1
|
Pichler WJ. Delayed drug hypersensitivity reactions: How p-i transforms pharmacology into immunology. Allergol Int 2024:S1323-8930(24)00088-1. [PMID: 39294038 DOI: 10.1016/j.alit.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/20/2024] Open
Abstract
Delayed drug hypersensitivity reactions (dDHRs) are iatrogenic diseases, which are mostly due to non-covalent interactions of a drug with the immune receptors HLA and/or TCR causing T-cell activation. This is also known as pharmacological interaction with immune receptors or p-i. P-i activation differs from classical antigen-driven immune reactions: a) drug binding induces structural changes in TCR-HLA proteins which make them look like allo-like TCR-HLA-complexes, able to elicit allo-like stimulations of T cells with cytotoxicity and IFNγ production, notably without the involvement of innate immunity; b) drug binding to TCR and/or HLA can increase the affinity of TCR-HLA interactions, which may affect signaling and IL-5 production by CD4+ T cells, and thus contribute to eosinophilia commonly found in dDHRs or induce oligoclonal T cell expansions; c) Both, antigen and p-i stimulations can induce eosinophil- or neutrophil-rich inflammations; but these stimulations should be distinguished as their underlying mechanism and development differ; and d) p-i stimulation can - like graft versus host reactions - result in long-lasting T-cell activations, which can lead to viremia, occasional autoimmunity, or a new syndrome characterized by multiple drug hypersensitivity (MDH). In summary, dDHRs are not allergic reactions but represent peculiar T-cell activations, similar to allo-like stimulations. Understanding and considering the p-i mechanism is needed for preventive measures and optimal treatments of dDHR. In addition, it may help to understand TCR signaling, alloreactivity, and may even open a new way of specific immune stimulations.
Collapse
|
2
|
Lobos CA, Chatzileontiadou DSM, Sok B, Almedia C, Halim H, D'Orsogna L, Gras S. Molecular insights into the HLA-B35 molecules' classification associated with HIV control. Immunol Cell Biol 2024; 102:34-45. [PMID: 37811811 PMCID: PMC10952751 DOI: 10.1111/imcb.12698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 07/04/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023]
Abstract
Human leukocyte antigen (HLA) class I molecules have been shown to influence the immune response to HIV infection and acquired immunodeficiency syndrome progression. Polymorphisms within the HLA-B35 molecules divide the family into two groups, namely, Px and PY. The Px group is associated with deleterious effects and accelerated disease progression in HIV+ patients, whereas the PY group is not. The classification is based on the preferential binding of a tyrosine at the C-terminal part of the peptide in the PY group, and a nontyrosine residue in the Px group. However, there is a lack of knowledge on the molecular differences between the two groups. Here, we have investigated three HLA-B35 molecules, namely, HLA-B*35:01 (PY), HLA-B*35:03 (Px) and HLA-B*35:05 (unclassified). We selected an HIV-derived peptide, NY9, and demonstrated that it can trigger a polyfunctional CD8+ T-cell response in HLA-B*35:01+ /HIV+ patients. We determined that in the complex with the NY9 peptide, the PY molecule was more stable than the Px molecule. We solved the crystal structures of the three HLA molecules in complex with the NY9 peptide, and structural similarities with HLA-B*35:01 would classify the HLA-B*35:05 within the PY group. Interestingly, we found that HLA-B*35:05 can also bind a small molecule in its cleft, suggesting that small drugs could bind as well.
Collapse
Affiliation(s)
- Christian A Lobos
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVICAustralia
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVICAustralia
| | - Demetra SM Chatzileontiadou
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVICAustralia
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVICAustralia
| | - Bonin Sok
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVICAustralia
| | - Coral‐Ann Almedia
- Department of Clinical Immunology and PathWestFiona Stanley HospitalPerthWAAustralia
- School of MedicineUniversity of Western AustraliaPerthWAAustralia
| | - Hanim Halim
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVICAustralia
| | - Lloyd D'Orsogna
- Department of Clinical Immunology and PathWestFiona Stanley HospitalPerthWAAustralia
- School of MedicineUniversity of Western AustraliaPerthWAAustralia
| | - Stephanie Gras
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVICAustralia
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVICAustralia
| |
Collapse
|
3
|
Pichler WJ, Thoo L, Yerly D. Drug hypersensitivity and eosinophilia: The decisive role of p-i stimulation. Allergy 2023; 78:2596-2605. [PMID: 37395496 DOI: 10.1111/all.15795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/31/2023] [Accepted: 06/16/2023] [Indexed: 07/04/2023]
Abstract
Eosinophilia is a common finding in drug hypersensitivity reactions (DHR). Its cause is unclear, as neither antigen/allergen-driven inflammation nor clonal expansion is involved. Most delayed-DHRs are due to p-i (pharmacologic interaction of drugs with immune receptors). These are off-target activities of drugs with immune receptors that result in various types of T-cell stimulation, some of which involve excessive IL-5 production. Functional and phenotypic studies of T-cell clones and their TCR-transfected hybridoma cell lines revealed that some p-i-induced drug stimulations occur without CD4/ CD8 co-receptor engagement. The CD4/CD8 co-receptors link Lck (lymphocyte-specific protein tyrosine kinase) and LAT (linker for activation of T cells) to the TCR. Alteration of Lck or LAT can result in a TCR signalosome with enhanced IL-5 production. Thus, if a more affine TCR-[drug/peptide/HLA] interaction allows bypassing the CD4 co-receptor, a modified Lck/LAT activation may lead to a TCR signalosome with elevated IL-5 production. This "IL-5-TCR-signalosome" hypothesis could also explain eosinophilia in superantigen or allo-stimulation (graft-versus-host disease), in which evasion of CD4/CD8 co-receptors has also been described. It may open new therapeutic possibilities in certain eosinophilic diseases by directly targeting the IL-5-TCR signalosome.
Collapse
|
4
|
Susukida T, Sasaki SI, Shirayanagi T, Aoki S, Ito K, Hayakawa Y. Drug-induced altered self-presentation increases tumor immunogenicity. Biomed Pharmacother 2023; 165:115241. [PMID: 37523987 DOI: 10.1016/j.biopha.2023.115241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023] Open
Abstract
Anti-human immunodeficiency virus (HIV) drug abacavir (ABC) binds to the specific allele of human leukocyte antigen (HLA-B*57:01) and activates CD8+ T cells by presenting altered abnormal peptides. Here, we examined the effect of ABC-induced altered self-presentation by HLA-B*57:01 on immunogenicity of cancer cells and CD8+ T-cell-dependent anti-tumor immunity. We established human-mouse chimeric HLA-B*57:01-expressing tumor cell lines (B16F10 and 3LL) and tested the anti-tumor effect of ABC in vivo. ABC treatment inhibited the growth of HLA-B*57:01-expressing tumors by a CD8+ T-cell-dependent mechanism. ABC treatment induced CXCR3-dependent infiltration of CD8+ T cells into HLA-B*57:01-expressing tumors, and activated those tumor-infiltrating CD8+ T cells to proliferate and secrete IFN-γ. The activation of CD8+ T cells using drug-induced altered self-presentation may be a new strategy to increase tumor immunogenicity and improve the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Takeshi Susukida
- Laboratory of Cancer Biology and Immunology, Section of Host Defences, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - So-Ichiro Sasaki
- Laboratory of Cancer Biology and Immunology, Section of Host Defences, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Tomohiro Shirayanagi
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Shigeki Aoki
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Kousei Ito
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Yoshihiro Hayakawa
- Laboratory of Cancer Biology and Immunology, Section of Host Defences, Institute of Natural Medicine, University of Toyama, Toyama, Japan.
| |
Collapse
|
5
|
Li XX, Zhang JT, Ding XY. Fatal toxic epidermal necrolysis associated with sinomenine in a patient with primary membranous nephropathy. Clin Nephrol Case Stud 2023; 11:126-131. [PMID: 37575312 PMCID: PMC10413483 DOI: 10.5414/cncs111159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/21/2023] [Indexed: 08/15/2023] Open
Abstract
Sinomenine (SIN), the alkaloid monomer extracted from Sinomenium acutum, is a kind of non-steroidal anti-inflammatory drug widely used in China to treat rheumatoid arthritis (RA) and various glomerular diseases. It has various pharmacological effects such as anti-inflammatory, analgesic, and anti-tumor. As a strong histamine-releasing agent, SIN has drawn increasing attention in regards to its side effects such as allergic, gastrointestinal, and circulatory systemic reactions. In this report, we first described a patient with primary membranous nephropathy (PMN) who was treated with oral intake of SIN and developed medicine-induced toxic epidermal necrolysis (TEN) and subsequently died of septic multi-organ failure. The present case report intends to demonstrate the underestimated side effects of SIN that can eventually lead to death.
Collapse
Affiliation(s)
- Xue-Xia Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macao University of Science and Technology, Macao, and
- Department of Nephropathy, Zhuhai Hospital of Integrated Chinese and Western Medicine, Zhuhai, Guangdong, China
| | - Jun-Tao Zhang
- Department of Nephropathy, Zhuhai Hospital of Integrated Chinese and Western Medicine, Zhuhai, Guangdong, China
| | - Xiao-Ying Ding
- Department of Nephropathy, Zhuhai Hospital of Integrated Chinese and Western Medicine, Zhuhai, Guangdong, China
| |
Collapse
|
6
|
Pichler WJ, Brüggen MC. Viral infections and drug hypersensitivity. Allergy 2023; 78:60-70. [PMID: 36264263 DOI: 10.1111/all.15558] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/24/2022] [Accepted: 10/14/2022] [Indexed: 12/30/2022]
Abstract
Virus infections and T-cell-mediated drug hypersensitivity reactions (DHR) can influence each other. In most instances, systemic virus infections appear first. They may prime the reactivity to drugs in two ways: First, by virus-induced second signals: certain drugs like β-lactam antibiotics are haptens and covalently bind to various soluble and tissue proteins, thereby forming novel antigens. Under homeostatic conditions, these neo-antigens do not induce an immune reaction, probably because co-stimulation is missing. During a virus infection, the hapten-modified peptides are presented in an immune-stimulatory environment with co-stimulation. A drug-specific immune reaction may develop and manifest as exanthema. Second, by increased pharmacological interactions with immune receptors (p-i): drugs tend to bind to proteins and may even bind to immune receptors. Without viral infections, this low affine binding may be insufficient to elicit T-cell activation. During a viral infection, immune receptors are more abundantly expressed and allow more interactions to occur. This increases the overall avidity of p-i reactions and may even be sufficient for T-cell activation and symptoms. There is a situation where the virus-DHR sequence of events is inversed: in drug reaction with eosinophilia and systemic symptoms (DRESS), a severe DHR can precede reactivation and viremia of various herpes viruses. One could explain this phenomenon by the massive p-i mediated immune stimulation during acute DRESS, which coincidentally activates many herpes virus-specific T cells. Through p-i stimulation, they develop a cytotoxic activity by killing herpes peptide-expressing cells and releasing herpes viruses. These concepts could explain the often transient nature of DHR occurring during viral infections and the often asymptomatic herpes-virus viraemia after DRESS.
Collapse
Affiliation(s)
| | - Marie-Charlotte Brüggen
- Allergy Unit, Department of Dermatology, University Hospital Zürich, Zürich, Switzerland.,Faculty of Medicine, University Zürich, Zürich, Switzerland.,Christine Kühne - Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| |
Collapse
|
7
|
Thomson P, Hammond S, Naisbitt DJ. Pathology of drug hypersensitivity reactions and mechanisms of immune tolerance. Clin Exp Allergy 2022; 52:1379-1390. [PMID: 36177544 DOI: 10.1111/cea.14235] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/08/2022] [Accepted: 09/25/2022] [Indexed: 01/26/2023]
Abstract
Immune-mediated type IV adverse drug reactions are idiosyncratic in nature, generally not related to the primary or secondary pharmacology of the drug. Due to their complex nature and rarity, these iatrogenic reactions are seldom predicted or encountered during preclinical/early clinical development stages, and often precipitate upon exposure to wider populations (i.e. phase III onwards). They confer a burden on the healthcare sector in both a clinical and financial sense presenting a severe impediment to the drug discovery and development process. Research over the past 50 years has improved our understanding of these reactions markedly as both in vitro and in vivo studies have placed the role of the immune system, in particular; drug-responsive T cells, firmly in the spotlight as the mediators of these reactions. Indeed, the role of different populations of T cells in adverse events and the interaction of drug molecules with HLA proteins expressed on the surface of antigen-presenting cells is of considerable interest. Herein, this review examines the pathways of immune-mediated adverse events including the various T cell subtypes implicated and the mechanisms of T cell activation. Additionally, we address the enigma of immunological tolerance and explore the role tolerance plays in determination of susceptibility to such adverse events even in individuals carrying immunogenic liabilities.
Collapse
Affiliation(s)
- Paul Thomson
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - Sean Hammond
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK.,ApconiX, Alderley Park, Alderley Edge, UK
| | - Dean J Naisbitt
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| |
Collapse
|
8
|
Line J, Thomson P, Naisbitt DJ. Pathology of T-cell-mediated drug hypersensitivity reactions and impact of tolerance mechanisms on patient susceptibility. Curr Opin Allergy Clin Immunol 2022; 22:226-233. [PMID: 35779063 DOI: 10.1097/aci.0000000000000834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE OF REVIEW T-cell-mediated drug hypersensitivity is responsible for significant morbidity and mortality, and represents a substantial clinical concern. The purpose of this article is to focus on T-cell reactions and discuss recent advances in disease pathogenesis by exploring the impact of tolerance mechanisms in determining susceptibility in genetically predisposed patients. RECENT FINDINGS Certain drugs preferentially activate pathogenic T cells that have defined pathways of effector function. Thus, a critical question is what extenuating factors influence the direction of immune activation. A large effort has been given towards identifying phenotypic (e.g., infection) or genotypic (e.g., human leukocyte antigen) associations which predispose individuals to drug hypersensitivity. However, many individuals expressing known risk factors safely tolerate drug administration. Thus, mechanistic insight is needed to determine what confers this tolerance. Herein, we discuss recent clinical/mechanistic findings which indicate that the direction in which the immune system is driven relies upon a complex interplay between co-stimulatory/co-regulatory pathways which themselves depend upon environmental inputs from the innate immune system. SUMMARY It is becoming increasingly apparent that tolerance mechanisms impact on susceptibility to drug hypersensitivity. As the field moves forward it will be interesting to discover whether active tolerance is the primary response to drug exposure, with genetic factors such as HLA acting as a sliding scale, influencing the degree of regulation required to prevent clinical reactions in patients.
Collapse
Affiliation(s)
- James Line
- Department of Pharmacology and Therapeutics, Sherrington Building, Ashton Street, The University of Liverpool, Liverpool, UK
| | | | | |
Collapse
|
9
|
Elzagallaai AA, Rieder MJ. Genetic markers of drug hypersensitivity in pediatrics: current state and promise. Expert Rev Clin Pharmacol 2022; 15:715-728. [DOI: 10.1080/17512433.2022.2100345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Abdelbaset A Elzagallaai
- Department of Paediatrics Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Physiology and Pharmacology Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Michael J Rieder
- Department of Physiology and Pharmacology Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute, Western University, London, Ontario, Canada
| |
Collapse
|
10
|
Shrivastava SP, Elhence A, Jinwala P, Bansal S, Chitalkar P, Bhatnagar S, Patidar R, Asati V. A Rare Case of Life-Threatening Extensive Mucocutaneous Adverse Reaction Induced by Docetaxel in a Breast Cancer Patient: Toxic Epidermal Necrolysis, a Case Report with Review of Literature. Indian J Med Paediatr Oncol 2022. [DOI: 10.1055/s-0042-1743125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
AbstractFever and extensive necrosis with 30% or more epidermal involvement along with mucous membrane is known as toxic epidermal necrolysis (TEN). It is a life-threatening mucocutaneous disease and is usually drug induced. We report a rare case of docetaxel-induced TEN. A patient with metastatic breast carcinoma received single agent docetaxel and developed severe skin and mucous membrane reaction involving more than 30% of the skin, and managed conservatively in intensive care unit but she succumbed to her illness. Although common toxicities reported with docetaxel include alopecia, nail damage, myelosuppression, and erythema multiforme major, TEN after docetaxel is very rare and can be a life-threatening complication as in our case.
Collapse
Affiliation(s)
- Shiv Prasad Shrivastava
- Department of Medical Oncology, Sri Aurobindo Institute of Medical Sciences, Indore, Madhya Pradesh, India
| | - Aditya Elhence
- Department of Medical Oncology, Sri Aurobindo Institute of Medical Sciences, Indore, Madhya Pradesh, India
| | - Prutha Jinwala
- Department of Medical Oncology, Sri Aurobindo Institute of Medical Sciences, Indore, Madhya Pradesh, India
| | - Shashank Bansal
- Department of Medical Oncology, Sri Aurobindo Institute of Medical Sciences, Indore, Madhya Pradesh, India
| | - Prakash Chitalkar
- Department of Medical Oncology, Sri Aurobindo Institute of Medical Sciences, Indore, Madhya Pradesh, India
| | - Shweta Bhatnagar
- Department of Radiology, Sri Aurobindo Institute of Medical Sciences, Indore, Madhya Pradesh, India
| | - Rajesh Patidar
- Department of Medical Oncology, Sri Aurobindo Institute of Medical Sciences, Indore, Madhya Pradesh, India
| | - Vikas Asati
- Department of Medical Oncology, Sri Aurobindo Institute of Medical Sciences, Indore, Madhya Pradesh, India
| |
Collapse
|
11
|
Shirayanagi T, Kazaoka A, Watanabe K, Qu L, Sakamoto N, Hoshino T, Ito K, Aoki S. Weak complex formation of adverse drug reaction-associated HLAB57, B58, and B15 molecules. Toxicol In Vitro 2022; 82:105383. [PMID: 35568130 DOI: 10.1016/j.tiv.2022.105383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 10/18/2022]
Abstract
The combination of certain human leukocyte antigen (HLA) polymorphisms with administration of certain drugs shows a strong correlation with developing drug hypersensitivity. Examples of typical combinations are HLA-B*57:01 with abacavir and HLA-B*15:02 with carbamazepine. However, despite belonging to the same serotype, HLA-B*57:03 and HLA-B*15:01 are not associated with drug hypersensitivity. Recent studies have shown that several HLA polymorphisms are associated with multiple drugs rather than a single drug, all resulting in drug hypersensitivity. In this study, we compared the molecular structures and intracellular localization of HLA-B*57:01, HLA-B*58:01, and HLA-B*15:02, which pose risks for developing drug hypersensitivity, as well as HLA-B*57:03 and HLA-B*15:01 that do not present such risks. We found that HLA molecules posing risks have a low affinity for the subunit β2-microglobulin; notably, the weak hydrogen bond formed via Gln96 of the HLA molecule contributes to this behavior. We also clarified that these HLA molecules are easily accumulated in the endoplasmic reticulum, exhibiting a low expression on the cell surface. Considering that these hypersensitivity risk-associated HLA molecules form complexes with β2-microglobulin and peptides in the endoplasmic reticulum, we assumed that their low complex formation ability in the endoplasmic reticulum facilitates the interaction with multiple drugs.
Collapse
Affiliation(s)
- Tomohiro Shirayanagi
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-city, Chiba 260-8675, Japan
| | - Akira Kazaoka
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-city, Chiba 260-8675, Japan
| | - Kenji Watanabe
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-city, Chiba 260-8675, Japan
| | - Liang Qu
- Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-city, Chiba 260-8675, Japan
| | - Naoki Sakamoto
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-city, Chiba 260-8675, Japan
| | - Tyuji Hoshino
- Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-city, Chiba 260-8675, Japan
| | - Kousei Ito
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-city, Chiba 260-8675, Japan
| | - Shigeki Aoki
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-city, Chiba 260-8675, Japan.
| |
Collapse
|
12
|
Pichler WJ, Watkins S, Yerly D. Risk Assessment in Drug Hypersensitivity: Detecting Small Molecules Which Outsmart the Immune System. FRONTIERS IN ALLERGY 2022; 3:827893. [PMID: 35386664 PMCID: PMC8974731 DOI: 10.3389/falgy.2022.827893] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/26/2022] [Indexed: 12/19/2022] Open
Abstract
Drug hypersensitivity (DH) reactions are clinically unusual because the underlying immune stimulations are not antigen-driven, but due to non-covalent drug-protein binding. The drugs may bind to immune receptors like HLA or TCR which elicits a strong T cell reaction (p-i concept), the binding may enhance the affinity of antibodies (enhanced affinity model), or drug binding may occur on soluble proteins which imitate a true antigen (fake antigen model). These novel models of DH could have a major impact on how to perform risk assessments in drug development. Herein, we discuss the difficulties of detecting such non-covalent, labile and reversible, but immunologically relevant drug-protein interactions early on in drug development. The enormous diversity of the immune system, varying interactions, and heterogeneous functional consequences make it to a challenging task. We propose that a realistic approach to detect clinically relevant non-covalent drug interactions for a new drug could be based on a combination of in vitro cell culture assays (using a panel of HLA typed donor cells) and functional analyses, supplemented by structural analysis (computational data) of the reactive cells/molecules. When drug-reactive cells/molecules with functional impact are detected in these risk assessments, a close clinical monitoring of the drug may reveal the true incidence of DH, as suppressing but also enhancing factors occurring in vivo can influence the clinical manifestation of a DH.
Collapse
|
13
|
Pichler WJ. The important role of non-covalent drug-protein interactions in drug hypersensitivity reactions. Allergy 2022; 77:404-415. [PMID: 34037262 PMCID: PMC9291849 DOI: 10.1111/all.14962] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Abstract
Drug hypersensitivity reactions (DHR) are heterogeneous and unusual immune reactions with rather unique clinical presentations. Accumulating evidence indicates that certain non-covalent drug-protein interactions are able to elicit exclusively effector functions of antibody reactions or complete T-cell reactions which contribute substantially to DHR. Here, we discuss three key interactions; (a) mimicry: whereby soluble, non-covalent drug-protein complexes ("fake antigens") mimic covalent drug-protein adducts; (b) increased antibody affinity: for example, in quinine-type immune thrombocytopenia where the drug gets trapped between antibody and membrane-bound glycoprotein; and (c) p-i-stimulation: where naïve and memory T cells are activated by direct binding of drugs to the human leukocyte antigen and/or T-cell receptors. This transient drug-immune receptor interaction initiates a polyclonal T-cell response with mild-to-severe DHR symptoms. Notable complications arising from p-i DHR can include viral reactivations, autoimmunity, and multiple drug hypersensitivity. In conclusion, DHR is characterized by abnormal immune stimulation driven by non-covalent drug-protein interactions. This contrasts DHR from "normal" immunity, which relies on antigen-formation by covalent hapten-protein adducts and predominantly results in asymptomatic immunity.
Collapse
|
14
|
Kloypan C, Koomdee N, Satapornpong P, Tempark T, Biswas M, Sukasem C. A Comprehensive Review of HLA and Severe Cutaneous Adverse Drug Reactions: Implication for Clinical Pharmacogenomics and Precision Medicine. Pharmaceuticals (Basel) 2021; 14:1077. [PMID: 34832859 PMCID: PMC8622011 DOI: 10.3390/ph14111077] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 12/19/2022] Open
Abstract
Human leukocyte antigen (HLA) encoded by the HLA gene is an important modulator for immune responses and drug hypersensitivity reactions as well. Genetic polymorphisms of HLA vary widely at population level and are responsible for developing severe cutaneous adverse drug reactions (SCARs) such as Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), drug reaction with eosinophilia and systemic symptoms (DRESS), maculopapular exanthema (MPE). The associations of different HLA alleles with the risk of drug induced SJS/TEN, DRESS and MPE are strongly supportive for clinical considerations. Prescribing guidelines generated by different national and international working groups for translation of HLA pharmacogenetics into clinical practice are underway and functional in many countries, including Thailand. Cutting edge genomic technologies may accelerate wider adoption of HLA screening in routine clinical settings. There are great opportunities and several challenges as well for effective implementation of HLA genotyping globally in routine clinical practice for the prevention of drug induced SCARs substantially, enforcing precision medicine initiatives.
Collapse
Affiliation(s)
- Chiraphat Kloypan
- Unit of Excellence in Integrative Molecular Biomedicine, School of Allied Health Sciences, University of Phayao, Phayao 56000, Thailand;
- Division of Clinical Immunology and Transfusion Science, Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao 56000, Thailand
| | - Napatrupron Koomdee
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (N.K.); (M.B.)
- Laboratory for Pharmacogenomics, Ramathibodi Hospital, Somdech Phra Debaratana Medical Center SDMC, Bangkok 10400, Thailand
| | - Patompong Satapornpong
- Division of General Pharmacy Practice, Department of Pharmaceutical Care, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand;
- Excellence Pharmacogenomics and Precision Medicine Centre, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
| | - Therdpong Tempark
- Division of Dermatology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Mohitosh Biswas
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (N.K.); (M.B.)
- Laboratory for Pharmacogenomics, Ramathibodi Hospital, Somdech Phra Debaratana Medical Center SDMC, Bangkok 10400, Thailand
- Department of Pharmacy, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (N.K.); (M.B.)
- Laboratory for Pharmacogenomics, Ramathibodi Hospital, Somdech Phra Debaratana Medical Center SDMC, Bangkok 10400, Thailand
- The Thai Severe Cutaneous Adverse Drug Reaction THAI-SCAR Research-Genomics Thailand, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
- The Preventive Genomics & Family Check-Up Services Center, Bumrungrad International Hospital, Pharmacogenomics and Precision Medicine Clinic, Bangkok 10110, Thailand
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
| |
Collapse
|
15
|
The PD1 inhibitory pathway and mature dendritic cells contribute to abacavir hypersensitivity in human leukocyte antigen transgenic PD1 knockout mice. Toxicology 2021; 463:152971. [PMID: 34606953 DOI: 10.1016/j.tox.2021.152971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 11/23/2022]
Abstract
Based on recent genome-wide association studies, abacavir-induced hypersensitivity is highly associated with human leukocyte antigen (HLA)-B*57:01 allele. However, the underlying mechanism of this occurrence is unclear. To investigate the underlying mechanism, we developed HLA-B*57:01 transgenic mice and found that application of abacavir could cause CD8 T cell activation with elevation in PD1 expression; however, severe skin hypersensitivity was not observed. To eliminate the immunosuppressive effect of PD1, HLA-B*57:01 transgenic/PD1 knockout (01Tg/PD1) mice were generated by mating HLA-B*57:01 transgenic mice and PD1 knockout mice. Thereafter, 01Tg/PD1 mice were treated with abacavir. Similar to the above results, severe skin hypersensitivity was not observed. Therefore, we treated 01Tg/PD1 mice with an anti-CD4 antibody to deplete CD4 T cells, followed by abacavir topically and orally. Severe abacavir-induced skin hypersensitivity was observed in 01Tg/PD1 mice after depletion of CD4 T cells, in addition to significant CD8 T cell activation and dendritic cell maturation. Taken together, we succeeded in reproducing severe skin hypersensitivity in a mouse model. And we found that through the combined depletion of PD1 and CD4 T cells, CD8 T cells could be activated and could proceed to clonal proliferation, which is promoted by mature dendritic cells, thereby eventually inducing severe skin hypersensitivity.
Collapse
|
16
|
Regulation of the immune tolerance system determines the susceptibility to HLA-mediated abacavir-induced skin toxicity. Commun Biol 2021; 4:1137. [PMID: 34584206 PMCID: PMC8479119 DOI: 10.1038/s42003-021-02657-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 09/10/2021] [Indexed: 01/11/2023] Open
Abstract
Idiosyncratic drug toxicity (IDT) associated with specific human leukocyte antigen (HLA) allotype is a rare and unpredictable life-threatening adverse drug reaction for which prospective mechanistic studies in humans are difficult. Here, we show the importance of immune tolerance for IDT onset and determine whether it is susceptible to a common IDT, HLA-B*57:01-mediated abacavir (ABC)-induced hypersensitivity (AHS), using CD4+ T cell-depleted programmed death-1 receptor (PD-1)-deficient HLA-B*57:01 transgenic mice (B*57:01-Tg/PD-1−/−). Although AHS is not observed in B*57:01-Tg mice, ABC treatment increases the proportion of cytokine- and cytolytic granule-secreting effector memory CD8+ T cells in CD4+ T cell-depleted B*57:01-Tg/PD-1−/− mice, thereby inducing skin toxicity with CD8+ T cell infiltration, mimicking AHS. Our results demonstrate that individual differences in the immune tolerance system, including PD-1highCD8+ T cells and regulatory CD4+ T cells, may affect the susceptibility of humans to HLA-mediated IDT in humans. Using a transgenic mouse model that recapitulates abacavir hypersensitivity syndrome, an idiosyncratic adverse drug reaction, Susukida et al show that individual differences in the immune tolerance system affect the susceptibility to idiosyncratic drug toxicity.
Collapse
|
17
|
Bechara R, Feray A, Pallardy M. Drug and Chemical Allergy: A Role for a Specific Naive T-Cell Repertoire? Front Immunol 2021; 12:653102. [PMID: 34267746 PMCID: PMC8276071 DOI: 10.3389/fimmu.2021.653102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/15/2021] [Indexed: 01/11/2023] Open
Abstract
Allergic reactions to drugs and chemicals are mediated by an adaptive immune response involving specific T cells. During thymic selection, T cells that have not yet encountered their cognate antigen are considered naive T cells. Due to the artificial nature of drug/chemical-T-cell epitopes, it is not clear whether thymic selection of drug/chemical-specific T cells is a common phenomenon or remains limited to few donors or simply does not exist, suggesting T-cell receptor (TCR) cross-reactivity with other antigens. Selection of drug/chemical-specific T cells could be a relatively rare event accounting for the low occurrence of drug allergy. On the other hand, a large T-cell repertoire found in multiple donors would underline the potential of a drug/chemical to be recognized by many donors. Recent observations raise the hypothesis that not only the drug/chemical, but also parts of the haptenated protein or peptides may constitute the important structural determinants for antigen recognition by the TCR. These observations may also suggest that in the case of drug/chemical allergy, the T-cell repertoire results from particular properties of certain TCR to recognize hapten-modified peptides without need for previous thymic selection. The aim of this review is to address the existence and the role of a naive T-cell repertoire in drug and chemical allergy. Understanding this role has the potential to reveal efficient strategies not only for allergy diagnosis but also for prediction of the immunogenic potential of new chemicals.
Collapse
Affiliation(s)
- Rami Bechara
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alexia Feray
- Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, INSERM, Châtenay-Malabry, France
| | - Marc Pallardy
- Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, INSERM, Châtenay-Malabry, France
| |
Collapse
|
18
|
Illing PT, van Hateren A, Darley R, Croft NP, Mifsud NA, King S, Kostenko L, Bharadwaj M, McCluskey J, Elliott T, Purcell AW. Kinetics of Abacavir-Induced Remodelling of the Major Histocompatibility Complex Class I Peptide Repertoire. Front Immunol 2021; 12:672737. [PMID: 34093574 PMCID: PMC8170132 DOI: 10.3389/fimmu.2021.672737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/26/2021] [Indexed: 12/14/2022] Open
Abstract
Abacavir hypersensitivity syndrome can occur in individuals expressing the HLA-B*57:01 major histocompatibility complex class I allotype when utilising the drug abacavir as a part of their anti-retroviral regimen. The drug is known to bind within the HLA-B*57:01 antigen binding cleft, leading to the selection of novel self-peptide ligands, thus provoking life-threatening immune responses. However, the sub-cellular location of abacavir binding and the mechanics of altered peptide selection are not well understood. Here, we probed the impact of abacavir on the assembly of HLA-B*57:01 peptide complexes. We show that whilst abacavir had minimal impact on the maturation or average stability of HLA-B*57:01 molecules, abacavir was able to differentially enhance the formation, selectively decrease the dissociation, and alter tapasin loading dependency of certain HLA-B*57:01-peptide complexes. Our data reveals a spectrum of abacavir mediated effects on the immunopeptidome which reconciles the heterogeneous functional T cell data reported in the literature.
Collapse
Affiliation(s)
- Patricia T. Illing
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Andy van Hateren
- Institute for Life Sciences and Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Rachel Darley
- Institute for Life Sciences and Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Nathan P. Croft
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Nicole A. Mifsud
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Samuel King
- Institute for Life Sciences and Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Lyudmila Kostenko
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Mandvi Bharadwaj
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Tim Elliott
- Institute for Life Sciences and Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Anthony W. Purcell
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
19
|
Villani AP, Rozieres A, Bensaid B, Eriksson KK, Mosnier A, Albert F, Mutez V, Brassard O, Baysal T, Tardieu M, Allatif O, Fusil F, Andrieu T, Jullien D, Dubois V, Giannoli C, Gruffat H, Pallardy M, Cosset FL, Nosbaum A, Kanagawa O, Maryanski JL, Yerly D, Nicolas JF, Vocanson M. Massive clonal expansion of polycytotoxic skin and blood CD8 + T cells in patients with toxic epidermal necrolysis. SCIENCE ADVANCES 2021; 7:7/12/eabe0013. [PMID: 33741590 PMCID: PMC7978430 DOI: 10.1126/sciadv.abe0013] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 02/02/2021] [Indexed: 05/22/2023]
Abstract
Toxic epidermal necrolysis (TEN) is a life-threatening cutaneous adverse drug reaction. To better understand why skin symptoms are so severe, we conducted a prospective immunophenotyping study on skin and blood. Mass cytometry results confirmed that effector memory polycytotoxic CD8+ T cells (CTLs) are the main leucocytes in TEN blisters at the acute phase. Deep T cell receptor (TCR) repertoire sequencing identified massive expansion of unique CDR3 clonotypes in blister cells. The same clones were highly expanded in patient's blood, and the degree of their expansion showed significant correlation with disease severity. By transducing α and β chains of the expanded clonotypes into a TCR-defective cell line, we confirmed that those cells were drug specific. Collectively, these results suggest that the relative clonal expansion and phenotype of skin-recruited CTLs condition the clinical presentation of cutaneous adverse drug reactions.
Collapse
Affiliation(s)
- Axel Patrice Villani
- Centre International de Recherche en Infectiologie (CIRI); INSERM, U1111; Université de Lyon 1; Ecole Normale Supérieure de Lyon; and CNRS, UMR 5308, Lyon, France
- Drug Allergy Reference Center, Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Dermatologie, Lyon, France
| | - Aurore Rozieres
- Centre International de Recherche en Infectiologie (CIRI); INSERM, U1111; Université de Lyon 1; Ecole Normale Supérieure de Lyon; and CNRS, UMR 5308, Lyon, France
| | - Benoît Bensaid
- Drug Allergy Reference Center, Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Dermatologie, Lyon, France
| | - Klara Kristin Eriksson
- Department of Rheumatology, Immunology and Allergology, Drug Allergy Research Laboratory, University Hospital of Bern, 3010 Bern, Switzerland
| | - Amandine Mosnier
- Centre International de Recherche en Infectiologie (CIRI); INSERM, U1111; Université de Lyon 1; Ecole Normale Supérieure de Lyon; and CNRS, UMR 5308, Lyon, France
| | - Floriane Albert
- Centre International de Recherche en Infectiologie (CIRI); INSERM, U1111; Université de Lyon 1; Ecole Normale Supérieure de Lyon; and CNRS, UMR 5308, Lyon, France
| | - Virginie Mutez
- Centre International de Recherche en Infectiologie (CIRI); INSERM, U1111; Université de Lyon 1; Ecole Normale Supérieure de Lyon; and CNRS, UMR 5308, Lyon, France
| | - Océane Brassard
- Centre International de Recherche en Infectiologie (CIRI); INSERM, U1111; Université de Lyon 1; Ecole Normale Supérieure de Lyon; and CNRS, UMR 5308, Lyon, France
| | - Tugba Baysal
- Centre International de Recherche en Infectiologie (CIRI); INSERM, U1111; Université de Lyon 1; Ecole Normale Supérieure de Lyon; and CNRS, UMR 5308, Lyon, France
| | - Mathilde Tardieu
- Centre International de Recherche en Infectiologie (CIRI); INSERM, U1111; Université de Lyon 1; Ecole Normale Supérieure de Lyon; and CNRS, UMR 5308, Lyon, France
| | - Omran Allatif
- Centre International de Recherche en Infectiologie (CIRI); INSERM, U1111; Université de Lyon 1; Ecole Normale Supérieure de Lyon; and CNRS, UMR 5308, Lyon, France
| | - Floriane Fusil
- Centre International de Recherche en Infectiologie (CIRI); INSERM, U1111; Université de Lyon 1; Ecole Normale Supérieure de Lyon; and CNRS, UMR 5308, Lyon, France
| | - Thibault Andrieu
- Centre International de Recherche en Infectiologie (CIRI); INSERM, U1111; Université de Lyon 1; Ecole Normale Supérieure de Lyon; and CNRS, UMR 5308, Lyon, France
- SFR Biosciences Gerland, US8, UMS3444, Lyon, France
| | - Denis Jullien
- Centre International de Recherche en Infectiologie (CIRI); INSERM, U1111; Université de Lyon 1; Ecole Normale Supérieure de Lyon; and CNRS, UMR 5308, Lyon, France
- Drug Allergy Reference Center, Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Dermatologie, Lyon, France
| | | | | | - Henri Gruffat
- Centre International de Recherche en Infectiologie (CIRI); INSERM, U1111; Université de Lyon 1; Ecole Normale Supérieure de Lyon; and CNRS, UMR 5308, Lyon, France
| | | | - François-Loïc Cosset
- Centre International de Recherche en Infectiologie (CIRI); INSERM, U1111; Université de Lyon 1; Ecole Normale Supérieure de Lyon; and CNRS, UMR 5308, Lyon, France
| | - Audrey Nosbaum
- Centre International de Recherche en Infectiologie (CIRI); INSERM, U1111; Université de Lyon 1; Ecole Normale Supérieure de Lyon; and CNRS, UMR 5308, Lyon, France
- Département d'Allergologie et d'immunologie Clinique, Hôpital Lyon Sud, Pierre-Bénite, France
| | - Osami Kanagawa
- Centre International de Recherche en Infectiologie (CIRI); INSERM, U1111; Université de Lyon 1; Ecole Normale Supérieure de Lyon; and CNRS, UMR 5308, Lyon, France
| | - Janet L Maryanski
- Unité de Thérapie Cellulaire et Génique (UTCG), Centre Hospitalier Universitaire de Nice, 06101 Nice, France
| | - Daniel Yerly
- Department of Rheumatology, Immunology and Allergology, Drug Allergy Research Laboratory, University Hospital of Bern, 3010 Bern, Switzerland
- ADR-AC GmbH, Holligenstrasse 91, 3008 Bern, Switzerland
| | - Jean-François Nicolas
- Centre International de Recherche en Infectiologie (CIRI); INSERM, U1111; Université de Lyon 1; Ecole Normale Supérieure de Lyon; and CNRS, UMR 5308, Lyon, France
- Département d'Allergologie et d'immunologie Clinique, Hôpital Lyon Sud, Pierre-Bénite, France
| | - Marc Vocanson
- Centre International de Recherche en Infectiologie (CIRI); INSERM, U1111; Université de Lyon 1; Ecole Normale Supérieure de Lyon; and CNRS, UMR 5308, Lyon, France.
| |
Collapse
|
20
|
Drug Reaction with Eosinophilia and Systemic Symptoms: A Complex Interplay between Drug, T Cells, and Herpesviridae. Int J Mol Sci 2021; 22:ijms22031127. [PMID: 33498771 PMCID: PMC7865935 DOI: 10.3390/ijms22031127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 12/14/2022] Open
Abstract
Drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome, also known as drug induced hypersensitivity (DiHS) syndrome is a severe delayed hypersensitivity reaction with potentially fatal consequences. Whilst recognised as T cell-mediated, our understanding of the immunopathogenesis of this syndrome remains incomplete. Here, we discuss models of DRESS, including the role of human leukocyte antigen (HLA) and how observations derived from new molecular techniques adopted in key studies have informed our mechanism-based understanding of the central role of Herpesviridae reactivation and heterologous immunity in these disorders.
Collapse
|
21
|
Shirayanagi T, Aoki S, Fujimori S, Watanabe K, Aida T, Hirasawa M, Kumagai K, Hoshino T, Ito K. Detection of Abacavir-Induced Structural Alterations in Human Leukocyte Antigen-B*57 : 01 Using Phage Display. Biol Pharm Bull 2020; 43:1007-1015. [DOI: 10.1248/bpb.b20-00102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tomohiro Shirayanagi
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Shigeki Aoki
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Sota Fujimori
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Kenji Watanabe
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Tetsuo Aida
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd
| | - Makoto Hirasawa
- Drug Metabolism & Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd
| | | | - Tyuji Hoshino
- Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Kousei Ito
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University
| |
Collapse
|
22
|
Jörg L, Yerly D, Helbling A, Pichler W. The role of drug, dose, and the tolerance/intolerance of new drugs in multiple drug hypersensitivity syndrome. Allergy 2020; 75:1178-1187. [PMID: 31814130 DOI: 10.1111/all.14146] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/19/2019] [Accepted: 11/27/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Multiple drug hypersensitivity syndrome (MDH) is used to describe persons with a drug hypersensitivity reaction (DHR) to at least two chemically unrelated drugs, confirmed by skin test or in vitro assay. METHODS Medical records of 25 patients with MDH, tested and confirmed at our allergy division, were retrospectively evaluated in terms of clinical course, involved drugs, daily drug dose, latency periods, test results of skin test and cellular assays, and tolerated drugs in subsequent pharmacological treatments. RESULTS Multiple drug hypersensitivity syndrome almost exclusively appeared as a delayed, often severe DHR and started in 14/25 with a drug reaction with eosinophilia and systemic symptoms (DRESS). Penicillins (13/25, 52.0%) and cephalosporins (6/25, 24.0%), typical high-dose drugs, were most often identified as elicitors of MDH, especially at the first DHR, followed by aromatic antiepileptics (7/25, 28.0%), vancomycin (4/25, 16.0%), and antibiotic sulfonamides (4/25, 16.0%). Cephalosporins, clindamycin, and radio contrast media (RCM) were mainly involved in subsequent DHR. The median daily drug dose of all drug trigger was 1875.0 mg (662.5; 2100.0) at the first DHR and 600.0 mg (300.0; 1300.0) at subsequent DHR, P = .0420. CONCLUSION High-dose drugs, especially beta-lactam antibiotics, RCM and clindamycin, are common elicitors of subsequent DHR in patients with MDH. Macrolides, quinolones, doxycycline, nonaromatic antiepileptics, and paracetamol were often tolerated. As the same drugs elicited both flare-up reactions and real DHR, drug-induced flare-up reactions may be precursors of a possible second DHR and MDH. The administration of highly dosed drugs should be avoided in patients at risk for MDH.
Collapse
Affiliation(s)
- Lukas Jörg
- Department of Rheumatology, Immunology and Allergology Inselspital Bern University Hospital University of Bern Bern Switzerland
| | - Daniel Yerly
- Department of Rheumatology, Immunology and Allergology Inselspital Bern University Hospital University of Bern Bern Switzerland
| | - Arthur Helbling
- Department of Rheumatology, Immunology and Allergology Inselspital Bern University Hospital University of Bern Bern Switzerland
| | - Werner Pichler
- ADR‐AC GmbH Adverse Drug Reactions, Analysis and Consulting Bern Switzerland
| |
Collapse
|
23
|
Naisbitt DJ, Olsson‐Brown A, Gibson A, Meng X, Ogese MO, Tailor A, Thomson P. Immune dysregulation increases the incidence of delayed-type drug hypersensitivity reactions. Allergy 2020; 75:781-797. [PMID: 31758810 DOI: 10.1111/all.14127] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/05/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022]
Abstract
Delayed-type, T cell-mediated, drug hypersensitivity reactions are a serious unwanted manifestation of drug exposure that develops in a small percentage of the human population. Drugs and drug metabolites are known to interact directly and indirectly (through irreversible protein binding and processing to the derived adducts) with HLA proteins that present the drug-peptide complex to T cells. Multiple forms of drug hypersensitivity are strongly linked to expression of a single HLA allele, and there is increasing evidence that drugs and peptides interact selectively with the protein encoded by the HLA allele. Despite this, many individuals expressing HLA risk alleles do not develop hypersensitivity when exposed to culprit drugs suggesting a nonlinear, multifactorial relationship in which HLA risk alleles are one factor. This has prompted a search for additional susceptibility factors. Herein, we argue that immune regulatory pathways are one key determinant of susceptibility. As expression and activity of these pathways are influenced by disease, environmental and patient factors, it is currently impossible to predict whether drug exposure will result in a health benefit, hypersensitivity or both. Thus, a concerted effort is required to investigate how immune dysregulation influences susceptibility towards drug hypersensitivity.
Collapse
Affiliation(s)
- Dean J. Naisbitt
- MRC Centre for Drug Safety Science Department of Clinical and Molecular Pharmacology The University of Liverpool Liverpool UK
| | - Anna Olsson‐Brown
- MRC Centre for Drug Safety Science Department of Clinical and Molecular Pharmacology The University of Liverpool Liverpool UK
| | - Andrew Gibson
- MRC Centre for Drug Safety Science Department of Clinical and Molecular Pharmacology The University of Liverpool Liverpool UK
| | - Xiaoli Meng
- MRC Centre for Drug Safety Science Department of Clinical and Molecular Pharmacology The University of Liverpool Liverpool UK
| | - Monday O. Ogese
- MRC Centre for Drug Safety Science Department of Clinical and Molecular Pharmacology The University of Liverpool Liverpool UK
| | - Arun Tailor
- MRC Centre for Drug Safety Science Department of Clinical and Molecular Pharmacology The University of Liverpool Liverpool UK
| | - Paul Thomson
- MRC Centre for Drug Safety Science Department of Clinical and Molecular Pharmacology The University of Liverpool Liverpool UK
| |
Collapse
|
24
|
Abstract
Cutaneous adverse drug reactions are unpredictable and include various different skin conditions of varying degrees of severity. The most concerning are usually referred to as severe cutaneous adverse reactions (SCARs) and include acute generalized exanthematous pustulosis (AGEP), drug reaction with eosinophilia and systemic symptoms (DRESS), also known as drug-induced hypersensitivity syndrome (DiHS) or hypersensitivity syndrome (HSS), Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN). All are delayed type IV hypersensitivity reactions in which a T-cell-mediated drug-specific immune response is responsible for causing the disease. Nonetheless, specific T-cell subpopulations develop in response to certain environmental conditions and produce cytokines that orchestrate the various phenotypes. Cytotoxic T lymphocytes (CTLs), T-helper type 1 (Th1), Th2, Th17, and regulatory T cells (Treg), among other T-cell subpopulations, participate in the development of SCAR phenotypes. Cell subpopulations belonging to the innate immune system, comprising natural killer cells, innate lymphoid cells, monocytes, macrophages and dendritic cells, can also participate in shaping specific immune responses in various clinical conditions. Additionally, tissue-resident cells, including keratinocytes, can contribute to epidermal damage by secreting chemokines that attract pro-inflammatory immunocytes. The final phenotypes in each clinical entity result from the complex interactions between a variety of cell lineages, their products, soluble mediators and genetic and environmental factors. Although the pathophysiology of these reactions is not fully understood, intensive research in recent years has led to major progress in our understanding of the contribution of certain cell types and soluble mediators to the variability of SCAR phenotypes.
Collapse
Affiliation(s)
- Teresa Bellón
- La Paz Hospital Health Research Institute-IdiPAZ, Pº Castellana 261, 28046, Madrid, Spain.
| |
Collapse
|
25
|
Faridi RM, Patel S, Dharmani-Khan P, Gill J, Berka N, Khan FM. Comparison of abacavir-specific effector and proliferating functions of CD8 T cells in abacavir-treated HIV-1 patients. Microbiol Immunol 2020; 64:210-218. [PMID: 31876322 DOI: 10.1111/1348-0421.12769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/28/2019] [Accepted: 12/16/2019] [Indexed: 01/12/2023]
Abstract
Susceptibility to abacavir hypersensitivity (ABH) in HIV-1-positive patients is strongly linked to the carriage of HLA-B*57:01 and the potential mechanism includes drug-specific activation of cytokine producing CD8 T cells exclusively in individuals carrying HLA-B*57:01. Here, we report a detailed characterization of abacavir-induced functional response of CD8 T cells in HLA-B*57:01pos individuals. Peripheral blood mononuclear cells (PBMNCs) from HLA-B*57:01pos ABHpos and HLA-B*57:01neg ABHneg individuals were stimulated with abacavir. Multicolor flow cytometry was performed to assess the cytokine (IFNγ) production and degranulation (CD107a expression) after 6-18 hr culture and to enumerate proliferating CD4/CD8 T cells by culturing carboxyfluorescein diacetate succinimidyl ester-loaded PBMNCs for 7 days. CD8 T cells from HLA-B*57:01pos ABHpos individuals were multifunctional: proliferating, IFNγ producing, degranulating (CD107apos ), and both degranulating and IFNγ producing (CD107apos IFNγpos ). Degranulating CD8 T cells in general and both degranulating and IFNγ producing CD8 T cells in particular dominated abacavir-specific immune response. All functional responses were partially blocked by addition of HLA-B*57:01-reactive Bw4 mAb, but not by non-HLA-B*57:01-reactive Bw6 mAb. In conclusion, the study demonstrates that abacavir-specific CD8 T-cell-restricted immune response in HLA-B*57:01pos ABHpos HIV-1 patients has multiple effector and proliferating functions, where the primary effector response appears to be the release of cytolytic granules. The findings have implications for immunotherapy of HLA-related drug hypersensitivities.
Collapse
Affiliation(s)
- Rehan M Faridi
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada.,Division of Hematopathology, Alberta Public Laboratories, 3535 Research Road NW, Calgary, Alberta, T2L 1Y1, Canada
| | - Stuti Patel
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Poonam Dharmani-Khan
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada.,Division of Hematopathology, Alberta Public Laboratories, 3535 Research Road NW, Calgary, Alberta, T2L 1Y1, Canada
| | - John Gill
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada.,Department of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada.,Southern Alberta HIV Clinic, Sheldon M. Chumir Health Center, 1213 4 Street SW, Calgary, Alberta, T2R 0X7, Canada
| | - Noureddine Berka
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada.,Division of Hematopathology, Alberta Public Laboratories, 3535 Research Road NW, Calgary, Alberta, T2L 1Y1, Canada
| | - Faisal M Khan
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada.,Department of Paediatrics, Cumming School of Medicine, University of Calgary, 28 Oki Drive NW, Calgary, Alberta, T3B 6A8, Canada.,Division of Hematopathology, Alberta Public Laboratories, 3535 Research Road NW, Calgary, Alberta, T2L 1Y1, Canada
| |
Collapse
|
26
|
Hammond S, Thomson PJ, Ogese MO, Naisbitt DJ. T-Cell Activation by Low Molecular Weight Drugs and Factors That Influence Susceptibility to Drug Hypersensitivity. Chem Res Toxicol 2019; 33:77-94. [PMID: 31687800 DOI: 10.1021/acs.chemrestox.9b00327] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Drug hypersensitivity reactions adversely affect treatment outcome, increase the length of patients' hospitalization, and limit the prescription options available to physicians. In addition, late stage drug attrition and the withdrawal of licensed drugs cost the pharmaceutical industry billions of dollars. This significantly increases the overall cost of drug development and by extension the price of licensed drugs. Drug hypersensitivity reactions are characterized by a delayed onset, and reactions tend to be more serious upon re-exposure. The role of drug-specific T-cells in the pathogenesis of drug hypersensitivity reactions and definition of the nature of the binding interaction of drugs with HLA and T-cell receptors continues to be the focus of intensive research, primarily because susceptibility is associated with expression of one or a small number of HLA alleles. This review critically examines the mechanisms of T-cell activation by drugs. Specific examples of drugs that activate T-cells via the hapten, the pharmacological interaction with immune receptors and the altered self-peptide repertoire pathways, are discussed. Furthermore, the impacts of drug metabolism, drug-protein adduct formation, and immune regulation on the development of drug antigen-responsive T-cells are highlighted. The knowledge gained from understanding the pathways of T-cell activation and susceptibility factors for drug hypersensitivity will provide the building blocks for the development of predictive in vitro assays that will prevent or help to minimize the incidence of these reactions in clinic.
Collapse
Affiliation(s)
- Sean Hammond
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology , University of Liverpool , Liverpool L69 3GE , U.K
| | - Paul J Thomson
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology , University of Liverpool , Liverpool L69 3GE , U.K
| | - Monday O Ogese
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology , University of Liverpool , Liverpool L69 3GE , U.K
| | - Dean J Naisbitt
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology , University of Liverpool , Liverpool L69 3GE , U.K
| |
Collapse
|
27
|
Mayorga C, Montañez MI, Jurado-Escobar R, Gil-Ocaña V, Cornejo-García JA. An Update on the Immunological, Metabolic and Genetic Mechanisms in Drug Hypersensitivity Reactions. Curr Pharm Des 2019; 25:3813-3828. [PMID: 31692430 DOI: 10.2174/1381612825666191105122414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/31/2019] [Indexed: 11/22/2022]
Abstract
Drug hypersensitivity reactions (DHRs) represent a major burden on the healthcare system since their diagnostic and management are complex. As they can be influenced by individual genetic background, it is conceivable that the identification of variants in genes potentially involved could be used in genetic testing for the prevention of adverse effects during drug administration. Most genetic studies on severe DHRs have documented HLA alleles as risk factors and some mechanistic models support these associations, which try to shed light on the interaction between drugs and the immune system during lymphocyte presentation. In this sense, drugs are small molecules that behave as haptens, and currently three hypotheses try to explain how they interact with the immune system to induce DHRs: the hapten hypothesis, the direct pharmacological interaction of drugs with immune receptors hypothesis (p-i concept), and the altered self-peptide repertoire hypothesis. The interaction will depend on the nature of the drug and its reactivity, the metabolites generated and the specific HLA alleles. However, there is still a need of a better understanding of the different aspects related to the immunological mechanism, the drug determinants that are finally presented as well as the genetic factors for increasing the risk of suffering DHRs. Most available information on the predictive capacity of genetic testing refers to abacavir hypersensitivity and anticonvulsants-induced severe cutaneous reactions. Better understanding of the underlying mechanisms of DHRs will help us to identify the drugs likely to induce DHRs and to manage patients at risk.
Collapse
Affiliation(s)
- Cristobalina Mayorga
- Allergy Research Group, Instituto de Investigacion Biomedica de Malaga-IBIMA-ARADyAL. Malaga, Spain.,Allergy Unit, Hospital Regional Universitario de Málaga-ARADyAL. Málaga, Spain.,Andalusian Center for Nanomedicine and Biotechnology-BIONAND. Malaga, Spain
| | - Maria I Montañez
- Allergy Research Group, Instituto de Investigacion Biomedica de Malaga-IBIMA-ARADyAL. Malaga, Spain.,Andalusian Center for Nanomedicine and Biotechnology-BIONAND. Malaga, Spain
| | - Raquel Jurado-Escobar
- Allergy Research Group, Instituto de Investigacion Biomedica de Malaga-IBIMA-ARADyAL. Malaga, Spain.,Universidad de Málaga, Málaga, Spain
| | - Violeta Gil-Ocaña
- Andalusian Center for Nanomedicine and Biotechnology-BIONAND. Malaga, Spain.,Department of Organic Chemistry, Universidad de Málaga, ARADyAL, Málaga, Spain
| | - Jose A Cornejo-García
- Allergy Research Group, Instituto de Investigacion Biomedica de Malaga-IBIMA-ARADyAL. Malaga, Spain
| |
Collapse
|
28
|
Abstract
BACKGROUND Adverse drug reactions (ADR) are common and may present clinically and histologically in a very heterogeneous manner. The pathophysiological understanding about causal immunological and non-immunological events has developed significantly over the past years. Skin and mucosa are commonly affected and are prone for histopathological examination. Certain groups of drugs such as immune checkpoint inhibitors may cause specific adverse reactions. OBJECTIVES To provide a comprehensive overview of the complex immunological events and the most common dermatohistopathological findings of cutaneous adverse drug reactions. MATERIAL AND METHODS Review of the literature (PubMed), own study data and pictures obtained via routine diagnostics at the University of Bonn. RESULTS AND DISCUSSION Drugs may induce a wide range of skin reactions displaying a diversity of cutaneous inflammatory patterns. Histopathological clues for drug eruptions may be: eosinophils, lichenoid infiltrate and isolated keratinocytic apoptosis; a thorough medical history and correlation of clinical findings and dermatohistopathology are most important. Knowledge of typical adverse reactions to checkpoint inhibitors and their management is of great clinical interest as their use is rising steadily.
Collapse
|
29
|
Pichler WJ. Immune pathomechanism and classification of drug hypersensitivity. Allergy 2019; 74:1457-1471. [PMID: 30843233 DOI: 10.1111/all.13765] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/12/2019] [Accepted: 01/29/2019] [Indexed: 12/17/2022]
Abstract
Drug hypersensitivity reactions (DHR) are based on distinct mechanisms and are clinically heterogeneous. Taking into account that also off-target activities of drugs may lead to stimulations of immune or inflammatory cells, three forms of DHR were discriminated: the allergic-immune mechanism relies on the covalent binding of drugs/chemicals to proteins, which thereby form new antigens, to which a humoural and/or cellular immune response can develop. In IgE-mediated drug allergies, a possible tolerance mechanism to the drug during sensitization and the need of a covalent hapten-carrier link for initiation, but not for elicitation of IgE-mediated reactions is discussed. The p-i ("pharmacological interaction with immune receptor") concept represents an off-target activity of drugs with immune receptors (HLA or TCR), which can result in unorthodox, alloimmune-like stimulations of T cells. Some of these p-i stimulations occur only in carriers of certain HLA alleles and can result in clinically severe reactions. The third form of DHR ("pseudo-allergy") is represented by drug interactions with receptors or enzymes of inflammatory cells, which may lead to their direct activation or enhanced levels of inflammatory products. Specific IgE or T cells are not involved. This classification is based on the action of drugs and is clinically useful, as it can explain differences in sensitizations, unusual clinical symptoms, dependence on drug concentrations, predictability and immunological and pharmacological cross-reactivities in DHR.
Collapse
|
30
|
Song B, Aoki S, Liu C, Susukida T, Ito K. An Animal Model of Abacavir-Induced HLA-Mediated Liver Injury. Toxicol Sci 2019; 162:713-723. [PMID: 29319822 DOI: 10.1093/toxsci/kfy001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Genome-wide association studies indicate that several idiosyncratic adverse drug reactions are highly associated with specific human leukocyte antigen (HLA) alleles. For instance, abacavir, a human immunodeficiency virus reverse transcriptase inhibitor, induces multiorgan toxicity exclusively in patients carrying the HLA-B*57:01 allele. However, the underlying mechanism is unclear due to a lack of appropriate animal models. Previously, we developed HLA-B*57:01 transgenic mice and found that topical application of abacavir to the ears induced proliferation of CD8+ lymphocytes in local lymph nodes. Here, we attempted to reproduce abacavir-induced liver injury in these mice. However, oral administration of abacavir alone to HLA-B*57:01 transgenic mice did not increase levels of the liver injury marker alanine aminotransferase. Considering the importance of innate immune activation in mouse liver, we treated mice with CpG oligodeoxynucleotide, a toll-like receptor 9 agonist, plus abacavir. This resulted in a marked increase in alanine aminotransferase, pathological changes in liver, increased numbers of activated CD8+ T cells, and tissue infiltration by immune cells exclusively in HLA-B*57:01 transgenic mice. These results indicate that CpG oligodeoxynucleotide-induced inflammatory reactions and/or innate immune activation are necessary for abacavir-induced HLA-mediated liver injury characterized by infiltration of CD8+ T cells. Thus, we developed the first mouse model of HLA-mediated abacavir-induced idiosyncratic liver injury. Further investigation will show that the proposed HLA-mediated liver injury model can be applied to other combinations of drugs and HLA types, thereby improving drug development and contributing to the development of personalized medicine.
Collapse
Affiliation(s)
- Binbin Song
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan
| | - Shigeki Aoki
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan
| | - Cong Liu
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan
| | - Takeshi Susukida
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan
| | - Kousei Ito
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
31
|
|
32
|
Cardone M, Garcia K, Tilahun ME, Boyd LF, Gebreyohannes S, Yano M, Roderiquez G, Akue AD, Juengst L, Mattson E, Ananthula S, Natarajan K, Puig M, Margulies DH, Norcross MA. A transgenic mouse model for HLA-B*57:01-linked abacavir drug tolerance and reactivity. J Clin Invest 2018; 128:2819-2832. [PMID: 29782330 DOI: 10.1172/jci99321] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/20/2018] [Indexed: 01/11/2023] Open
Abstract
Adverse drug reactions (ADRs) are a major obstacle to drug development, and some of these, including hypersensitivity reactions to the HIV reverse transcriptase inhibitor abacavir (ABC), are associated with HLA alleles, particularly HLA-B*57:01. However, not all HLA-B*57:01+ patients develop ADRs, suggesting that in addition to the HLA genetic risk, other factors may influence the outcome of the response to the drug. To study HLA-linked ADRs in vivo, we generated HLA-B*57:01-Tg mice and show that, although ABC activated Tg mouse CD8+ T cells in vitro in a HLA-B*57:01-dependent manner, the drug was tolerated in vivo. In immunocompetent Tg animals, ABC induced CD8+ T cells with an anergy-like phenotype that did not lead to ADRs. In contrast, in vivo depletion of CD4+ T cells prior to ABC administration enhanced DC maturation to induce systemic ABC-reactive CD8+ T cells with an effector-like and skin-homing phenotype along with CD8+ infiltration and inflammation in drug-sensitized skin. B7 costimulatory molecule blockade prevented CD8+ T cell activation. These Tg mice provide a model for ABC tolerance and for the generation of HLA-B*57:01-restricted, ABC-reactive CD8+ T cells dependent on both HLA genetic risk and immunoregulatory host factors.
Collapse
Affiliation(s)
- Marco Cardone
- Laboratory of Immunology, Division of Biotechnology Review and Research III (DBRR III), Office of Biotechnology Products (OBP), Office of Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research (CDER), FDA, Silver Spring, Maryland, USA
| | - Karla Garcia
- Laboratory of Immunology, Division of Biotechnology Review and Research III (DBRR III), Office of Biotechnology Products (OBP), Office of Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research (CDER), FDA, Silver Spring, Maryland, USA
| | - Mulualem E Tilahun
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Lisa F Boyd
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Sintayehu Gebreyohannes
- Laboratory of Immunology, Division of Biotechnology Review and Research III (DBRR III), Office of Biotechnology Products (OBP), Office of Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research (CDER), FDA, Silver Spring, Maryland, USA
| | - Masahide Yano
- Laboratory of Immunology, Division of Biotechnology Review and Research III (DBRR III), Office of Biotechnology Products (OBP), Office of Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research (CDER), FDA, Silver Spring, Maryland, USA
| | - Gregory Roderiquez
- Laboratory of Immunology, Division of Biotechnology Review and Research III (DBRR III), Office of Biotechnology Products (OBP), Office of Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research (CDER), FDA, Silver Spring, Maryland, USA
| | - Adovi D Akue
- Division of Bacterial, Parasitic, and Allergenic Products (DBPAP), Office of Vaccines Research and Review (OVRR), Center for Biologics Evaluation and Research (CBER), US FDA, Silver Spring, Maryland, USA
| | - Leslie Juengst
- Laboratory of Immunology, Division of Biotechnology Review and Research III (DBRR III), Office of Biotechnology Products (OBP), Office of Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research (CDER), FDA, Silver Spring, Maryland, USA
| | - Elliot Mattson
- Laboratory of Immunology, Division of Biotechnology Review and Research III (DBRR III), Office of Biotechnology Products (OBP), Office of Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research (CDER), FDA, Silver Spring, Maryland, USA
| | - Suryatheja Ananthula
- Laboratory of Immunology, Division of Biotechnology Review and Research III (DBRR III), Office of Biotechnology Products (OBP), Office of Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research (CDER), FDA, Silver Spring, Maryland, USA
| | - Kannan Natarajan
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Montserrat Puig
- Laboratory of Immunology, Division of Biotechnology Review and Research III (DBRR III), Office of Biotechnology Products (OBP), Office of Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research (CDER), FDA, Silver Spring, Maryland, USA
| | - David H Margulies
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Michael A Norcross
- Laboratory of Immunology, Division of Biotechnology Review and Research III (DBRR III), Office of Biotechnology Products (OBP), Office of Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research (CDER), FDA, Silver Spring, Maryland, USA
| |
Collapse
|
33
|
Mustafa SS, Ostrov D, Yerly D. Severe Cutaneous Adverse Drug Reactions: Presentation, Risk Factors, and Management. Curr Allergy Asthma Rep 2018; 18:26. [PMID: 29574562 DOI: 10.1007/s11882-018-0778-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF STUDY Immune-mediated adverse drug reactions occur commonly in clinical practice and include mild, self-limited cutaneous eruptions, IgE-mediated hypersensitivity, and severe cutaneous adverse drug reactions (SCAR). SCARs represent an uncommon but potentially life-threatening form of delayed T cell-mediated reaction. The spectrum of illness ranges from acute generalized exanthematous pustulosis (AGEP) to drug reaction with eosinophilia with systemic symptoms (DRESS), to the most severe form of illness, Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN). RECENT FINDINGS There is emerging literature on the efficacy of cyclosporine in decreasing mortality in SJS/TEN. The purpose of our review is to discuss the typical presentations of these conditions, with a special focus on identifying the culprit medication. We review risk factors for developing SCAR, including HLA alleles strongly associated with drug hypersensitivity. We conclude by discussing current strategies for the management of these conditions.
Collapse
Affiliation(s)
- S Shahzad Mustafa
- Allergy and Clinical Immunology, Rochester Regional Health System, Rochester, NY, USA. .,University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| | - David Ostrov
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Daniel Yerly
- Department of Rheumatology, Immunology and Allergology, University Hospital and University of Bern, Bern, Switzerland
| |
Collapse
|
34
|
Sullivan A, Watkinson J, Waddington J, Park BK, Naisbitt DJ. Implications of HLA-allele associations for the study of type IV drug hypersensitivity reactions. Expert Opin Drug Metab Toxicol 2018; 14:261-274. [DOI: 10.1080/17425255.2018.1441285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- A. Sullivan
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool, England
| | - J. Watkinson
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool, England
| | - J. Waddington
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool, England
| | - B. K. Park
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool, England
| | - D. J. Naisbitt
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool, England
| |
Collapse
|
35
|
Redwood AJ, Pavlos RK, White KD, Phillips EJ. HLAs: Key regulators of T-cell-mediated drug hypersensitivity. HLA 2018; 91:3-16. [PMID: 29171940 PMCID: PMC5743596 DOI: 10.1111/tan.13183] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 11/20/2017] [Indexed: 12/17/2022]
Abstract
Adverse drug reactions (ADR) can be broadly categorised as either on-target or off-target. On-target ADRs arise as a direct consequence of the pharmacological properties of the drug and are therefore predictable and dose-dependent. On-target ADRs comprise the majority (>80%) of ADRs, relate to the drug's interaction with its known pharmacological target and are a result of a complex interplay of genetic and ecologic factors. In contrast, off-target ADRs, including immune-mediated ADRs (IM-ADRs), are due to unintended pharmacological interactions such as inadvertent ligation of host cell receptors or non-pharmacological interactions mediated through an adaptive immune response. IM-ADRs can be classified according to the primary immune cell involved and include B-cell-mediated (Gell-Coombs type I-III reactions) and T-cell-mediated (Gell-Coombs type IV or delayed hypersensitivity) reactions. IM-ADRs mediated by T cells are associated with phenotypically distinct clinical diagnoses and can vary from a mild delayed rash to a life-threatening cutaneous, systemic or organ disease, such as Stephen Johnson syndrome/toxic epidermal necrolysis, drug reaction with eosinophilia and systemic symptoms and drug-induced liver disease. T-cell-mediated ADRs are strongly linked to the carriage of particular HLA risk alleles which are in the case of abacavir hypersensitivity and HLA-B*57:01 has led to translation into the clinic as a routine screening test. In this review, we will discuss the immunogenetics and pathogenesis of IM-ADRs and how HLA associations inform both pre-drug screening strategies and mechanistic understanding.
Collapse
Affiliation(s)
- Alec J. Redwood
- Institute for Immunology & Infectious Diseases, Murdoch University, Murdoch, Western Australia 6150
| | - Rebecca K. Pavlos
- Institute for Immunology & Infectious Diseases, Murdoch University, Murdoch, Western Australia 6150
| | - Katie D. White
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Elizabeth J. Phillips
- Institute for Immunology & Infectious Diseases, Murdoch University, Murdoch, Western Australia 6150
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pharmacology, Vanderbilt University School of Medicine
| |
Collapse
|
36
|
Susukida T, Aoki S, Kogo K, Fujimori S, Song B, Liu C, Sekine S, Ito K. Evaluation of immune-mediated idiosyncratic drug toxicity using chimeric HLA transgenic mice. Arch Toxicol 2017; 92:1177-1188. [PMID: 29150704 DOI: 10.1007/s00204-017-2112-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/08/2017] [Indexed: 12/13/2022]
Abstract
Immune-mediated idiosyncratic drug toxicity (IDT) is a rare adverse drug reaction, potentially resulting in death. Although genome-wide association studies suggest that the occurrence of immune-mediated IDT is strongly associated with specific human leukocyte antigen (HLA) allotypes, these associations have not yet been prospectively demonstrated. In this study, we focused on HLA-B*57:01 and abacavir (ABC)-induced immune-mediated IDT, and constructed transgenic mice carrying chimeric HLA-B*57:01 (B*57:01-Tg) to determine if this in vivo model may be useful for evaluating immune-mediated IDT. Local lymph node assay (LLNA) results demonstrated that percentages of BrdU+, IL-2+, and IFN-γ+ in CD8+ T cells of ABC (50 mg/kg/day)-applied B*57:01-Tg mice were significantly higher than those in littermates (LMs), resulting in the infiltration of inflammatory cells into the ear. These immune responses were not observed in B*57:03-Tg mice (negative control). Furthermore, oral administration of 1% (v/v) ABC significantly increased the percentage of CD44highCD62Llow CD8+ memory T cells in lymph nodes and spleen derived from B*57:01-Tg mice, but not in those from B*57:03-Tg mice and LMs. These results suggest that B*57:01-Tg mice potentially enable the reproduction and evaluation of HLA-B*57:01 and ABC-induced immune-mediated IDT.
Collapse
Affiliation(s)
- Takeshi Susukida
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, 260-8675, Japan
| | - Shigeki Aoki
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, 260-8675, Japan
| | - Kotaro Kogo
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, 260-8675, Japan
| | - Sota Fujimori
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, 260-8675, Japan
| | - Binbin Song
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, 260-8675, Japan
| | - Cong Liu
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, 260-8675, Japan
| | - Shuichi Sekine
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, 260-8675, Japan
| | - Kousei Ito
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, 260-8675, Japan.
| |
Collapse
|
37
|
Abstract
During the past decade, major advances have been made in the accurate diagnosis of severe cutaneous adverse reactions (SCARs) to drugs, management of their manifestations, and identification of their pathogenetic mechanisms and at-risk populations. Early recognition and diagnosis of SCARs are key in the identification of culprit drugs. SCARS are potentially life threatening, and associated with various clinical patterns and morbidity during the acute stage of Stevens-Johnson syndrome and toxic epidermal necrolysis, drug reactions with eosinophilia and systemic symptoms, and acute generalised exanthematous pustulosis. Early drug withdrawal is mandatory in all SCARs. Physicians' knowledge is essential to the improvement of diagnosis and management, and in the limitation and prevention of long-term sequelae. This Seminar provides the tools to help physicians in their clinical approach and investigations of SCARs.
Collapse
Affiliation(s)
- Tu Anh Duong
- Department of Dermatology, Hôpital Henri-Mondor, AP-HP, Créteil, France; Centre de Référence des Dermatoses Bulleuses Toxiques, Créteil, France.
| | - Laurence Valeyrie-Allanore
- Department of Dermatology, Hôpital Henri-Mondor, AP-HP, Créteil, France; Centre de Référence des Dermatoses Bulleuses Toxiques, Créteil, France
| | - Pierre Wolkenstein
- Department of Dermatology, Hôpital Henri-Mondor, AP-HP, Créteil, France; Centre de Référence des Dermatoses Bulleuses Toxiques, Créteil, France; EA 7379 EpiDermE (Epidémiologie en Dermatologie et Evaluation des Thérapeutiques), Université Paris-Est Créteil Val-de-Marne, Créteil, France
| | - Olivier Chosidow
- Department of Dermatology, Hôpital Henri-Mondor, AP-HP, Créteil, France; Centre de Référence des Dermatoses Bulleuses Toxiques, Créteil, France; EA 7379 EpiDermE (Epidémiologie en Dermatologie et Evaluation des Thérapeutiques), Université Paris-Est Créteil Val-de-Marne, Créteil, France; French Satellite of the Cochrane Skin Group, Créteil, France; INSERM, Centre d'Investigation Clinique 1430, Créteil, France
| |
Collapse
|
38
|
Lacson JCA, Barnes RP, Bahrami H. Coronary Artery Disease in HIV-Infected Patients: Downside of Living Longer. Curr Atheroscler Rep 2017; 19:18. [PMID: 28265887 DOI: 10.1007/s11883-017-0651-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Introduction of combination antiretroviral therapy (ART) has increased the life expectancy of patients with HIV infection, allowing them to live longer with this chronic medical condition and consequently experiencing conditions such as cardiovascular diseases (CVDs). Several studies have investigated the increased risk of CVD in people living with HIV (PLWH). However, less is known about the exact mechanisms involved in this increased risk. Also, specific guidelines for management of CVD in PLWH have not been developed yet. In this article, we review the recent literature on the mechanisms involved in pathogenesis of CVD in PLWH, with an emphasis on coronary artery disease (CAD). RECENT FINDINGS Although initial studies suspected the increased prevalence of traditional CVD risk factors and side effects of ART to be involved in the increased CVD risk in PLWH, recent studies have uncovered the important role of chronic persistent inflammation in this increased risk. In addition, biomarkers of inflammation have been associated with both CVD events and subclinical CAD in this population. Lastly, recent studies and ongoing clinical trials have been investigating medical interventions that aim to reduce inflammation and cardiovascular events. Different mechanisms of inflammation have been examined in PLWH, including subclinical viremia, microbial translocation, and coinfection with other pathogens such as cytomegalovirus. Although inflammatory biomarkers have been consistently associated with CVD and subclinical CVD outcomes, their prognostic value is unknown. Recent and ongoing trials are exploring the benefits of anti-inflammatory drugs, statins, and antimicrobial translocation drugs on both inflammation and CVD risk among PLWH.
Collapse
Affiliation(s)
- John Charles A Lacson
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Revery P Barnes
- Department of Family Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hossein Bahrami
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA. .,Division of Cardiovascular Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, USA. .,Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA. .,Division of Cardiology, Department of Medicine, Keck School of Medicine of University of Southern California, 2020 Zonal Ave, Los Angeles, CA, 90033, USA.
| |
Collapse
|
39
|
Crux NB, Elahi S. Human Leukocyte Antigen (HLA) and Immune Regulation: How Do Classical and Non-Classical HLA Alleles Modulate Immune Response to Human Immunodeficiency Virus and Hepatitis C Virus Infections? Front Immunol 2017; 8:832. [PMID: 28769934 PMCID: PMC5513977 DOI: 10.3389/fimmu.2017.00832] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/30/2017] [Indexed: 12/13/2022] Open
Abstract
The genetic factors associated with susceptibility or resistance to viral infections are likely to involve a sophisticated array of immune response. These genetic elements may modulate other biological factors that account for significant influence on the gene expression and/or protein function in the host. Among them, the role of the major histocompatibility complex in viral pathogenesis in particular human immunodeficiency virus (HIV) and hepatitis C virus (HCV), is very well documented. We, recently, added a novel insight into the field by identifying the molecular mechanism associated with the protective role of human leukocyte antigen (HLA)-B27/B57 CD8+ T cells in the context of HIV-1 infection and why these alleles act as a double-edged sword protecting against viral infections but predisposing the host to autoimmune diseases. The focus of this review will be reexamining the role of classical and non-classical HLA alleles, including class Ia (HLA-A, -B, -C), class Ib (HLA-E, -F, -G, -H), and class II (HLA-DR, -DQ, -DM, and -DP) in immune regulation and viral pathogenesis (e.g., HIV and HCV). To our knowledge, this is the very first review of its kind to comprehensively analyze the role of these molecules in immune regulation associated with chronic viral infections.
Collapse
Affiliation(s)
- Nicole B Crux
- Faculty of Medicine and Dentistry, Department of Dentistry, University of Alberta, Edmonton, AB, Canada.,Faculty of Medicine and Dentistry, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Shokrollah Elahi
- Faculty of Medicine and Dentistry, Department of Dentistry, University of Alberta, Edmonton, AB, Canada.,Faculty of Medicine and Dentistry, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
40
|
Illing PT, Purcell AW, McCluskey J. The role of HLA genes in pharmacogenomics: unravelling HLA associated adverse drug reactions. Immunogenetics 2017; 69:617-630. [DOI: 10.1007/s00251-017-1007-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 05/29/2017] [Indexed: 12/17/2022]
|
41
|
Structural Elements Recognized by Abacavir-Induced T Cells. Int J Mol Sci 2017; 18:ijms18071464. [PMID: 28686208 PMCID: PMC5535955 DOI: 10.3390/ijms18071464] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/13/2017] [Accepted: 06/27/2017] [Indexed: 01/09/2023] Open
Abstract
Adverse drug reactions are one of the leading causes of morbidity and mortality in health care worldwide. Human leukocyte antigen (HLA) alleles have been strongly associated with drug hypersensitivities, and the causative drugs have been shown to stimulate specific T cells at the sites of autoimmune destruction. The structural elements recognized by drug-specific T cell receptors (TCRs) in vivo are poorly defined. Drug-stimulated T cells express TCRs specific for peptide/HLA complexes, but the characteristics of peptides (sequence, or endogenous or exogenous origin) presented in the context of small molecule drugs are not well studied. Using HLA-B*57:01 mediated hypersensitivity to abacavir as a model system, this study examines structural similarities of HLA presented peptides recognized by drug-specific TCRs. Using the crystal structure of HLA-B*57:01 complexed with abacavir and an immunogenic self peptide, VTTDIQVKV SPT5a 976-984, peptide side chains exhibiting flexibility and solvent exposure were identified as potential drug-specific T cell recognition motifs. Viral sequences with structural motifs similar to the immunogenic self peptide were identified. Abacavir-specific T cell clones were used to determine if virus peptides presented in the context of abacavir stimulate T cell responsiveness. An abacavir-specific T cell clone was stimulated by VTQQAQVRL, corresponding to HSV1/2 230-238, in the context of HLA-B*57:01. These data suggest the T cell polyclonal response to abacavir consists of multiple subsets, including T cells that recognize self peptide/HLA-B*57:01 complexes and crossreact with viral peptide/HLA-B*57:01 complexes due to similarity in TCR contact residues.
Collapse
|
42
|
Wu XT, Hong PW, Suolang DJ, Zhou D, Stefan H. Drug-induced hypersensitivity syndrome caused by valproic acid as a monotherapy for epilepsy: First case report in Asian population. EPILEPSY & BEHAVIOR CASE REPORTS 2017; 8:108-110. [PMID: 29204346 PMCID: PMC5707210 DOI: 10.1016/j.ebcr.2017.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/23/2017] [Accepted: 06/07/2017] [Indexed: 02/05/2023]
Abstract
Valproic acid (VPA) is a broad-spectrum antiseizure drug used for a variety of clinical conditions, such as epilepsy and mood disorders. Drug-induced hypersensitivity syndrome (DRESS) accompanied by hyponatremia, thrombocytopenia, hypoalbuminemia and elevated aminotransferase has never been reported as an adverse effect of VPA monotherapy during titration for epilepsy in Asian population. Hereby, we present the case of a 73-year-old Chinese male who suffered from DRESS and other complications two weeks after initiating VPA treatment for epilepsy. Understanding the risk associated with VPA-induced DRESS, and taking effective measures to avoid the severe side effects are necessary.
Collapse
Key Words
- AHS, acute hypersensitivity syndrome
- ASDs, antiseizure drugs
- Antiseizure drugs
- CBZ, carbamazepine
- Cutaneous adverse drug reactions
- DRESS, drug-induced hypersensitivity syndrome
- Drug-induced hypersensitivity syndrome (DRESS)
- ECG, electrocardiogram
- HLA, human leukocyte antigen
- LEV, levetiracetam
- LTG, lamotrigine
- MDH, multiple drug hypersensitivity
- PHT, phenytoin
- SCARs, severe cutaneous adverse drug reactions
- SJS/TEN, Stevens-Johnson syndrome/toxic epidermal necrolysis
- Skin rash
- VGB, vigabatrine
- VPA, valproic acid
- Valproate acid
Collapse
Affiliation(s)
- X T Wu
- Department of Neurology, West China Hospital, Sichuan University, China
| | - P W Hong
- Department of Neurology, West China Hospital, Sichuan University, China
| | - D J Suolang
- Department of Neurology, West China Hospital, Sichuan University, China
| | - D Zhou
- Department of Neurology, West China Hospital, Sichuan University, China
| | - H Stefan
- Department of Neurology - Biomagnetism, University Hospital Erlangen, Germany
| |
Collapse
|
43
|
Meng X, Al-Attar Z, Yaseen FS, Jenkins R, Earnshaw C, Whitaker P, Peckham D, French NS, Naisbitt DJ, Park BK. Definition of the Nature and Hapten Threshold of the β-Lactam Antigen Required for T Cell Activation In Vitro and in Patients. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:4217-4227. [PMID: 28438900 PMCID: PMC5444528 DOI: 10.4049/jimmunol.1700209] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/29/2017] [Indexed: 11/19/2022]
Abstract
Covalent modification of protein by drugs may disrupt self-tolerance, leading to lymphocyte activation. Until now, determination of the threshold required for this process has not been possible. Therefore, we performed quantitative mass spectrometric analyses to define the epitopes formed in tolerant and hypersensitive patients taking the β-lactam antibiotic piperacillin and the threshold required for T cell activation. A hydrolyzed piperacillin hapten was detected on four lysine residues of human serum albumin (HSA) isolated from tolerant patients. The level of modified Lys541 ranged from 2.6 to 4.8%. Analysis of plasma from hypersensitive patients revealed the same pattern and levels of modification 1-10 d after the commencement of therapy. Piperacillin-responsive skin-homing CD4+ clones expressing an array of Vβ receptors were activated in a dose-, time-, and processing-dependent manner; analysis of incubation medium revealed that 2.6% of Lys541 in HSA was modified when T cells were activated. Piperacillin-HSA conjugates that had levels and epitopes identical to those detected in patients were shown to selectively stimulate additional CD4+ clones, which expressed a more restricted Vβ repertoire. To conclude, the levels of piperacillin-HSA modification that activated T cells are equivalent to the ones formed in hypersensitive and tolerant patients, which indicates that threshold levels of drug Ag are formed in all patients. Thus, the propensity to develop hypersensitivity is dependent on other factors, such as the presence of T cells within an individual's repertoire that can be activated with the β-lactam hapten and/or an imbalance in immune regulation.
Collapse
Affiliation(s)
- Xiaoli Meng
- Medical Research Council Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool L69 3GE, United Kingdom; and
| | - Zaid Al-Attar
- Medical Research Council Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool L69 3GE, United Kingdom; and
| | - Fiazia S Yaseen
- Medical Research Council Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool L69 3GE, United Kingdom; and
| | - Rosalind Jenkins
- Medical Research Council Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool L69 3GE, United Kingdom; and
| | - Caroline Earnshaw
- Medical Research Council Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool L69 3GE, United Kingdom; and
| | - Paul Whitaker
- Regional Adult Cystic Fibrosis Unit, St James's Hospital, Leeds LS9 7TF, United Kingdom
| | - Daniel Peckham
- Regional Adult Cystic Fibrosis Unit, St James's Hospital, Leeds LS9 7TF, United Kingdom
| | - Neil S French
- Medical Research Council Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool L69 3GE, United Kingdom; and
| | - Dean J Naisbitt
- Medical Research Council Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool L69 3GE, United Kingdom; and
| | - B Kevin Park
- Medical Research Council Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool L69 3GE, United Kingdom; and
| |
Collapse
|
44
|
Vukmanović S, Sadrieh N. Skin sensitizers in cosmetics and beyond: potential multiple mechanisms of action and importance of T-cell assays for in vitro screening. Crit Rev Toxicol 2017; 47:415-432. [DOI: 10.1080/10408444.2017.1288025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Stanislav Vukmanović
- Cosmetics Division, Office of Cosmetics and Colors (OCAC), Center for Food Safety and Applied Nutrition (CFSAN), Food and Drug Administration (FDA), MD, USA
| | - Nakissa Sadrieh
- Cosmetics Division, Office of Cosmetics and Colors (OCAC), Center for Food Safety and Applied Nutrition (CFSAN), Food and Drug Administration (FDA), MD, USA
| |
Collapse
|
45
|
Pichler WJ, Srinoulprasert Y, Yun J, Hausmann O. Multiple Drug Hypersensitivity. Int Arch Allergy Immunol 2017; 172:129-138. [PMID: 28315874 PMCID: PMC5472211 DOI: 10.1159/000458725] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Multiple drug hypersensitivity (MDH) is a syndrome that develops as a consequence of massive T-cell stimulations and is characterized by long-lasting drug hypersensitivity reactions (DHR) to different drugs. The initial symptoms are mostly severe exanthems or drug rash with eosinophilia and systemic symptoms (DRESS). Subsequent symptoms due to another drug often appear in the following weeks, overlapping with the first DHR, or months to years later after resolution of the initial presentation. The second DHR includes exanthema, erythroderma, DRESS, Stevens-Johnson syndrome/toxic epidermal necrolysis (SJS/TEN), hepatitis, and agranulocytosis. The eliciting drugs can be identified by positive skin or in vitro tests. The drugs involved in starting the MDH are the same as for DRESS, and they are usually given in rather high doses. Fixed drug combination therapies like sulfamethoxazole/trimethoprim or piperacillin/tazobactam are frequently involved in MDH, and 30-40% of patients with severe DHR to combination therapy show T-cell reactions to both components. The drug-induced T-cell stimulation appears to be due to the p-i mechanism. Importantly, a permanent T-cell activation characterized by PD-1+/CD38+ expression on CD4+/CD25low T cells can be found in the circulation of patients with MDH for many years. In conclusion, MDH is a drug-elicited syndrome characterized by a long-lasting hyperresponsiveness to multiple, structurally unrelated drugs with clinically diverse symptoms.
Collapse
Affiliation(s)
- Werner J. Pichler
- Department of Immunology, ADR-AC, Bern, Siriraj Hospital, Mahidol University, NSW, Australia
| | - Yuttana Srinoulprasert
- Department of Immunology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - James Yun
- Department of Clinical Immunology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Oliver Hausmann
- Department of Immunology, ADR-AC, Bern, Siriraj Hospital, Mahidol University, NSW, Australia
- Department of Immunology, Löwenpraxis, Luzern, Switzerland, NSW, Australia
| |
Collapse
|
46
|
Abstract
While peripheral or tissue eosinophilia may certainly characterize drug eruptions, this feature is hardly pathognomonic for a medication-induced etiology. While delayed drug hypersensitivity reactions with prominent eosinophilic recruitment have been typically classified as type IVb reactions, their pathophysiology is now known to be more complex. Eosinophilic drug reactions have a diversity of presentations and may be benign and self-limited to severe and life-threatening. The extent of clinical involvement is also heterogeneous, ranging from isolated peripheral eosinophilia or single organ involvement (most often the skin and lung) to systemic disease affecting multiple organs, classically exemplified by drug-reaction with eosinophilia and systemic symptoms (DRESS). The spectrum of implicated medications in the causation of DRESS is ever expanding, and multiple factors including drug metabolites, specific HLA alleles, herpes viruses, and immune system activation have been implicated in pathogenesis. Due to this complex interplay of various factors, diagnostic workup in terms of skin and laboratory testing has not been validated. Similarly, the lack of controlled trials limits treatment options. This review also describes other localized as well as systemic manifestations of eosinophilic disease induced by various medication classes, including their individual pathophysiology, diagnosis, and management. Given the multitude of clinical patterns associated with eosinophilic drug allergy, the diagnosis can be challenging. Considerable deficits in our knowledge of these presentations remain, but the potential for severe reactions should be borne in mind in order to facilitate diagnosis and institute appropriate management.
Collapse
Affiliation(s)
- Merin Kuruvilla
- Department of Internal Medicine, Division of Allergy & Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David A Khan
- Department of Internal Medicine, Division of Allergy & Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
47
|
Pichler WJ, Hausmann O. Classification of Drug Hypersensitivity into Allergic, p-i, and Pseudo-Allergic Forms. Int Arch Allergy Immunol 2016; 171:166-179. [PMID: 27960170 DOI: 10.1159/000453265] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Drug hypersensitivity reactions (DHR) are clinically and functionally heterogeneous. Different subclassifications based on timing of symptom appearance or type of immune mechanism have been proposed. Here, we show that the mode of action of drugs leading to immune/inflammatory cell stimulation is a further decisive factor in understanding and managing DHR. Three mechanisms can be delineated: (a) some drugs have or gain the ability to bind covalently to proteins, form new antigens, and thus elicit immune reactions to hapten-carrier complexes (allergic/immune reaction); (b) a substantial part of immune-mediated DHR is due to a typical off-target activity of drugs on immune receptors like HLA and TCR (pharmacological interaction with immune receptors, p-i reactions); such p-i reactions are linked to severe DHR; and (c) symptoms of DHR can also appear if the drug stimulates or inhibits receptors or enzymes of inflammatory cells (pseudo-allergy). These three distinct ways of stimulations of immune or inflammatory cells differ substantially in clinical manifestations, time of appearance, dose dependence, predictability, and cross-reactivity, and thus need to be differentiated.
Collapse
|
48
|
Faulkner L, Gibson A, Sullivan A, Tailor A, Usui T, Alfirevic A, Pirmohamed M, Naisbitt DJ, Kevin Park B. Detection of Primary T Cell Responses to Drugs and Chemicals in HLA-Typed Volunteers: Implications for the Prediction of Drug Immunogenicity. Toxicol Sci 2016; 154:416-429. [DOI: 10.1093/toxsci/kfw177] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
49
|
Sousa-Pinto B, Correia C, Gomes L, Gil-Mata S, Araújo L, Correia O, Delgado L. HLA and Delayed Drug-Induced Hypersensitivity. Int Arch Allergy Immunol 2016; 170:163-79. [DOI: 10.1159/000448217] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Indexed: 11/19/2022] Open
|
50
|
Illing PT, Mifsud NA, Purcell AW. Allotype specific interactions of drugs and HLA molecules in hypersensitivity reactions. Curr Opin Immunol 2016; 42:31-40. [PMID: 27261882 DOI: 10.1016/j.coi.2016.05.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 12/30/2022]
Abstract
It is hypothesised that associations between adverse drug reactions and specific alleles of the human leukocyte antigens arise due to specific interactions between the human leukocyte antigen molecules and the causative drug that stimulate immune responses targeting drug exposed tissues. To date this has only been definitively demonstrated for abacavir, an antiretroviral that causes a systemic adverse drug reaction, abacavir hypersensitivity syndrome, solely in HLA-B*57:01+ individuals. Whilst this has informed the modification of abacavir to remove immunogenicity, there remains an imperative to define other interactions between drugs and specific HLA in order to understand the scope of interactions that can drive T cell mediated drug hypersensitivity. Here we review the current state of understanding of these interactions.
Collapse
Affiliation(s)
- Patricia T Illing
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Victoria, Australia.
| | - Nicole A Mifsud
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Victoria, Australia
| | - Anthony W Purcell
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Victoria, Australia
| |
Collapse
|