toward P. caudatum and impaired the modification of LCVs, resulting in the establishment of endosymbiosis between them. Our results suggest that L. pneumophila may have a mechanism to switch their endosymbiosis in protistan hosts in the environment.
Collapse
Affiliation(s)
- Kenta Watanabe
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan.,Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, Yamaguchi, Japan
| | - Ryo Nakao
- The Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Masahiro Fujishima
- Department of Environmental Science and Engineering, Graduate School of Science and Engineering, Yamaguchi University, Yamaguchi, Japan.,National BioResource Project of Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan
| | - Masato Tachibana
- Division of Biomedical Food Research, National Institute of Health Sciences, Setagaya-ku, Tokyo, Japan
| | - Takashi Shimizu
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan.,Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, Yamaguchi, Japan
| | - Masahisa Watarai
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan.,Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
30
|
Bou Khalil JY, Benamar S, Baudoin JP, Croce O, Blanc-Tailleur C, Pagnier I, Raoult D, La Scola B. Developmental Cycle and Genome Analysis of "Rubidus massiliensis," a New Vermamoeba vermiformis Pathogen. Front Cell Infect Microbiol 2016; 6:31. [PMID: 27014641 PMCID: PMC4791399 DOI: 10.3389/fcimb.2016.00031] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 03/01/2016] [Indexed: 12/15/2022] Open
Abstract
The study of amoeba-associated Chlamydiae is a dynamic field in which new species are increasingly reported. In the present work, we characterized the developmental cycle and analyzed the genome of a new member of this group associated with Vermamoeba vermiformis, we propose to name “Rubidus massiliensis.” This bacterium is well-adapted to its amoeba host and do not reside inside of inclusion vacuoles after phagocytosis. It has a developmental cycle typical of this family of bacteria, with a transition from condensed elementary bodies to hypodense replicative reticulate bodies. Multiplication occurs through binary fission of the reticulate bodies. The genome of “R. massiliensis” consists of a 2.8 Mbp chromosome and two plasmids (pRm1, pRm2) consisting of 39,075 bp and 80,897 bp, respectively, a feature that is unique within this group. The Re-analysis of the Chlamydiales genomes including the one of “R. massiliensis” slightly modified the previous phylogeny of the tlc gene encoding the ADP/ATP translocase. Our analysis suggested that the tlc gene could have been transferred to plant and algal plastids before the transfer to Rickettsiales, and that this gene was probably duplicated several times.
Collapse
Affiliation(s)
- Jacques Y Bou Khalil
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, Facultés de Médecine et de Pharmacie, UM63 Centre National de la Recherche Scientifique 7278 IRD 198 Institut National de la Santé et de la Recherche Médicale U1095, Aix-Marseille Université Marseille, France
| | - Samia Benamar
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, Facultés de Médecine et de Pharmacie, UM63 Centre National de la Recherche Scientifique 7278 IRD 198 Institut National de la Santé et de la Recherche Médicale U1095, Aix-Marseille Université Marseille, France
| | - Jean-Pierre Baudoin
- Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Institut Hospitalo-Universitaire Méditerranée Infection, Assistance Publique - Hôpitaux de Marseille Marseille, France
| | - Olivier Croce
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, Facultés de Médecine et de Pharmacie, UM63 Centre National de la Recherche Scientifique 7278 IRD 198 Institut National de la Santé et de la Recherche Médicale U1095, Aix-Marseille Université Marseille, France
| | - Caroline Blanc-Tailleur
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, Facultés de Médecine et de Pharmacie, UM63 Centre National de la Recherche Scientifique 7278 IRD 198 Institut National de la Santé et de la Recherche Médicale U1095, Aix-Marseille Université Marseille, France
| | - Isabelle Pagnier
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, Facultés de Médecine et de Pharmacie, UM63 Centre National de la Recherche Scientifique 7278 IRD 198 Institut National de la Santé et de la Recherche Médicale U1095, Aix-Marseille Université Marseille, France
| | - Didier Raoult
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, Facultés de Médecine et de Pharmacie, UM63 Centre National de la Recherche Scientifique 7278 IRD 198 Institut National de la Santé et de la Recherche Médicale U1095, Aix-Marseille UniversitéMarseille, France; Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Institut Hospitalo-Universitaire Méditerranée Infection, Assistance Publique - Hôpitaux de MarseilleMarseille, France
| | - Bernard La Scola
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, Facultés de Médecine et de Pharmacie, UM63 Centre National de la Recherche Scientifique 7278 IRD 198 Institut National de la Santé et de la Recherche Médicale U1095, Aix-Marseille UniversitéMarseille, France; Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Institut Hospitalo-Universitaire Méditerranée Infection, Assistance Publique - Hôpitaux de MarseilleMarseille, France
| |
Collapse
|
31
|
Delafont V, Samba-Louaka A, Bouchon D, Moulin L, Héchard Y. Shedding light on microbial dark matter: a TM6 bacterium as natural endosymbiont of a free-living amoeba. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:970-978. [PMID: 26471960 DOI: 10.1111/1758-2229.12343] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/06/2015] [Accepted: 10/07/2015] [Indexed: 06/05/2023]
Abstract
The TM6 phylum belongs to the so-called microbial dark matter that gathers uncultivated bacteria detected only via DNA sequencing. Recently, the genome sequence of a TM6 bacterium (TM6SC1) has led to suggest that this bacterium would adopt an endosymbiotic life. In the present paper, free-living amoebae bearing a TM6 strain were isolated from a water network. The amoebae were identified as Vermamoeba vermiformis and the presence of a TM6 strain was detected by polymerase chain reaction and microscopy. The partial sequence of its 16S rRNA gene showed this strain to be closely related to the sequenced TM6SC1 strain. These bacteria displayed a pyriform shape and were found within V. vermiformis. Therefore, these bacteria were named Vermiphilus pyriformis. Interactions studies showed that V. pyriformis was highly infectious and that its relation with V. vermiformis was specific and highly stable. Finally, it was found that V. pyriformis inhibited the encystment of V. vermiformis. Overall, this study describes for the first time an endosymbiotic relationship between a TM6 bacterium and a free-living amoeba in the environment. It suggests that other bacteria of the TM6 phylum might also be endosymbiotic bacteria and may be found in other free-living amoebae or other organisms.
Collapse
Affiliation(s)
- Vincent Delafont
- Microbiologie de l'Eau & Ecologie, Evolution, Symbiose, Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Equipes, Université de Poitiers, Poitiers, France
- Direction de la Recherche et du Développement pour la Qualité de l'Eau, R&D Biologie, Eau de Paris, 33, avenue Jean Jaurès, 94200, Ivry sur Seine, Paris, France
| | - Ascel Samba-Louaka
- Microbiologie de l'Eau & Ecologie, Evolution, Symbiose, Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Equipes, Université de Poitiers, Poitiers, France
| | - Didier Bouchon
- Microbiologie de l'Eau & Ecologie, Evolution, Symbiose, Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Equipes, Université de Poitiers, Poitiers, France
| | - Laurent Moulin
- Direction de la Recherche et du Développement pour la Qualité de l'Eau, R&D Biologie, Eau de Paris, 33, avenue Jean Jaurès, 94200, Ivry sur Seine, Paris, France
| | - Yann Héchard
- Microbiologie de l'Eau & Ecologie, Evolution, Symbiose, Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Equipes, Université de Poitiers, Poitiers, France
| |
Collapse
|
32
|
Schulz F, Martijn J, Wascher F, Lagkouvardos I, Kostanjšek R, Ettema TJG, Horn M. A Rickettsiales symbiont of amoebae with ancient features. Environ Microbiol 2015; 18:2326-42. [PMID: 25908022 DOI: 10.1111/1462-2920.12881] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 03/03/2015] [Accepted: 03/16/2015] [Indexed: 11/28/2022]
Abstract
The Rickettsiae comprise intracellular bacterial symbionts and pathogens infecting diverse eukaryotes. Here, we provide a detailed characterization of 'Candidatus Jidaibacter acanthamoeba', a rickettsial symbiont of Acanthamoeba. The bacterium establishes the infection in its amoeba host within 2 h where it replicates within vacuoles. Higher bacterial loads and accelerated spread of infection at elevated temperatures were observed. The infection had a negative impact on host growth rate, although no increased levels of host cell lysis were seen. Phylogenomic analysis identified this bacterium as member of the Midichloriaceae. Its 2.4 Mb genome represents the largest among Rickettsiales and is characterized by a moderate degree of pseudogenization and a high coding density. We found an unusually large number of genes encoding proteins with eukaryotic-like domains such as ankyrins, leucine-rich repeats and tetratricopeptide repeats, which likely function in host interaction. There are a total of three divergent, independently acquired type IV secretion systems, and 35 flagellar genes representing the most complete set found in an obligate intracellular Alphaproteobacterium. The deeply branching phylogenetic position of 'Candidatus Jidaibacter acanthamoeba' together with its ancient features place it closely to the rickettsial ancestor and helps to better understand the transition from a free-living to an intracellular lifestyle.
Collapse
Affiliation(s)
- Frederik Schulz
- Department of Microbiology and Ecosystem Science, University of Vienna, Althanstraße 14, Vienna, Austria
| | - Joran Martijn
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Husargatan 3, Uppsala, Sweden
| | - Florian Wascher
- Department of Microbiology and Ecosystem Science, University of Vienna, Althanstraße 14, Vienna, Austria
| | - Ilias Lagkouvardos
- Department of Microbiology and Ecosystem Science, University of Vienna, Althanstraße 14, Vienna, Austria
| | - Rok Kostanjšek
- Department of Biology, University of Ljubljana, Večna pot 111, Ljubljana, Slovenia
| | - Thijs J G Ettema
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Husargatan 3, Uppsala, Sweden
| | - Matthias Horn
- Department of Microbiology and Ecosystem Science, University of Vienna, Althanstraße 14, Vienna, Austria
| |
Collapse
|
33
|
Minimal genomes of mycoplasma-related endobacteria are plastic and contain host-derived genes for sustained life within Glomeromycota. Proc Natl Acad Sci U S A 2015; 112:7791-6. [PMID: 25964324 DOI: 10.1073/pnas.1501676112] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF, Glomeromycota) colonize roots of the majority of terrestrial plants. They provide essential minerals to their plant hosts and receive photosynthates in return. All major lineages of AMF harbor endobacteria classified as Mollicutes, and known as mycoplasma-related endobacteria (MRE). Except for their substantial intrahost genetic diversity and ability to transmit vertically, virtually nothing is known about the life history of these endobacteria. To understand MRE biology, we sequenced metagenomes of three MRE populations, each associated with divergent AMF hosts. We found that each AMF species harbored a genetically distinct group of MRE. Despite vertical transmission, all MRE populations showed extensive chromosomal rearrangements, which we attributed to genetic recombination, activity of mobile elements, and a history of plectroviral invasion. The MRE genomes are characterized by a highly reduced gene content, indicating metabolic dependence on the fungal host, with the mechanism of energy production remaining unclear. Several MRE genes encode proteins with domains involved in protein-protein interactions with eukaryotic hosts. In addition, the MRE genomes harbor genes horizontally acquired from AMF. Some of these genes encode small ubiquitin-like modifier (SUMO) proteases specific to the SUMOylation systems of eukaryotes, which MRE likely use to manipulate their fungal host. The extent of MRE genome plasticity and reduction, along with the large number of horizontally acquired host genes, suggests a high degree of adaptation to the fungal host. These features, together with the ubiquity of the MRE-Glomeromycota associations, emphasize the significance of MRE in the biology of Glomeromycota.
Collapse
|
34
|
Jacquier N, Viollier PH, Greub G. The role of peptidoglycan in chlamydial cell division: towards resolving the chlamydial anomaly. FEMS Microbiol Rev 2015; 39:262-75. [PMID: 25670734 DOI: 10.1093/femsre/fuv001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Chlamydiales are obligate intracellular bacteria including some important pathogens causing trachoma, genital tract infections and pneumonia, among others. They share an atypical division mechanism, which is independent of an FtsZ homologue. However, they divide by binary fission, in a process inhibited by penicillin derivatives, causing the formation of an aberrant form of the bacteria, which is able to survive in the presence of the antibiotic. The paradox of penicillin sensitivity of chlamydial cells in the absence of detectable peptidoglycan (PG) was dubbed the chlamydial anomaly, since no PG modified by enzymes (Pbps) that are the usual target of penicillin could be detected in Chlamydiales. We review here the recent advances in this field with the first direct and indirect evidences of PG-like material in both Chlamydiaceae and Chlamydia-related bacteria. Moreover, PG biosynthesis is required for proper localization of the newly described septal proteins RodZ and NlpD. Taken together, these new results set the stage for a better understanding of the role of PG and septal proteins in the division mechanism of Chlamydiales and illuminate the long-standing chlamydial anomaly. Moreover, understanding the chlamydial division mechanism is critical for the development of new antibiotics for the treatment of chlamydial chronic infections.
Collapse
Affiliation(s)
- Nicolas Jacquier
- Institute of Microbiology, University Hospital Center and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Patrick H Viollier
- Department of Microbiology & Molecular Medicine, Institute of Genetics & Genomics in Geneva (iGE3), Faculty of Medicine / CMU, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, University Hospital Center and University of Lausanne, CH-1011 Lausanne, Switzerland
| |
Collapse
|
35
|
Amoebal endosymbiont Parachlamydia acanthamoebae Bn9 can grow in immortal human epithelial HEp-2 cells at low temperature; an in vitro model system to study chlamydial evolution. PLoS One 2015; 10:e0116486. [PMID: 25643359 PMCID: PMC4314085 DOI: 10.1371/journal.pone.0116486] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 12/08/2014] [Indexed: 01/07/2023] Open
Abstract
Ancient chlamydiae diverged into pathogenic and environmental chlamydiae 0.7–1.4 billion years ago. However, how pathogenic chlamydiae adapted to mammalian cells that provide a stable niche at approximately 37°C, remains unknown, although environmental chlamydiae have evolved as endosymbionts of lower eukaryotes in harsh niches of relatively low temperatures. Hence, we assessed whether an environmental chlamydia, Parachlamydia Bn9, could grow in human HEp-2 cells at a low culture temperature of 30°C. The assessment of inclusion formation by quantitative RT-PCR revealed that the numbers of bacterial inclusion bodies and the transcription level of 16SrRNA significantly increased after culture at 30°C compared to at 37°C. Confocal microscopy showed that the bacteria were located close to HEp-2 nuclei and were actively replicative. Transmission electron microscopy also revealed replicating bacteria consisting of reticular bodies, but with a few elementary bodies. Cytochalasin D and rifampicin inhibited inclusion formation. Lactacystin slightly inhibited bacterial inclusion formation. KEGG analysis using a draft genome sequence of the bacteria revealed that it possesses metabolic pathways almost identical to those of pathogenic chlamydia. Interestingly, comparative genomic analysis with pathogenic chlamydia revealed that the Parachlamydia similarly possess the genes encoding Type III secretion system, but lacking genes encoding inclusion membrane proteins (IncA to G) required for inclusion maturation. Taken together, we conclude that ancient chlamydiae had the potential to grow in human cells, but overcoming the thermal gap was a critical event for chlamydial adaptation to human cells.
Collapse
|
36
|
Taylor-Brown A, Vaughan L, Greub G, Timms P, Polkinghorne A. Twenty years of research into Chlamydia-like organisms: a revolution in our understanding of the biology and pathogenicity of members of the phylum Chlamydiae. Pathog Dis 2014; 73:1-15. [PMID: 25854000 DOI: 10.1093/femspd/ftu009] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2014] [Indexed: 11/13/2022] Open
Abstract
Chlamydiae are obligate intracellular bacteria that share a unique but remarkably conserved biphasic developmental cycle that relies on a eukaryotic host cell for survival. Although the phylum was originally thought to only contain one family, the Chlamydiaceae, a total of nine families are now recognized. These so-called Chlamydia-like organisms (CLOs) are also referred to as 'environmental chlamydiae', as many were initially isolated from environmental sources. However, these organisms are also emerging pathogens, as many, such as Parachlamydia sp., Simkania sp. and Waddlia sp., have been associated with human disease, and others, such as Piscichlamydia sp. and Parilichlamydia sp., have been documented in association with diseases in animals. Their strict intracellular nature and the requirement for cell culture have been a confounding factor in characterizing the biology and pathogenicity of CLOs. Nevertheless, the genomes of seven CLO species have now been sequenced, providing new information on their potential ability to adapt to a wide range of hosts. As new isolation and diagnostic methods advance, we are able to further explore the richness of this phylum with further research likely to help define the true pathogenic potential of the CLOs while also providing insight into the origins of the 'traditional' chlamydiae.
Collapse
Affiliation(s)
- Alyce Taylor-Brown
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia
| | - Lloyd Vaughan
- Institute of Veterinary Pathology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Peter Timms
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia
| | - Adam Polkinghorne
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia
| |
Collapse
|