1
|
De Simone G, di Masi A, Tundo GR, Coletta M, Ascenzi P. Nitrite Reductase Activity of Ferrous Nitrobindins: A Comparative Study. Int J Mol Sci 2023; 24:ijms24076553. [PMID: 37047528 PMCID: PMC10094804 DOI: 10.3390/ijms24076553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Nitrobindins (Nbs) are all-β-barrel heme proteins spanning from bacteria to Homo sapiens. They inactivate reactive nitrogen species by sequestering NO, converting NO to HNO2, and promoting peroxynitrite isomerization to NO3−. Here, the nitrite reductase activity of Nb(II) from Mycobacterium tuberculosis (Mt-Nb(II)), Arabidopsis thaliana (At-Nb(II)), Danio rerio (Dr-Nb(II)), and Homo sapiens (Hs-Nb(II)) is reported. This activity is crucial for the in vivo production of NO, and thus for the regulation of blood pressure, being of the utmost importance for the blood supply to poorly oxygenated tissues, such as the eye retina. At pH 7.3 and 20.0 °C, the values of the second-order rate constants (i.e., kon) for the reduction of NO2− to NO and the concomitant formation of nitrosylated Mt-Nb(II), At-Nb(II), Dr-Nb(II), and Hs-Nb(II) (Nb(II)-NO) were 7.6 M−1 s−1, 9.3 M−1 s−1, 1.4 × 101 M−1 s−1, and 5.8 M−1 s−1, respectively. The values of kon increased linearly with decreasing pH, thus indicating that the NO2−-based conversion of Nb(II) to Nb(II)-NO requires the involvement of one proton. These results represent the first evidence for the NO2 reductase activity of Nbs(II), strongly supporting the view that Nbs are involved in NO metabolism. Interestingly, the nitrite reductase reactivity of all-β-barrel Nbs and of all-α-helical globins (e.g., myoglobin) was very similar despite the very different three-dimensional fold; however, differences between all-α-helical globins and all-β-barrel Nbs suggest that nitrite reductase activity appears to be controlled by distal steric barriers, even though a more complex regulatory mechanism can be also envisaged.
Collapse
Affiliation(s)
| | | | - Grazia R. Tundo
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università di Roma Tor Vergata, 00133 Roma, Italy
| | | | - Paolo Ascenzi
- Laboratorio Interdipartimentale di Microscopia Elettronica, Università Roma Tre, 00146 Roma, Italy
| |
Collapse
|
2
|
De Simone G, Coletta A, di Masi A, Coletta M, Ascenzi P. The Balancing of Peroxynitrite Detoxification between Ferric Heme-Proteins and CO2: The Case of Zebrafish Nitrobindin. Antioxidants (Basel) 2022; 11:antiox11101932. [PMID: 36290653 PMCID: PMC9599043 DOI: 10.3390/antiox11101932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Nitrobindins (Nbs) are all-β-barrel heme proteins and are present in prokaryotes and eukaryotes. Although their function(s) is still obscure, Nbs trap NO and inactivate peroxynitrite. Here, the kinetics of peroxynitrite scavenging by ferric Danio rerio Nb (Dr-Nb(III)) in the absence and presence of CO2 is reported. The Dr-Nb(III)-catalyzed scavenging of peroxynitrite is facilitated by a low pH, indicating that the heme protein interacts preferentially with peroxynitrous acid, leading to the formation of nitrate (~91%) and nitrite (~9%). The physiological levels of CO2 dramatically facilitate the spontaneous decay of peroxynitrite, overwhelming the scavenging activity of Dr-Nb(III). The effect of Dr-Nb(III) on the peroxynitrite-induced nitration of L-tyrosine was also investigated. Dr-Nb(III) inhibits the peroxynitrite-mediated nitration of free L-tyrosine, while, in the presence of CO2, Dr-Nb(III) does not impair nitro-L-tyrosine formation. The comparative analysis of the present results with data reported in the literature indicates that, to act as efficient peroxynitrite scavengers in vivo, i.e., in the presence of physiological levels of CO2, the ferric heme protein concentration must be higher than 10−4 M. Thus, only the circulating ferric hemoglobin levels appear to be high enough to efficiently compete with CO2/HCO3− in peroxynitrite inactivation. The present results are of the utmost importance for tissues, like the eye retina in fish, where blood circulation is critical for adaptation to diving conditions.
Collapse
Affiliation(s)
| | - Andrea Coletta
- Dipartimento di Scienze, Università Roma Tre, 00146 Roma, Italy
| | | | - Massimo Coletta
- IRCCS Fondazione Bietti, 00198 Roma, Italy
- Correspondence: (M.C.); (P.A.)
| | - Paolo Ascenzi
- Dipartimento di Scienze, Università Roma Tre, 00146 Roma, Italy
- Correspondence: (M.C.); (P.A.)
| |
Collapse
|
3
|
Ferric nitrosylated myoglobin catalyzes peroxynitrite scavenging. J Biol Inorg Chem 2020; 25:361-370. [PMID: 32172452 DOI: 10.1007/s00775-020-01767-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/13/2020] [Indexed: 01/12/2023]
Abstract
Myoglobin (Mb), generally taken as the molecular model of monomeric globular heme-proteins, is devoted: (i) to act as an intracellular oxygen reservoir, (ii) to transport oxygen from the sarcolemma to the mitochondria of vertebrate heart and red muscle cells, and (iii) to act as a scavenger of nitrogen and oxygen reactive species protecting mitochondrial respiration. Here, the first evidence of ·NO inhibition of ferric Mb- (Mb(III)) mediated detoxification of peroxynitrite is reported, at pH 7.2 and 20.0 °C. ·NO binds to Mb(III) with a simple equilibrium; the value of the second-order rate constant for Mb(III) nitrosylation (i.e., ·NOkon) is (6.8 ± 0.7) × 104 M-1 s-1 and the value of the first-order rate constant for Mb(III)-NO denitrosylation (i.e., ·NOkoff) is 3.1 ± 0.3 s-1. The calculated value of the dissociation equilibrium constant for Mb(III)-NO complex formation (i.e., ·NOkoff/·NOkon = (4.6 ± 0.7) × 10-5 M) is virtually the same as that directly measured (i.e., ·NOK = (3.8 ± 0.5) × 10-5 M). In the absence of ·NO, Mb(III) catalyzes the conversion of peroxynitrite to NO3-, the value of the second-order rate constant (i.e., Pkon) being (1.9 ± 0.2) × 104 M-1 s-1. However, in the presence of ·NO, Mb(III)-mediated detoxification of peroxynitrite is only partially inhibited, underlying the possibility that also Mb(III)-NO is able to catalyze the peroxynitrite isomerization, though with a reduced rate (Pkon* = (2.8 ± 0.3) × 103 M-1 s-1). These data expand the multiple roles of ·NO in modulating heme-protein actions, envisaging a delicate balancing between peroxynitrite and ·NO, which is modulated through the relative amount of Mb(III) and Mb(III)-NO.
Collapse
|
4
|
Tejero J, Shiva S, Gladwin MT. Sources of Vascular Nitric Oxide and Reactive Oxygen Species and Their Regulation. Physiol Rev 2019; 99:311-379. [PMID: 30379623 PMCID: PMC6442925 DOI: 10.1152/physrev.00036.2017] [Citation(s) in RCA: 305] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/30/2018] [Accepted: 05/06/2018] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a small free radical with critical signaling roles in physiology and pathophysiology. The generation of sufficient NO levels to regulate the resistance of the blood vessels and hence the maintenance of adequate blood flow is critical to the healthy performance of the vasculature. A novel paradigm indicates that classical NO synthesis by dedicated NO synthases is supplemented by nitrite reduction pathways under hypoxia. At the same time, reactive oxygen species (ROS), which include superoxide and hydrogen peroxide, are produced in the vascular system for signaling purposes, as effectors of the immune response, or as byproducts of cellular metabolism. NO and ROS can be generated by distinct enzymes or by the same enzyme through alternate reduction and oxidation processes. The latter oxidoreductase systems include NO synthases, molybdopterin enzymes, and hemoglobins, which can form superoxide by reduction of molecular oxygen or NO by reduction of inorganic nitrite. Enzymatic uncoupling, changes in oxygen tension, and the concentration of coenzymes and reductants can modulate the NO/ROS production from these oxidoreductases and determine the redox balance in health and disease. The dysregulation of the mechanisms involved in the generation of NO and ROS is an important cause of cardiovascular disease and target for therapy. In this review we will present the biology of NO and ROS in the cardiovascular system, with special emphasis on their routes of formation and regulation, as well as the therapeutic challenges and opportunities for the management of NO and ROS in cardiovascular disease.
Collapse
Affiliation(s)
- Jesús Tejero
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Sruti Shiva
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Mark T Gladwin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
5
|
De Simone G, di Masi A, Polticelli F, Ascenzi P. Human nitrobindin: the first example of an all-β-barrel ferric heme-protein that catalyzes peroxynitrite detoxification. FEBS Open Bio 2018; 8:2002-2010. [PMID: 30524950 PMCID: PMC6275384 DOI: 10.1002/2211-5463.12534] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 08/29/2018] [Accepted: 09/26/2018] [Indexed: 11/12/2022] Open
Abstract
Nitrobindins (Nbs), constituting a heme‐protein family spanning from bacteria to Homo sapiens, display an all‐β‐barrel structural organization. Human Nb has been described as a domain of the nuclear protein named THAP4, whose physiological function is still unknown. We report the first evidence of the heme‐Fe(III)‐based detoxification of peroxynitrite by the all‐β‐barrel C‐terminal Nb‐like domain of THAP4. Ferric human Nb (Nb(III)) catalyzes the conversion of peroxynitrite to NO3− and impairs the nitration of free l‐tyrosine. The rate of human Nb(III)‐mediated scavenging of peroxynitrite is similar to those of all‐α‐helical horse heart and sperm whale myoglobin and human hemoglobin, generally taken as the prototypes of all‐α‐helical heme‐proteins. The heme‐Fe(III) reactivity of all‐β‐barrel human Nb(III) and all‐α‐helical prototypical heme‐proteins possibly reflects the out‐to‐in‐plane transition of the heme‐Fe(III)‐atom preceding peroxynitrite binding. Human Nb(III) not only catalyzes the detoxification of peroxynitrite but also binds NO, possibly representing a target of reactive nitrogen species.
Collapse
Affiliation(s)
| | | | - Fabio Polticelli
- Department of Sciences Roma Tre University Italy.,National Institute of Nuclear Physics Roma Tre Section Italy
| | - Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy Roma Tre University Italy
| |
Collapse
|
6
|
Ascenzi P, Coletta M. Peroxynitrite Detoxification by Human Haptoglobin:Hemoglobin Complexes: A Comparative Study. J Phys Chem B 2018; 122:11100-11107. [DOI: 10.1021/acs.jpcb.8b05340] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Via della Vasca Navale 79, I-00146 Roma, Italy
| | - Massimo Coletta
- Department of Clinical Sciences and Translational Medicine, University of Roma “Tor Vergata”, Via Montpellier 1, I-00133 Roma, Italy
- Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Via Celso Ulpiani 27, I-70126 Bari, Italy
| |
Collapse
|
7
|
Van Stipdonk MJ, Iacovino A, Tatosian I. Influence of Background H 2O on the Collision-Induced Dissociation Products Generated from [UO 2NO 3]<sup/>. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1416-1424. [PMID: 29654536 DOI: 10.1007/s13361-018-1947-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/18/2018] [Accepted: 03/18/2018] [Indexed: 06/08/2023]
Abstract
Developing a comprehensive understanding of the reactivity of uranium-containing species remains an important goal in areas ranging from the development of nuclear fuel processing methods to studies of the migration and fate of the element in the environment. Electrospray ionization (ESI) is an effective way to generate gas-phase complexes containing uranium for subsequent studies of intrinsic structure and reactivity. Recent experiments by our group have demonstrated that the relatively low levels of residual H2O in a 2-D, linear ion trap (LIT) make it possible to examine fragmentation pathways and reactions not observed in earlier studies conducted with 3-D ion traps (Van Stipdonk et al. J. Am. Soc. Mass Spectrom. 14, 1205-1214, 2003). In the present study, we revisited the dissociation of complexes composed of uranyl nitrate cation [UVIO2(NO3)]+ coordinated by alcohol ligands (methanol and ethanol) using the 2-D LIT. With relatively low levels of background H2O, collision-induced dissociation (CID) of [UVIO2(NO3)]+ primarily creates [UO2(O2)]+ by the ejection of NO. However, CID (using He as collision gas) of [UVIO2(NO3)]+ creates [UO2(H2O)]+ and UO2+ when the 2-D LIT is used with higher levels of background H2O. Based on the results presented here, we propose that product ion spectrum in the previous experiments was the result of a two-step process: initial formation of [UVIO2(O2)]+ followed by rapid exchange of O2 for H2O by ion-molecule reaction. Our experiments illustrate the impact of residual H2O in ion trap instruments on the product ions generated by CID and provide a more accurate description of the intrinsic dissociation pathway for [UVIO2(NO3)]+. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Michael J Van Stipdonk
- Department of Chemistry, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA.
| | - Anna Iacovino
- Department of Chemistry, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA
| | - Irena Tatosian
- Department of Chemistry, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA
| |
Collapse
|
8
|
Preimesberger MR, Johnson EA, Nye DB, Lecomte JTJ. Covalent attachment of the heme to Synechococcus hemoglobin alters its reactivity toward nitric oxide. J Inorg Biochem 2017; 177:171-182. [PMID: 28968520 DOI: 10.1016/j.jinorgbio.2017.09.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 01/19/2023]
Abstract
The cyanobacterium Synechococcus sp. PCC 7002 produces a monomeric hemoglobin (GlbN) implicated in the detoxification of reactive nitrogen and oxygen species. GlbN contains a b heme, which can be modified under certain reducing conditions. The modified protein (GlbN-A) has one heme-histidine C-N linkage similar to the C-S linkage of cytochrome c. No clear functional role has been assigned to this modification. Here, optical absorbance and NMR spectroscopies were used to compare the reactivity of GlbN and GlbN-A toward nitric oxide (NO). Both forms of the protein are capable of NO dioxygenase activity and both undergo heme bleaching after multiple NO challenges. GlbN and GlbN-A bind NO in the ferric state and form diamagnetic complexes (FeIII-NO) that resist reductive nitrosylation to the paramagnetic FeII-NO forms. Dithionite reduction of FeIII-NO GlbN and GlbN-A, however, resulted in distinct outcomes. Whereas GlbN-A rapidly formed the expected FeII-NO complex, NO binding to FeII GlbN caused immediate heme loss and, remarkably, was followed by slow heme rebinding and HNO (nitrosyl hydride) production. Additionally, combining FeIII GlbN, 15N-labeled nitrite, and excess dithionite resulted in the formation of FeII-H15NO GlbN. Dithionite-mediated HNO production was also observed for the related GlbN from Synechocystis sp. PCC 6803. Although ferrous GlbN-A appeared capable of trapping preformed HNO, the histidine-heme post-translational modification extinguished the NO reduction chemistry associated with GlbN. Overall, the results suggest a role for the covalent modification in FeII GlbNs: protection from NO-mediated heme loss and prevention of HNO formation.
Collapse
Affiliation(s)
| | - Eric A Johnson
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Dillon B Nye
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Juliette T J Lecomte
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
9
|
Ascenzi P, Pesce A. Peroxynitrite scavenging by Campylobacter jejuni truncated hemoglobin P. J Biol Inorg Chem 2017; 22:1141-1150. [DOI: 10.1007/s00775-017-1490-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 08/24/2017] [Indexed: 01/01/2023]
|
10
|
The nitrite reductase activity of horse heart carboxymethylated-cytochrome c is modulated by cardiolipin. J Biol Inorg Chem 2016; 21:421-32. [DOI: 10.1007/s00775-016-1351-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/28/2016] [Indexed: 10/22/2022]
|
11
|
Pesce A, Bustamante JP, Bidon-Chanal A, Boechi L, Estrin DA, Luque FJ, Sebilo A, Guertin M, Bolognesi M, Ascenzi P, Nardini M. The N-terminal pre-A region of Mycobacterium tuberculosis 2/2HbN promotes NO-dioxygenase activity. FEBS J 2015; 283:305-22. [PMID: 26499089 DOI: 10.1111/febs.13571] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 08/09/2015] [Accepted: 08/16/2015] [Indexed: 01/24/2023]
Abstract
UNLABELLED A unique defense mechanisms by which Mycobacterium tuberculosis protects itself from nitrosative stress is based on the O2 -dependent NO-dioxygenase (NOD) activity of truncated hemoglobin 2/2HbN (Mt2/2HbN). The NOD activity largely depends on the efficiency of ligand migration to the heme cavity through a two-tunnel (long and short) system; recently, it was also correlated with the presence at the Mt2/2HbN N-terminus of a short pre-A region, not conserved in most 2/2HbNs, whose deletion results in a drastic reduction of NO scavenging. In the present study, we report the crystal structure of Mt2/2HbN-ΔpreA, lacking the pre-A region, at a resolution of 1.53 Å. We show that removal of the pre-A region results in long range effects on the protein C-terminus, promoting the assembly of a stable dimer, both in the crystals and in solution. In the Mt2/2HbN-ΔpreA dimer, access of heme ligands to the short tunnel is hindered. Molecular dynamics simulations show that the long tunnel branch is the only accessible pathway for O2 -ligand migration to/from the heme, and that the gating residue Phe(62)E15 partly restricts the diameter of the tunnel. Accordingly, kinetic measurements indicate that the kon value for peroxynitrite isomerization by Mt2/2HbN-ΔpreA-Fe(III) is four-fold lower relative to the full-length protein, and that NO scavenging by Mt2/2HbN-ΔpreA-Fe(II)-O2 is reduced by 35-fold. Therefore, we speculate that Mt2/2HbN evolved to host the pre-A region as a mechanism for preventing dimerization, thus reinforcing the survival of the microorganism against the reactive nitrosative stress in macrophages. DATABASE Coordinates and structure factors have been deposited in the Protein Data Bank under accession number 5AB8.
Collapse
Affiliation(s)
| | - Juan P Bustamante
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, Argentina
| | - Axel Bidon-Chanal
- Departament de Fisicoquímica and Institut de Biomedicina (IBUB), Facultat de Farmàcia, University of Barcelona, Santa Coloma de Gramenet, Spain
| | - Leonardo Boechi
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, Argentina
| | - Darío A Estrin
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, Argentina
| | - Francisco Javier Luque
- Departament de Fisicoquímica and Institut de Biomedicina (IBUB), Facultat de Farmàcia, University of Barcelona, Santa Coloma de Gramenet, Spain
| | - Anne Sebilo
- Department of Biochemistry, Microbiology and Bioinformatics, Laval University, Quebec, Canada
| | - Michel Guertin
- Department of Biochemistry, Microbiology and Bioinformatics, Laval University, Quebec, Canada
| | - Martino Bolognesi
- Department of Biosciences, University of Milan, Italy.,CNR-IBF and CIMAINA, University of Milan, Italy
| | - Paolo Ascenzi
- Interdepartmental Laboratory of Electron Microscopy, Roma Tre University, Rome, Italy.,National Institute of Biostructures and Biosystems, Rome, Italy
| | - Marco Nardini
- Department of Biosciences, University of Milan, Italy
| |
Collapse
|
12
|
Ciaccio C, Ocaña-Calahorro F, Droghetti E, Tundo GR, Sanz-Luque E, Polticelli F, Visca P, Smulevich G, Ascenzi P, Coletta M. Functional and Spectroscopic Characterization of Chlamydomonas reinhardtii Truncated Hemoglobins. PLoS One 2015; 10:e0125005. [PMID: 25993270 PMCID: PMC4439042 DOI: 10.1371/journal.pone.0125005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/19/2015] [Indexed: 11/22/2022] Open
Abstract
The single-cell green alga Chlamydomonas reinhardtii harbors twelve truncated hemoglobins (Cr-TrHbs). Cr-TrHb1-1 and Cr-TrHb1-8 have been postulated to be parts of the nitrogen assimilation pathway, and of a NO-dependent signaling pathway, respectively. Here, spectroscopic and reactivity properties of Cr-TrHb1-1, Cr-TrHb1-2, and Cr-TrHb1-4, all belonging to clsss 1 (previously known as group N or group I), are reported. The ferric form of Cr-TrHb1-1, Cr-TrHb1-2, and Cr-TrHb1-4 displays a stable 6cLS heme-Fe atom, whereas the hexa-coordination of the ferrous derivative appears less strongly stabilized. Accordingly, kinetics of azide binding to ferric Cr-TrHb1-1, Cr-TrHb1-2, and Cr-TrHb1-4 are independent of the ligand concentration. Conversely, kinetics of CO or NO2− binding to ferrous Cr-TrHb1-1, Cr-TrHb1-2, and Cr-TrHb1-4 are ligand-dependent at low CO or NO2− concentrations, tending to level off at high ligand concentrations, suggesting the presence of a rate-limiting step. In agreement with the different heme-Fe environments, the pH-dependent kinetics for CO and NO2−binding to ferrous Cr-TrHb1-1, Cr-TrHb1-2, and Cr-TrHb1-4 are characterized by different ligand-linked protonation events. This raises the question of whether the simultaneous presence in C. reinhardtii of multiple TrHb1s may be related to different regulatory roles.
Collapse
Affiliation(s)
- Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Roma, Italy
- Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Bari, Italy
| | - Francisco Ocaña-Calahorro
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Córdoba, Cordoba, Spain
| | - Enrica Droghetti
- Department of Chemistry “Ugo Schiff”, University of Firenze, Sesto Fiorentino (FI), Italy
| | - Grazia R. Tundo
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Roma, Italy
- Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Bari, Italy
| | - Emanuel Sanz-Luque
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Córdoba, Cordoba, Spain
| | - Fabio Polticelli
- Department of Sciences, Roma Tre University, Roma, Italy
- National Institute of Nuclear Physics, Roma Tre University Section, Roma, Italy
| | - Paolo Visca
- Department of Sciences, Roma Tre University, Roma, Italy
| | - Giulietta Smulevich
- Department of Chemistry “Ugo Schiff”, University of Firenze, Sesto Fiorentino (FI), Italy
| | - Paolo Ascenzi
- Interdepartmental Laboratory of Electron Microscopy, Roma Tre University, Roma, Italy
| | - Massimo Coletta
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Roma, Italy
- Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Bari, Italy
- * E-mail:
| |
Collapse
|
13
|
Ascenzi P, Leboffe L, Santucci R, Coletta M. Ferric microperoxidase-11 catalyzes peroxynitrite isomerization. J Inorg Biochem 2015; 144:56-61. [DOI: 10.1016/j.jinorgbio.2014.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/10/2014] [Accepted: 12/10/2014] [Indexed: 11/24/2022]
|