1
|
Buchmann K. Seals, fish, humans and parasites in the Baltic: ecology, evolution and history. Folia Parasitol (Praha) 2023; 70. [PMID: 37265200 DOI: 10.14411/fp.2023.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/31/2023] [Indexed: 06/03/2023]
Abstract
Evolutionary and ecological processes affecting the interactions between hosts and parasites in the aquatic environment are at display in the Baltic Sea, a young and ecologically unstable marine ecosystem, where fluctuating abiotic and biotic factors affect the parasitofauna in fish. The dynamic infections of Baltic cod, a subpopulation of the Atlantic cod (Gadus morhua Linnaeus), with third stage anisakid nematode larvae of Pseudoterranova decipiens (Krabbe, 1878) and Contracaecum osculatum (Rudolphi, 1802) have increased following a significant increase of the Baltic grey seal Halichoerus grypus (Fabricius) population in the region. Cod serves as a paratenic host and marine mammals, pinnipeds, are definitive hosts releasing parasite eggs, with faeces, to the marine environment, where embryonation and hatching of the third stage larva take place. The parasite has no obligate intermediate hosts, but various invertebrates, smaller fish and cod act as paratenic hosts transmitting the infection to the seal. Contracaecum osculatum has an impact on the physiological performance of the cod, which optimises transmission of the larva from fish to seal. Thus, a muscle mass decrease of nearly 50% may result from heavy C. osculatum infections, probably amplified by a restricted food availability. The muscle atrophy is likely to reduce the escape reactions of the fish when meeting a foraging seal. In certain regions, where fish and seals are restricted in their migration patterns, such as the semi-enclosed Baltic Sea, the predation may contribute to a severe cod stock depletion. The parasites are zoonotic and represent a human health risk, when consumers ingest insufficiently heat- or freeze-treated infected products. Marked infections of the cod were previously reported during periods with elevated seal populations (late 19th and middle 20th century) and various scenarios for management of risk factors are evaluated in an evolutionary context.
Collapse
Affiliation(s)
- Kurt Buchmann
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark
| |
Collapse
|
2
|
Schick LA, Strehse JS, Bünning TH, Maser E, Siebert U. Energetic Compounds in the Trophic Chain—A Pilot Study Examining the Exposure Risk of Common Eiders (Somateria mollissima) to TNT, Its Metabolites, and By-Products. TOXICS 2022; 10:685. [PMID: 36422895 PMCID: PMC9695780 DOI: 10.3390/toxics10110685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
The Baltic and North Seas still contain large amounts of dumped munitions from both World Wars. The exposure of the munition shells to the seawater causes corrosion, which leads to the disintegration of shells and a leakage of energetic compounds, including the highly toxic 2,4,6-trinitrotoluene (TNT), and consequently threatening the marine environment. To evaluate the risk of accumulation of energetic compounds from conventional munitions in the marine food chain, we analyzed the presence of TNT and its metabolites 2-amino-4,6-dinitrotoluene (2-ADNT) and 4-amino-2,6-dinitrotoluene (4-ADNT) as well as their byproducts 1,3-dinitrobenzene (1,3-DNB) and 2,4-dinitrotoluene (2,4-DNT) in different tissues (including muscle, liver, kidney, brain, and bile) from 25 Common Eiders (Somateria mollissima) from the Danish Baltic Sea. Tissues were prepared according to approved protocols, followed by GC-MS/MS analysis. None of the aforementioned energetic compounds were detected in any of the samples. This pilot study is one of the first analyzing the presence of explosive chemicals in tissues from a free-ranging predatory species. This study highlights the need for continuous monitoring at different levels of the trophic chain to increase our knowledge on the distribution and possible accumulation of energetic compounds in the marine environment in order to provide reliable data for decision-making tools and risk assessments.
Collapse
Affiliation(s)
- Luca Aroha Schick
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstraße 6, 25761 Büsum, Germany
| | - Jennifer Susanne Strehse
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Campus Kiel, Brunswiker Straße 10, 24105 Kiel, Germany
| | - Tobias Hartwig Bünning
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Campus Kiel, Brunswiker Straße 10, 24105 Kiel, Germany
| | - Edmund Maser
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Campus Kiel, Brunswiker Straße 10, 24105 Kiel, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstraße 6, 25761 Büsum, Germany
| |
Collapse
|
3
|
Schick LA, Wohlsein P, Rautenschlein S, Jung A, Boyi JO, Glemarec G, Kroner AM, Barth SA, Siebert U. Health Status of Bycaught Common Eiders (Somateria mollissima) from the Western Baltic Sea. Animals (Basel) 2022; 12:ani12152002. [PMID: 35953991 PMCID: PMC9367620 DOI: 10.3390/ani12152002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 01/21/2023] Open
Abstract
Simple Summary We performed post-mortem investigations of 121 Common Eiders (Somateria mollissima), which were incidentally caught in fishing gear from 2017 to 2019 in Denmark. The aim of the study was to obtain an overview of health issues and pathogens occurring in the population of these birds. The European population of the Common Eider is endangered, but the reasons for the decline of the population have not yet been determined. In times of accelerating species loss, it is important to determine factors that impact population numbers of declining species. The post-mortem investigations included biometric measurements and determination of age, sex and nutritional status, as well as parasitological, bacteriological and virological investigations. The majority of Common Eiders had a good or moderate nutritional status. Most animals were infected with intestinal parasites, and we commonly found inflammation in organs like the liver, kidneys, intestine and the oesophagus. In three animals, a pathogenic bacterium caused inflammatory lesions in several organs. We did not find signs for epizootic diseases or pathologies, which would explain the declining species numbers. Abstract The Common Eider (Somateria mollissima) inhabits the entire northern hemisphere. In northern Europe, the flyway population reaches from the southern Wadden Sea to the northern Baltic coast. The European population is classified as endangered due to declines in Common Eider numbers across Europe since 1990. In this study, we assessed 121 carcasses of Common Eiders, captured incidentally in gillnets in the Western Baltic between 2017 and 2019. The most common findings were parasitic infections of the intestine by acanthocephalans in 95 animals, which correlated with enteritis in 50% of the cases. Parasites were identified as Profilicollis botulus in 25 selected animals. Additionally, oesophageal pustules, erosions, and ulcerations, presumably of traumatic origin, were frequently observed. Nephritis and hepatitis were frequent, but could not be attributed to specific causes. Lung oedema, fractures and subcutaneous haemorrhages likely resulted from entangling and drowning. Two Common Eiders had mycobacterial infections and in one of these, Mycobacterium avium subspecies (ssp.) avium was identified. This study gives an overview of morphological changes and infectious diseases from one location of the European flyway population. It contributes to future health studies on Common Eiders in the Baltic and Wadden Seas by providing baseline information to compare with other areas or circumstances.
Collapse
Affiliation(s)
- Luca A. Schick
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstraße 6, 25761 Büsum, Germany
| | - Peter Wohlsein
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559 Hannover, Germany
| | - Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559 Hannover, Germany
| | - Arne Jung
- Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559 Hannover, Germany
| | - Joy Ometere Boyi
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstraße 6, 25761 Büsum, Germany
| | - Gildas Glemarec
- National Institute of Aquatic Resources, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Anne-Mette Kroner
- National Institute of Aquatic Resources, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Stefanie A. Barth
- Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Naumburger Str. 96a, 07743 Jena, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstraße 6, 25761 Büsum, Germany
- Correspondence: ; Tel.: +49-511-856-8158
| |
Collapse
|
4
|
Large-scale changes in marine and terrestrial environments drive the population dynamics of long-tailed ducks breeding in Siberia. Sci Rep 2022; 12:12355. [PMID: 35853919 PMCID: PMC9296647 DOI: 10.1038/s41598-022-16166-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 07/05/2022] [Indexed: 11/08/2022] Open
Abstract
Migratory animals experience very different environmental conditions at different times of the year, i.e., at the breeding grounds, during migration, and in winter. The long-tailed duck Clangula hyemalis breeds in the Arctic regions of the northern hemisphere and migrates to temperate climate zones, where it winters in marine environments. The breeding success of the long-tailed duck is affected by the abundances of predators and their main prey species, lemmings Lemmus sibiricus and Dicrostonyx torquatus, whose population fluctuation is subject to climate change. In the winter quarters, long-tailed ducks mainly eat the blue mussel Mytilus edulis. We examined how North-west Siberian lemming dynamics, assumed as a proxy for predation pressure, affect long-tailed duck breeding success and how nutrient availability in the Baltic Sea influences long-tailed duck population size via mussel biomass and quality. Evidence suggests that the long-tailed duck population dynamics was predator-driven on the breeding grounds and resource-driven on the wintering grounds. Nutrients from fertilizer runoff from farmland stimulate mussel stocks and quality, supporting high long-tailed duck population sizes. The applied hierarchical analysis combining several trophic levels can be used for evaluating large-scale environmental factors that affect the population dynamics and abundance of migrants from one environment to another.
Collapse
|
5
|
Møller AP, Laursen K, Izaguirre J, Marzal A. Antibacterial and anatomical defenses in an oil contaminated, vulnerable seaduck. Ecol Evol 2021; 11:12520-12528. [PMID: 34594517 PMCID: PMC8462148 DOI: 10.1002/ece3.7996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 01/29/2023] Open
Abstract
Oil spills have killed thousands of birds during the last 100 years, but nonlethal effects of oil spills on birds remain poorly studied. We measured phenotype characters in 819 eiders Somateria mollissima (279 whole birds and 540 wings) of which 13.6% were oiled. We tested the hypotheses that (a) the morphology of eiders does not change due to oil contamination; (b) the anatomy of organs reflects the physiological reaction to contamination, for example, increase in metabolic demand, increase in food intake, and counteracting toxic effects of oil; (c) large locomotion apparatus that facilitates locomotion increases the risk of getting oiled; and (d) individual eiders with a higher production of secretions from the uropygial grand were more likely to have oil on their plumage. We tested whether 19 characters differed between oiled and nonoiled individuals, showing a consistent pattern. The final model retained seven predictor variables showing relationships between eiders contaminated with oil and food consumption, flight, and diving abilities. We tested whether these effects were due to differences in body condition, liver mass, empty gizzard mass, or other characters that could have been affected by impaired flight and diving ability. There was no evidence of such negative impact of oiling on eiders. We found that significant exposure to oil was associated with increased diversity of antibacterial defense. Oiled eiders did not constitute a random sample, and superior diving ability as reflected by large foot area was at a selective disadvantage during oil spills. Thus, specific characteristics predispose eiders to oiling, with an adaptation to swimming, diving, and flying being traded against the costs of oiling. In contrast, individuals with a high degree of physiological plasticity may experience an advantage because their uropygial secretions counteract the effects of oil contamination.
Collapse
Affiliation(s)
- Anders Pape Møller
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological EngineeringCollege of Life SciencesBeijing Normal UniversityBeijingChina
- Ecologie Systématique EvolutionCNRSUniversité Paris‐SaclayOrsay CedexFrance
| | | | | | - Alfonso Marzal
- Department of ZoologyUniversity of ExtremaduraBadajozSpain
| |
Collapse
|
6
|
Morelli F, Laursen K, Svitok M, Benedetti Y, Møller AP. Eiders, nutrients and eagles: Bottom-up and top-down population dynamics in a marine bird. J Anim Ecol 2021; 90:1844-1853. [PMID: 33844857 DOI: 10.1111/1365-2656.13498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/31/2021] [Indexed: 12/01/2022]
Abstract
The main objective of this long-term study (1978-2016) was to find the underlying factors behind the declining trends of eider Somateria mollissima in the Baltic/Wadden Sea. Specifically, we aimed at quantifying the bottom-up effect of nutrients, through mussel stocks, on reproduction and abundance of eider, and the top-down effects caused by white-tailed eagle Haliaeetus albicilla predation. Bottom-up effects increase marine primary productivity with subsequent effects on food availability for a major mussel predator. Top-down effects may also regulate eider populations because during incubation female eiders are vulnerable to predation by eagles. Our structural equation modelling explained a large percentage of the variance in eider abundance. We conclude that the Baltic/Wadden Sea eider population was regulated directly by white-tailed sea eagle predation on incubating females and indirectly by the amount of nutrients in seawater affecting both mussel stocks and the breeding success of eiders, reflecting density dependence. These findings may explain the decreasing trend in the Baltic/Wadden Sea eider population during the last decades as an additive effect of top-down and bottom-up factors, and likely as an interaction between them.
Collapse
Affiliation(s)
- Federico Morelli
- Faculty of Environmental Sciences, Community Ecology & Conservation, Czech University of Life Sciences Prague, Prague 6, Czech Republic.,Institute of Biological Sciences, University of Zielona Góra, Zielona Góra, Poland
| | - Karsten Laursen
- Institute of Bioscience, Aarhus University, Grenåvej 14, Denmark
| | - Marek Svitok
- Department of Biology and General Ecology, Faculty of Ecology and Environmental Sciences, Technical University in Zvolen, Zvolen, Slovakia.,Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Yanina Benedetti
- Faculty of Environmental Sciences, Community Ecology & Conservation, Czech University of Life Sciences Prague, Prague 6, Czech Republic
| | - Anders Pape Møller
- Laboratoire d'Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Saclay, Orsay Cedex, France.,Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
7
|
McPartland M, Noori B, Garbus SE, Lierhagen S, Sonne C, Krøkje Å. Circulating trace elements: Comparison between early and late incubation in common eiders (Somateria mollissima) in the central Baltic Sea. ENVIRONMENTAL RESEARCH 2020; 191:110120. [PMID: 32841637 DOI: 10.1016/j.envres.2020.110120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/15/2020] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
We analyzed body mass and a panel of 64 trace elements in blood from incubating common eiders (Somateria mollissima) in the central Baltic Sea during the breeding seasons of 2017 (n = 27) and 2018 (n = 23). Using a non-invasive approach, the same incubating eiders nesting on Christiansø, Denmark were sampled once on day 4 and day 24 of incubation to provide a comparison between the early and late stages of incubation. Blood concentrations of chemical elements were quantified using high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS). Cadmium and lead significantly increased over the course of the incubation period while body mass, barium, calcium, cerium, cesium, iron, magnesium, manganese, molybdenum, phosphorus, selenium, strontium, sulfur, uranium, and zinc all significantly decreased. Excluding lead, all trace elements were within expected ranges. Lead blood concentrations had a 4.7-fold increase from 2017 to 2018 indicating a potential health threat. However, internal interactions between trace elements must be considered when making comparisons to toxicological thresholds. Body mass and many essential elements showed significantly higher levels in 2017 than 2018, which could be an indication of limitations in preferred food availability or harsher fasting conditions. Additional sampling years are needed to further investigate if these results reflect yearly fluctuations or decreasing health within the Christiansø eider colony. There was little overlap in element blood concentrations and body mass between days of incubation, indicating these parameters are affected by the physiological processes of reproduction and incubation. We recommend continued biomonitoring and use of complete trace element analysis for the Christiansø eiders to further understand year-to-year variations within colonies. Further investigation into the spatial ecology of the colony is also needed to provide a more robust understanding of exposure and source identification of trace elements.
Collapse
Affiliation(s)
- Molly McPartland
- Norwegian University of Science and Technology (NTNU), Department of Biology, Høgskoleringen 5, NO-7491, Trondheim, Norway
| | - Brenley Noori
- Norwegian University of Science and Technology (NTNU), Department of Biology, Høgskoleringen 5, NO-7491, Trondheim, Norway
| | - Svend-Erik Garbus
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark
| | - Syverin Lierhagen
- Norwegian University of Science and Technology (NTNU), Department of Chemistry, Høgskoleringen 5, NO-7491, Trondheim, Norway
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark; Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Åse Krøkje
- Norwegian University of Science and Technology (NTNU), Department of Biology, Høgskoleringen 5, NO-7491, Trondheim, Norway.
| |
Collapse
|
8
|
Tjørnløv RS, Ens BJ, Öst M, Jaatinen K, Karell P, Larsson R, Christensen TK, Frederiksen M. Drivers of Spatiotemporal Variation in Survival in a Flyway Population: A Multi-Colony Study. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.566154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
9
|
Ma NL, Hansen M, Roland Therkildsen O, Kjær Christensen T, Skjold Tjørnløv R, Garbus SE, Lyngs P, Peng W, Lam SS, Kirstine Havnsøe Krogh A, Andersen-Ranberg E, Søndergaard J, Rigét FF, Dietz R, Sonne C. Body mass, mercury exposure, biochemistry and untargeted metabolomics of incubating common eiders (Somateria mollissima) in three Baltic colonies. ENVIRONMENT INTERNATIONAL 2020; 142:105866. [PMID: 32590281 DOI: 10.1016/j.envint.2020.105866] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
The Baltic/Wadden Sea Flyway of common eiders has declined over the past three decades. Multiple factors such as contaminant exposure, global warming, hunting, white-tailed eagle predation, decreased agricultural eutrophication and infectious diseases have been suggested to explain the decline. We collected information on body mass, mercury (Hg) concentration, biochemistry and untargeted metabolomics of incubating birds in two colonies in the Danish Straits (Hov Røn, n = 100; Agersø, n = 29) and in one colony in the Baltic proper (Christiansø, n = 23) to look into their metabolisms and energy balance. Body mass was available from early and late incubation for Hov Røn and Christiansø, showing a significant decline (25-30%) in both colonies with late body mass at Christiansø being the lowest. Whole blood concentrations of total mercury Hg were significantly higher in birds at Christiansø in the east compared to Hov Røn in the west. All birds in the three colonies had Hg concentrations in the range of ≤1.0 μg/g ww, which indicates that the risk of effects on reproduction is in the no to low risk category for wild birds. Among the biochemical measures, glucose, fructosamine, amylase, albumin and protein decreased significantly from early to late incubation at Hov Røn and Christiansø, reflecting long-term fastening as supported by the decline in body mass. Untargeted metabolomics performed on Christiansø eiders revealed presence of 8,433 plasma metabolites. Of these, 3,179 metabolites changed significantly (log2-fold change ≥1, p ≤ 0.05) from the early to late incubation. For example, smaller peptides and vitamin B2 (riboflavin) were significantly down-regulated while 11-deoxycorticosterone and palmitoylcarnitine were significantly upregulated. These results show that cumulative stress including fasting during incubation affect the eiders' biochemical profile and energy metabolism and that this may be most pronounced for the Christiansø colony in the Baltic proper. This amplify the events of temperature increases and food web changes caused by global warming that eventually accelerate the loss in body weight. Future studies should examine the relationship between body condition, temperature and reproductive outcomes and include mapping of food web contaminant, energy and nutrient content to better understand, manage and conserve the populations.
Collapse
Affiliation(s)
- Nyuk Ling Ma
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| | - Martin Hansen
- Aarhus University, Department of Environmental Science, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| | | | | | - Rune Skjold Tjørnløv
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| | - Svend-Erik Garbus
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Peter Lyngs
- Christiansø Scientific Field Station, Christiansø 97, DK-3760 Gudhjem, Denmark
| | - Wanxi Peng
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Su Shiung Lam
- Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (AKUATROP) & Institute of Tropical Biodiversity and Sustainable Development (Bio-D Tropika), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| | - Anne Kirstine Havnsøe Krogh
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Veterinary Clinical Sciences, Dyrlægevej 16, DK-1870 Frederiksberg C, Denmark.
| | - Emilie Andersen-Ranberg
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Veterinary Clinical Sciences, Dyrlægevej 16, DK-1870 Frederiksberg C, Denmark.
| | - Jens Søndergaard
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| | - Frank F Rigét
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| | - Rune Dietz
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark; Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
10
|
McPartland M, Garbus SE, Lierhagen S, Sonne C, Krøkje Å. Lead isotopic signatures in blood from incubating common eiders (Somateria mollissima) in the central Baltic Sea. ENVIRONMENT INTERNATIONAL 2020; 142:105874. [PMID: 32585506 DOI: 10.1016/j.envint.2020.105874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
The Christiansø colony of common eiders (Somateria mollissima) in the central Baltic Sea were exposed to high levels of Pb during the 2018 breeding season that were not present in 2017. Due to these high Pb blood levels, the present study investigated possible Pb sources and Pb dynamics within this vulnerable colony. We analyzed body mass and lead isotopic ratios (Pb-IRs) in blood taken from the same incubating eiders at the early (day 4) and late (day 24) stages of incubation during the 2018 breeding season (n = 23). Pb-IRs 208/207, 208/206, 206/207, and 207/206 were analyzed using high resolution inductively coupled mass spectrometry. We found largely similar Pb-IRs from the different stages of incubation indicating a predominantly constant endogenous source of Pb exposure. We suggest the increasing Pb levels come from pre-nesting and nesting foraging and from medullary bone release. The similar Pb-IRs also indicate continued metabolization of the medullary bone to meet the nutritional and energy demands of incubation. Comparisons to Pb-IR reports from the Baltic Sea showed multiple sources of pollution distinguished by a difference between Pb-IRs in individuals with Pb blood concentrations >500 μg/kg ww and <500 μg/kg ww. The most highly contaminated individuals in the present study had Pb-IRs similar to those of Pb ammunition indicating shot pellet uptake. This study further emphasizes the need for continued biomonitoring of the Christiansø colony, including fecal sampling and environmental field sampling to identify the origin and extent of dietary Pb exposure on Christiansø. As a representative unit of the Baltic Flyway population; the Christiansø colony provides an important opportunity for continued investigation into Pb contamination, population dynamics, and declines.
Collapse
Affiliation(s)
- Molly McPartland
- Norwegian University of Science and Technology (NTNU), Department of Biology, Høgskoleringen 5, NO-7491 Trondheim, Norway
| | - Svend-Erik Garbus
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Syverin Lierhagen
- Norwegian University of Science and Technology (NTNU), Department of Chemistry, Høgskoleringen 5, NO-7491 Trondheim, Norway
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark; Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Åse Krøkje
- Norwegian University of Science and Technology (NTNU), Department of Biology, Høgskoleringen 5, NO-7491 Trondheim, Norway.
| |
Collapse
|
11
|
Mohamed A, Zuo S, Karami AM, Marnis H, Setyawan A, Mehrdana F, Kirkeby C, Kania P, Buchmann K. Contracaecum osculatum (sensu lato) infection of Gadus morhua in the Baltic Sea: inter- and intraspecific interactions. Int J Parasitol 2020; 50:891-898. [PMID: 32681931 DOI: 10.1016/j.ijpara.2020.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 06/10/2020] [Accepted: 06/26/2020] [Indexed: 10/23/2022]
Abstract
The subpopulation of Atlantic cod, Gadus morhua, in the eastern part of the Baltic Sea has experienced a significant increase in infections with anisakid nematode larvae of the species Contracaecum osculatum sensu lato (s.l.) since the year 2000. The life cycle of the parasite includes seals and especially the grey seal, Halichoerus grypus, as final hosts, carrying the adult nematodes in the stomach, crustaceans (copepods, amphipods) as first intermediate hosts and various fish species (clupeids, sandeel) including cod as second intermediate/paratenic hosts. Cod with a body length below 28 cm are generally non-infected but experience increasing infection levels when they switch to a piscine diet (infected intermediate/paratenic hosts). We present an overall frequency distribution analysis of worms in 166 cod (body length 30-49 cm) collected in the spawning area over the last 5 years. It shows a fit to the negative binomial distribution, a prevalence of infection of 89.8%, a mean intensity of 29.3 parasites per fish (range 1-377) and a variance/mean ratio of 59.2 (≫1), indicating overdispersion. We present measurements of the adult Contracaecum osculatum (s.l.) specimens in the seal stomach and show that the parasites reach a maximum length of 6.6 cm (females) and 5.8 cm (males). L3s in sprat have a total length from 1to 11 mm whereas the larvae in cod liver are 3-27 mm. A decreasing mean worm length associated with high worm densities in cod (number of nematodes per liver) was recorded. Possible explanations might include timing of feeding on infected intermediate/paratenic hosts, intraspecific competition (crowding) between larvae in cod and host responses (indicated by a significant antibody production in cod against C. osculatum (s.l.) antigens). A significant negative correlation between infection intensity and muscle mass of cod was found, suggesting parasite-induced down-regulation of growth factors in cod.
Collapse
Affiliation(s)
- Abdu Mohamed
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark
| | - Shaozhi Zuo
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark
| | - Asma M Karami
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark
| | - Huria Marnis
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark
| | - Agung Setyawan
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark
| | - Foojan Mehrdana
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark
| | - Carsten Kirkeby
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark
| | - Per Kania
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark
| | - Kurt Buchmann
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark.
| |
Collapse
|
12
|
Sonne C, Lakemeyer J, Desforges JP, Eulaers I, Persson S, Stokholm I, Galatius A, Gross S, Gonnsen K, Lehnert K, Andersen-Ranberg EU, Tange Olsen M, Dietz R, Siebert U. A review of pathogens in selected Baltic Sea indicator species. ENVIRONMENT INTERNATIONAL 2020; 137:105565. [PMID: 32070804 DOI: 10.1016/j.envint.2020.105565] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/04/2020] [Accepted: 02/09/2020] [Indexed: 05/21/2023]
Abstract
Here we review the state-of-the-art of pathogens in select marine and terrestrial key species of the Baltic Sea, i.e. ringed seal (Pusa hispida), harbour seal (Phoca vitulina), grey seal (Halichoerus grypus), harbour porpoise (Phocoena phocoena), common eider (Somateria mollissima), pink-footed goose (Anser brachyrhynchus) and white-tailed eagle (Haliaeetus albicilla). This review is the first to merge and present available information and baseline data for the FP7 BONUS BaltHealth project: Baltic Sea multilevel health impacts on key species of anthropogenic hazardous substances. Understanding the spread, prevalence and effects of wildlife pathogens is important for the understanding of animal and ecosystem health, ecosystem function and services, as well as human exposure to zoonotic diseases. This review summarises the occurrence of parasites, viruses and bacteria over the past six decades, including severe outbreaks of Phocine Distemper Virus (PDV), the seroprevalence of Influenza A and the recent increase in seal parasites. We show that Baltic high trophic key species are exposed to multiple bacterial, viral and parasitic diseases. Parasites, such as C. semerme and P. truncatum present in the colon and liver Baltic grey seals, respectively, and anisakid nematodes require particular monitoring due to their effects on animal health. In addition, distribution of existing viral and bacterial pathogens, along with the emergence and spread of new pathogens, need to be monitored in order to assess the health status of key Baltic species. Relevant bacteria are Streptococcus spp., Brucella spp., Erysipelothrix rhusiopathiae, Mycoplasma spp. and Leptospira interrogans; relevant viruses are influenza virus, distemper virus, pox virus and herpes virus. This is of special importance as some of the occurring pathogens are zoonotic and thus also pose a potential risk for human health. Marine mammal handlers, as well as civilians that by chance encounter marine mammals, need to be aware of this risk. It is therefore important to continue the monitoring of diseases affecting key Baltic species in order to assess their relationship to population dynamics and their potential threat to humans. These infectious agents are valuable indicators of host ecology and can act as bioindicators of distribution, migration, diet and behaviour of marine mammals and birds, as well as of climate change and changes in food web dynamics. In addition, infectious diseases are linked to pollutant exposure, overexploitation, immune suppression and subsequent inflammatory disease. Ultimately, these diseases affect the health of the entire ecosystem and, consequently, ecosystem function and services. As global warming is continuously increasing, the impact of global change on infectious disease patterns is important to monitor in Baltic key species in the future.
Collapse
Affiliation(s)
- Christian Sonne
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| | - Jan Lakemeyer
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Werftstrasse 6, 25761 Buesum, Germany.
| | - Jean-Pierre Desforges
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| | - Igor Eulaers
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| | - Sara Persson
- Department of Environmental Research and Monitoring, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden.
| | - Iben Stokholm
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Werftstrasse 6, 25761 Buesum, Germany; Evolutionary Genomics, Natural History Museum of Denmark, Department of Biology, University of Copenhagen, Øster Voldgade 5-7, DK-1350 Copenhagen K, Denmark.
| | - Anders Galatius
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| | - Stephanie Gross
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Werftstrasse 6, 25761 Buesum, Germany.
| | - Katharina Gonnsen
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Werftstrasse 6, 25761 Buesum, Germany.
| | - Kristina Lehnert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Werftstrasse 6, 25761 Buesum, Germany.
| | - Emilie U Andersen-Ranberg
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark; Department of Veterinary Clinical Sciences, University of Copenhagen, Faculty of Health, Dyrlægevej 16, 1870 Frederiksberg C, Denmark.
| | - Morten Tange Olsen
- Evolutionary Genomics, Natural History Museum of Denmark, Department of Biology, University of Copenhagen, Øster Voldgade 5-7, DK-1350 Copenhagen K, Denmark.
| | - Rune Dietz
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Werftstrasse 6, 25761 Buesum, Germany.
| |
Collapse
|
13
|
Lam SS, McPartland M, Noori B, Garbus SE, Lierhagen S, Lyngs P, Dietz R, Therkildsen OR, Christensen TK, Tjørnløv RS, Kanstrup N, Fox AD, Sørensen IH, Arzel C, Krøkje Å, Sonne C. Lead concentrations in blood from incubating common eiders (Somateria mollissima) in the Baltic Sea. ENVIRONMENT INTERNATIONAL 2020; 137:105582. [PMID: 32086081 DOI: 10.1016/j.envint.2020.105582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
Here we investigate if lead may be a contributing factor to the observed population decline in a Baltic colony of incubating eiders (Somateria mollissima). Body mass and blood samples were obtained from 50 incubating female eiders at the Baltic breeding colony on Christiansø during spring 2017 (n = 27) and 2018 (n = 23). All the females were sampled twice during early (day 4) and late (day 24) incubation. The full blood was analysed for lead to investigate if the concentrations exceeded toxic thresholds or changed over the incubation period due to remobilisation from bones and liver tissue. Body mass, hatch date and number of chicks were also analysed with respect to lead concentrations. The body mass (mean ± SD g) increased significantly in the order: day 24 in 2018 (1561 ± 154 g) < day 24 in 2017 (1618 ± 156 g) < day 4 in 2018 (2183 ± 140 g) < day 4 in 2017 (2359 ± 167 g) (all p < 0.001). The lead concentrations increased significantly in the opposite order i.e. day 4 in 2017 (41.7 ± 67.1 μg/L) < day 24 in 2017 (55.4 ± 66.8 μg/L) < day 4 in 2018 (177 ± 196 μg/L) < day 24 in 2018 (258 ± 243) (all p < 0.001). From day 4 to 24, the eider females had a 1.33-fold increase in blood lead concentrations in 2017 and a 1.46-fold increase in 2018. Three of the birds (13%) sampled in 2018 had lead concentrations that exceeded concentrations of clinical poisoning (500 μg/L) and eleven (48%) had concentrations that exceeded the threshold for subclinical poisoning (200 μg/L). In 2017, none of the birds exceeded the high toxic threshold of clinical poisoning while only one (4%) exceeded the lower threshold for subclinical poisoning. Three of the birds (6%) sampled in 2018 had lead concentrations that exceeded those of clinical poisoning while 12 birds (24%) resampled in both years exceeded the threshold for subclinical poisoning. In addition, lead concentrations and body mass on day 4 affected hatch date positively in 2018 (both p < 0.03) but not in 2017. These results show that bioavailable lead in bone and liver tissue pose a threat to the health of about 25% of the incubating eiders sampled. This is particularly critical because eiders are largely capital breeding which means that incubating eiders are in an energetically stressed state. The origin of lead in incubating eiders in the Christiansø colony is unknown and it remains an urgent priority to establish the source, prevalence and mechanism for uptake. The increase in lead from day 4 to day 24 is due to bone and liver remobilization; however, the additional lead source(s) on the breeding grounds needs to be identified. Continued investigations should determine the origin, uptake mechanisms and degree of exposure to lead for individual birds. Such research should include necropsies, x-ray, lead isotope and stable C and N isotope analyses to find the lead sources(s) in the course of the annual cycle and how it may affect the population dynamics of the Christiansø colony which reflects the ecology of the Baltic eiders being suitable for biomonitoring the overall flyway.
Collapse
Affiliation(s)
- Su Shiung Lam
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (AKUATROP) & Institute of Tropical Biodiversity and Sustainable Development (Bio-D Tropika), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Molly McPartland
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491 Trondheim, Norway
| | - Brenley Noori
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491 Trondheim, Norway
| | - Svend-Erik Garbus
- Aarhus University, Department of Bioscience, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Syverin Lierhagen
- Department of Chemistry, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491 Trondheim, Norway
| | - Peter Lyngs
- Christiansø Scientific Field Station, Christiansø 97, DK-3760 Gudhjem, Denmark
| | - Rune Dietz
- Aarhus University, Department of Bioscience, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | | | | | - Rune Skjold Tjørnløv
- Aarhus University, Department of Bioscience, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Niels Kanstrup
- Aarhus University, Department of Bioscience, Grenåvej 14, DK-8410 Rønde, Denmark
| | - Anthony D Fox
- Aarhus University, Department of Bioscience, Grenåvej 14, DK-8410 Rønde, Denmark
| | | | - Céline Arzel
- University of Turku, Vesilinnantie 5, FI-20014 Turku, Finland; Wetland Ecology Group, P.O. Box 27, University of Helsinki, FI-00014 Helsinki, Finland
| | - Åse Krøkje
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491 Trondheim, Norway
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark; Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
14
|
Tjørnløv RS, Pradel R, Choquet R, Christensen TK, Frederiksen M. Consequences of past and present harvest management in a declining flyway population of common eiders Somateria mollissima. Ecol Evol 2019; 9:12515-12530. [PMID: 31788194 PMCID: PMC6875579 DOI: 10.1002/ece3.5707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 09/02/2019] [Accepted: 09/06/2019] [Indexed: 01/20/2023] Open
Abstract
Harvested species population dynamics are shaped by the relative contribution of natural and harvest mortality. Natural mortality is usually not under management control, so managers must continuously adjust harvest rates to prevent overexploitation. Ideally, this requires regular assessment of the contribution of harvest to total mortality and how this affects population dynamics.To assess the impact of hunting mortality on the dynamics of the rapidly declining Baltic/Wadden Sea population of common eiders Somateria mollissima, we first estimated vital rates of ten study colonies over the period 1970-2015. By means of a multi-event capture-recovery model, we then used the cause of death of recovered individuals to estimate proportions of adult females that died due to hunting or other causes. Finally, we adopted a stochastic matrix population modeling approach based on simulations to investigate the effect of past and present harvest regulations on changes in flyway population size and composition.Results showed that even the complete ban on shooting females implemented in 2014 in Denmark, where most hunting takes place, was not enough to stop the population decline given current levels of natural female mortality. Despite continued hunting of males, our predictions suggest that the proportion of females will continue to decline unless natural mortality of the females is reduced.Although levels of natural mortality must decrease to halt the decline of this population, we advocate that the current hunting ban on females is maintained while further investigations of factors causing increased levels of natural mortality among females are undertaken. Synthesis and applications. At the flyway scale, continuous and accurate estimates of vital rates and the relative contribution of harvest versus other mortality causes are increasingly important as the population effect of adjusting harvest rates is most effectively evaluated within a model-based adaptive management framework.
Collapse
Affiliation(s)
| | - Roger Pradel
- CEFECNRSUniv MontpellierUniv Paul Valéry Montpellier 3EPHEIRDMontpellierFrance
| | - Rémi Choquet
- CEFECNRSUniv MontpellierUniv Paul Valéry Montpellier 3EPHEIRDMontpellierFrance
| | | | | |
Collapse
|
15
|
Garbus SE, Christensen JP, Buchmann K, Jessen TB, Lyngs P, Jacobsen ML, Garbus G, Lund E, Garbus PG, Madsen JJ, Thorup K, Sonne C. Haematology, blood biochemistry, parasites and pathology of common eider (Somateria mollisima) males during a mortality event in the Baltic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 683:559-567. [PMID: 31146061 DOI: 10.1016/j.scitotenv.2019.05.281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/18/2019] [Accepted: 05/19/2019] [Indexed: 06/09/2023]
Abstract
A mortality event at the Christiansø colony in the Baltic proper killed 115 common eiders (Somateria mollissima) in mid-May 2016. To complement previous studies of incubating females, 39 males were necropsied and from a subsample of these a biochemical and haematological profile was obtained. The birds were emaciated and cachexic having a 50% reduction in body mass. Twenty-nine eiders were diagnosed with hydropericardium, 15 had hunger edema, three birds had enteritis and a single air sac infection. All birds were infested with intestinal Polymorphus minutus and 32 of these with the intestinal Trematoda spp. Microscopic parasitic investigations identified endoparasitic trematodes of the families Bucephhalidae, Echinostomidae, Notocotyluridae and Levinsiniella. White blood cell count showed slight heterophilia and lymphopenia while the albumin:globulin ratio (0.28) indicated stress, immune supression and inflammatory reactions supported by a high heterophil:lymphocyte index (13). Declined plasma concentration of glucose, fructosamine, amylase, albumin and protein likewise indicated long-term starvation prior to mortality indicating phase III starvation (catabolism of protein). The dramatic increase in aspartate transaminase, glutamate-dehydrogenase, lactate-dehydrogenase and bile acids indicate liver disorders while dehydration, renal, heart and bone disorders was reflected in the increased uric acid, urea, phosphor and potassium values. These findings show that male eiders undergo long-term starvation and multi organ failure similar to that of incubating females previously reported from the same colony. It increases our knowledge of the physiology of starving eiders and add to our understanding of the recurrent mortality events in the colony that seems to be linked to changes in food availability being an important factor together with a warmer climate in a declining Baltic eider population. We recommend future studies to focus on food composition, migration patterns and environmental changes including parasitic infections and global warming.
Collapse
Affiliation(s)
- Svend-Erik Garbus
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark; Dyrlægehuset Randers (Randers Veterinary Hospital), Sallingvej 5, DK-8940 Randers, SV, Denmark
| | - Jens Peter Christensen
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, DK-1870 Frederiksberg C, Denmark
| | - Kurt Buchmann
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, DK-1870 Frederiksberg C, Denmark
| | - Thomas Binger Jessen
- Dyrlægehuset Randers (Randers Veterinary Hospital), Sallingvej 5, DK-8940 Randers, SV, Denmark
| | - Peter Lyngs
- Christiansø Scientific Field Station, Christiansø 97, DK-3760 Gudhjem, Denmark
| | - Mona Lykke Jacobsen
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Grete Garbus
- Dyrlægehuset Randers (Randers Veterinary Hospital), Sallingvej 5, DK-8940 Randers, SV, Denmark
| | - Emil Lund
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, DK-1870 Frederiksberg C, Denmark
| | - Pelle Gorm Garbus
- Aarhus University, Department of Chemistry and iNANO, Center for Materials Crystallography, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Jesper Johannes Madsen
- University of Copenhagen, Natural History Museum of Denmark, Universitetsparken 15, DK-2100 København Ø, Denmark
| | - Kasper Thorup
- University of Copenhagen, Natural History Museum of Denmark, Universitetsparken 15, DK-2100 København Ø, Denmark
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| |
Collapse
|
16
|
|
17
|
Laursen K, Balbontín J, Thorup O, Haaning Nielsen H, Asferg T, Møller AP. Multiple components of environmental change drive populations of breeding waders in seminatural grasslands. Ecol Evol 2018; 8:10489-10496. [PMID: 30464821 PMCID: PMC6238131 DOI: 10.1002/ece3.4514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 02/24/2018] [Accepted: 03/24/2018] [Indexed: 12/04/2022] Open
Abstract
Environments are rapidly changing due to climate change, land use, intensive agriculture, and the impact of hunting on predator populations. Here, we analyzed long-term data recorded during 1928-2014 on the size of breeding populations of waders at two large nature reserves in Denmark, Vejlerne and Tipperne, to determine the effects of components of environmental change on breeding populations of waders. Environmental variables and counts of waders were temporally autocorrelated, and we used generalized least square (GLS) by incorporating the first-order autoregressive correlation structure in the analyses. We attempted to predict the abundance of waders for short-term trends for two nature reserves (35 years) and for long-term trends for one nature reserve (86 years), using precipitation, temperature, nutrients, abundance of foxes Vulpes vulpes, area grazed, and number of cattle. There was evidence of impacts of nutrients, climate (long-term changes in temperature and precipitation), grazing, mowing, and predation on bird populations. We used standard random effects meta-analyses weighted by (N-3) to quantify these mean effects. There was no significant difference in effect size among species, while mean effect size differed consistently among environmental factors, and the interaction between effect size for species and environmental factors was also significant. Thus, environmental factors affected the different species differently. Mean effect size was the largest at +0.20 for rain, +0.11 for temperature, -0.09 for fox abundance, and -0.03 for number of cattle, while there was no significant mean effect for fertilizer, area grazed, and year. Effect sizes for two short-term time series from Tipperne and Vejlerne were positively correlated as were effect sizes for short-term and long-term time series at Tipperne. This implies that environmental factors had consistent effects across large temporal and spatial scales.
Collapse
Affiliation(s)
| | | | | | | | - Tommy Asferg
- Department of BioscienceAarhus UniversityRøndeDenmark
| | - Anders Pape Møller
- Ecologie Systématique EvolutionCNRSUniversité Paris‐SudAgroParisTech, Université Paris‐SaclayOrsayFrance
| |
Collapse
|
18
|
Møller AP, Thorup O, Laursen K. Predation and nutrients drive population declines in breeding waders. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2018; 28:1292-1301. [PMID: 29679425 DOI: 10.1002/eap.1729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 02/15/2018] [Accepted: 03/16/2018] [Indexed: 06/08/2023]
Abstract
Allee effects are defined as a decline in per capita fitness at low population density. We hypothesized that predation reduces population size of breeding waders and thereby the efficiency of predator deterrence, while total nitrogen through its effects on primary and secondary productivity increases population size. Therefore, nest predation could have negative consequences for population size because nest failure generally results in breeding dispersal and hence reduced local population density. To test these predictions, we recorded nest predation in five species of waders for 4,745 nests during 1987-2015 at the nature reserve Tipperne, Denmark. Predation rates were generally negatively related to conspecific and heterospecific population density, but positively related to overall population density of the entire wader community. Nest predation and population density were related to ground water level, management (grazing and mowing), and nutrients. High nest predation with a time lag of one year resulted in low overall breeding population density, while high nutrient levels resulted in higher population density. These two factors accounted for 86% of the variance in population size, presumably due to effects of nest predation on emigration, while nutrient levels increased the level of vegetation cover and the abundance of food in the surrounding brackish water. These findings are consistent with the hypothesis that predation may reduce population density through negative density dependence, while total nitrogen at adjacent shallow water may increase population size. Nest predation rates were reduced by high ground water level in March, grazing by cattle and mowing that affected access to and susceptibility of nests to predators. These effects can be managed to benefit breeding waders.
Collapse
Affiliation(s)
- Anders Pape Møller
- Ecologie Systématique Evolution, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, F-91405, Orsay Cedex, France
| | - Ole Thorup
- Amphi Consult, V. Vedsted Byvej 32, DK-6760, Ribe, Denmark
| | - Karsten Laursen
- Department of Bioscience, Aarhus University, Grenåvej 14, DK-8410, Aarhus, Denmark
| |
Collapse
|
19
|
To breed or not to breed: drivers of intermittent breeding in a seabird under increasing predation risk and male bias. Oecologia 2018; 188:129-138. [DOI: 10.1007/s00442-018-4176-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/25/2018] [Indexed: 10/14/2022]
|
20
|
Møller AP, Laursen K, Hobson KA. Retrospectively analysing condition in historical samples of birds. J Zool (1987) 2018. [DOI: 10.1111/jzo.12551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- A. P. Møller
- Ecologie Systématique Evolution Université Paris‐Sud, CNRS AgroParisTech Université Paris‐Saclay Orsay France
| | - K. Laursen
- Institute of Bioscience Aarhus University Rønde Denmark
| | - K. A. Hobson
- Environment and Climate Change Canada Saskatoon SK Canada
- University of Western Ontario London ON Canada
| |
Collapse
|
21
|
Griffiths JR, Kadin M, Nascimento FJA, Tamelander T, Törnroos A, Bonaglia S, Bonsdorff E, Brüchert V, Gårdmark A, Järnström M, Kotta J, Lindegren M, Nordström MC, Norkko A, Olsson J, Weigel B, Žydelis R, Blenckner T, Niiranen S, Winder M. The importance of benthic-pelagic coupling for marine ecosystem functioning in a changing world. GLOBAL CHANGE BIOLOGY 2017; 23:2179-2196. [PMID: 28132408 DOI: 10.1111/gcb.13642] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 12/22/2016] [Accepted: 01/06/2017] [Indexed: 05/12/2023]
Abstract
Benthic-pelagic coupling is manifested as the exchange of energy, mass, or nutrients between benthic and pelagic habitats. It plays a prominent role in aquatic ecosystems, and it is crucial to functions from nutrient cycling to energy transfer in food webs. Coastal and estuarine ecosystem structure and function are strongly affected by anthropogenic pressures; however, there are large gaps in our understanding of the responses of inorganic nutrient and organic matter fluxes between benthic habitats and the water column. We illustrate the varied nature of physical and biological benthic-pelagic coupling processes and their potential sensitivity to three anthropogenic pressures - climate change, nutrient loading, and fishing - using the Baltic Sea as a case study and summarize current knowledge on the exchange of inorganic nutrients and organic material between habitats. Traditionally measured benthic-pelagic coupling processes (e.g., nutrient exchange and sedimentation of organic material) are to some extent quantifiable, but the magnitude and variability of biological processes are rarely assessed, preventing quantitative comparisons. Changing oxygen conditions will continue to have widespread effects on the processes that govern inorganic and organic matter exchange among habitats while climate change and nutrient load reductions may have large effects on organic matter sedimentation. Many biological processes (predation, bioturbation) are expected to be sensitive to anthropogenic drivers, but the outcomes for ecosystem function are largely unknown. We emphasize how improved empirical and experimental understanding of benthic-pelagic coupling processes and their variability are necessary to inform models that can quantify the feedbacks among processes and ecosystem responses to a changing world.
Collapse
Affiliation(s)
- Jennifer R Griffiths
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691, Stockholm, Sweden
| | - Martina Kadin
- Stockholm Resilience Centre, Stockholm University, 10691, Stockholm, Sweden
| | - Francisco J A Nascimento
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691, Stockholm, Sweden
| | - Tobias Tamelander
- Tvärminne Zoological Station, University of Helsinki, J.A. Palméns väg 260, 10900, Hangö, Finland
| | - Anna Törnroos
- Environmental and Marine Biology, Åbo Akademi University, FI-20500, Turku, Finland
- Centre for Ocean Life, National Institute of Aquatic Resources, Technical University of Denmark, Kavalergården 6, 2920, Charlottenlund, Denmark
| | - Stefano Bonaglia
- Department of Geological Sciences, Stockholm University, 10691, Stockholm, Sweden
- Department of Geology, Lund University, 22362, Lund, Sweden
| | - Erik Bonsdorff
- Environmental and Marine Biology, Åbo Akademi University, FI-20500, Turku, Finland
| | - Volker Brüchert
- Department of Geological Sciences, Stockholm University, 10691, Stockholm, Sweden
| | - Anna Gårdmark
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Skolgatan 6, 74242, Öregrund, Sweden
| | - Marie Järnström
- Environmental and Marine Biology, Åbo Akademi University, FI-20500, Turku, Finland
| | - Jonne Kotta
- Estonian Marine Institute, University of Tartu, Mäealuse 14, 12618, Tallinn, Estonia
| | - Martin Lindegren
- Centre for Ocean Life, National Institute of Aquatic Resources, Technical University of Denmark, Kavalergården 6, 2920, Charlottenlund, Denmark
| | - Marie C Nordström
- Environmental and Marine Biology, Åbo Akademi University, FI-20500, Turku, Finland
| | - Alf Norkko
- Tvärminne Zoological Station, University of Helsinki, J.A. Palméns väg 260, 10900, Hangö, Finland
- Baltic Sea Centre, Stockholm University, Stockholm, 106 91, Sweden
| | - Jens Olsson
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Skolgatan 6, 74242, Öregrund, Sweden
| | - Benjamin Weigel
- Environmental and Marine Biology, Åbo Akademi University, FI-20500, Turku, Finland
| | | | - Thorsten Blenckner
- Stockholm Resilience Centre, Stockholm University, 10691, Stockholm, Sweden
| | - Susa Niiranen
- Stockholm Resilience Centre, Stockholm University, 10691, Stockholm, Sweden
| | - Monika Winder
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691, Stockholm, Sweden
| |
Collapse
|
22
|
|
23
|
Fox AD, Jónsson JE, Aarvak T, Bregnballe T, Christensen TK, Clausen KK, Clausen P, Dalby L, Holm TE, Pavón-Jordan D, Laursen K, Lehikoinen A, Lorentsen SH, Møller AP, Nordström M, Öst M, Söderquist P, Roland Therkildsen O. Current and Potential Threats to Nordic Duck Populations — A Horizon Scanning Exercise. ANN ZOOL FENN 2015. [DOI: 10.5735/086.052.0404] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Møller AP, Flensted-Jensen E, Laursen K, Mardal W. Fertilizer Leakage to the Marine Environment, Ecosystem Effects and Population Trends of Waterbirds in Denmark. Ecosystems 2014. [DOI: 10.1007/s10021-014-9810-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|