1
|
Singh A, Singh A, Saraswati SSK, Rana AK, Singh A, Verma C, Sinha V, Kalra K, Natarajan K. Suppressive effects of toll-like receptor 2, toll-like receptor 4, and toll-like receptor 7 on protective responses to Mycobacterium bovis BCG from epithelial cells. Microbes Infect 2024:105428. [PMID: 39368609 DOI: 10.1016/j.micinf.2024.105428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024]
Abstract
Mycobacteria have several mechanisms for evasion of protective responses mounted by the host. In this study, we unravel yet another mechanism that is mediated by Toll-Like Receptors TLR2, TLR4, and TLR7 in epithelial cells. We show that mycobacterial infection of epithelial cells increases the expression of TLR2, TLR4, and TLR7. Stimulation of either TLR along with mycobacterial infection results in an inhibition of oxidative burst resulting in increased survival of mycobacteria inside epithelial cells. TLR stimulation along with mycobacterial infection also inhibits activation of epithelial cells for T cell responses by differentially regulating the activation of ERK-MAPK and p38-MAPK along with inhibition of co-stimulatory molecule CD86 expression. Furthermore, stimulation of either TLR inhibits the induction of apoptosis and autophagy. Knockdown of either TLR by specific siRNAs reverses the inhibition by ROS and apoptosis by mycobacteria and results in reduced intracellular survival of mycobacteria in a MyD88-dependent manner. These results point towards a negative role for TLR2, TLR4, and TLR7 in regulating protective responses to M. bovis BCG infection in epithelial cells.
Collapse
Affiliation(s)
- Aarti Singh
- Infectious Disease Immunology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India.
| | - Akshita Singh
- Infectious Disease Immunology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | | | - Ankush Kumar Rana
- Infectious Disease Immunology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Aayushi Singh
- Infectious Disease Immunology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Chaitenya Verma
- Infectious Disease Immunology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Vishal Sinha
- Infectious Disease Immunology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Kanika Kalra
- Infectious Disease Immunology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Krishnamurthy Natarajan
- Infectious Disease Immunology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
2
|
Sinha V, Singh A, Singh A, Saraswati SSK, Rana AK, Kalra K, Natarajan K. Potassium ion channel Kir2.1 negatively regulates protective responses to Mycobacterium bovis BCG. J Leukoc Biol 2024; 116:644-656. [PMID: 38489665 DOI: 10.1093/jleuko/qiae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/22/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024] Open
Abstract
Tuberculosis caused by the pathogen Mycobacterium tuberculosis leads to increased mortality and morbidity worldwide. The prevalence of highly drug-resistant strains has reinforced the need for greater understanding of host-pathogen interactions at the cellular and molecular levels. Our previous work demonstrated critical roles of calcium ion channels in regulating protective responses to mycobacteria. In this report, we deciphered the roles of inwardly rectifying K+ ion channel Kir2.1 in epithelial cells. Data showed that infection of epithelial cells (and macrophages) increases the surface expression of Kir2.1. This increased expression of Kir2.1 results in higher intracellular mycobacterial survival, as either inhibiting or knocking down Kir2.1 results in mounting of a higher oxidative burst leading to a significant attenuation of mycobacterial survival. Further, inhibiting Kir2.1 also led to increased expression of T cell costimulatory molecules accompanied with increased activation of MAP kinases and transcription factors nuclear factor κB and phosphorylated CREB. Furthermore, inhibiting Kir2.1 induced increased autophagy and apoptosis that could also contribute to decreased bacterial survival. Interestingly, an increased association of heat shock protein 70 kDa with Kir2.1 was observed. These results showed that mycobacteria modulate the expression and function of Kir2.1 in epithelial cells to its advantage.
Collapse
Affiliation(s)
- Vishal Sinha
- Infectious Disease Immunology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, North Campus, University Enclave, Delhi 110007, India
| | - Akshita Singh
- Infectious Disease Immunology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, North Campus, University Enclave, Delhi 110007, India
| | - Aarti Singh
- Infectious Disease Immunology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, North Campus, University Enclave, Delhi 110007, India
| | - Shakuntala Surender Kumar Saraswati
- Infectious Disease Immunology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, North Campus, University Enclave, Delhi 110007, India
| | - Ankush Kumar Rana
- Infectious Disease Immunology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, North Campus, University Enclave, Delhi 110007, India
| | - Kanika Kalra
- Infectious Disease Immunology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, North Campus, University Enclave, Delhi 110007, India
| | - Krishnamurthy Natarajan
- Infectious Disease Immunology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, North Campus, University Enclave, Delhi 110007, India
| |
Collapse
|
3
|
Naik L, Patel S, Kumar A, Ghosh A, Mishra A, Das M, Nayak DK, Saha S, Mishra A, Singh R, Behura A, Dhiman R. 4-(Benzyloxy)phenol-induced p53 exhibits antimycobacterial response triggering phagosome-lysosome fusion through ROS-dependent intracellular Ca 2+ pathway in THP-1 cells. Microbiol Res 2024; 282:127664. [PMID: 38422860 DOI: 10.1016/j.micres.2024.127664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
Drug-resistant tuberculosis (TB) outbreak has emerged as a global public health crisis. Therefore, new and innovative therapeutic options like host-directed therapies (HDTs) through novel modulators are urgently required to overcome the challenges associated with TB. In the present study, we have investigated the anti-mycobacterial effect of 4-(Benzyloxy)phenol. Cell-viability assay asserted that 50 μM of 4-(Benzyloxy)phenol was not cytotoxic to phorbol 12-myristate 13-acetate (PMA) differentiated THP-1 (dTHP-1) cells. It was observed that 4-(Benzyloxy)phenol activates p53 expression by hindering its association with KDM1A. Increased ROS, intracellular Ca2+ and phagosome-lysosome fusion, were also observed upon 4-(Benzyloxy)phenol treatment. 4-(Benzyloxy)phenol mediated killing of intracellular mycobacteria was abrogated in the presence of specific inhibitors of ROS, Ca2+ and phagosome-lysosome fusion like NAC, BAPTA-AM, and W7, respectively. We further demonstrate that 4-(Benzyloxy)phenol mediated enhanced ROS production is mediated by acetylation of p53. Blocking of p53 acetylation by Pifithrin-α (PFT- α) enhanced intracellular mycobacterial growth by blocking the mycobactericidal effect of 4-(Benzyloxy)phenol. Altogether, the results showed that 4-(Benzyloxy)phenol executed its anti-mycobacterial effect by modulating p53-mediated ROS production to regulate phagosome-lysosome fusion through Ca2+ production.
Collapse
Affiliation(s)
- Lincoln Naik
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Salina Patel
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Ashish Kumar
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Abhirupa Ghosh
- Divison of Bioinformatics, Bose Institute Kolkata, West Bengal 700054, India
| | - Abtar Mishra
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Mousumi Das
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Dev Kiran Nayak
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Sudipto Saha
- Divison of Bioinformatics, Bose Institute Kolkata, West Bengal 700054, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan 342011, India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad-Gurugram Expressway, 3rd Milestone, PO Box # 4, Faridabad, Haryana 121001, India
| | - Assirbad Behura
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India.
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India.
| |
Collapse
|
4
|
Anang V, Singh A, Kumar Rana A, Saraswati SSK, Bandyopadhyay U, Verma C, Chadha A, Natarajan K. Mycobacteria modulate SUMOylation to suppresses protective responses in dendritic cells. PLoS One 2023; 18:e0283448. [PMID: 37773921 PMCID: PMC10540951 DOI: 10.1371/journal.pone.0283448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/07/2023] [Indexed: 10/01/2023] Open
Abstract
Post translational modifications (PTMs) are exploited by various pathogens in order to escape host immune responses. SUMOylation is one of the PTMs which is involved in regulation of a variety of cellular responses. However, the effects of host SUMOylation on pathogenic bacteria largely remain elusive. We, therefore, investigated the role of SUMOylation in regulating defense responses in dendritic cells (DCs) during mycobacterial infection. Dendritic Cells of female BALB/c mice and THP-1 macrophages were used. Western blotting was performed to measure the expression of level of SUMO1, pSTAT1, pp38, pERK, Beclin-1, LC3, Bax and Cytochrome C. For bacterial burden confocal microscopy and CFU (Colony Forming Unit) were used. Flow cytometry was used for ROS and co-stimulatory molecules measurement. Cytokine level were measured using ELISA. We show that stimulation of Bone Marrow Derived Dendritic Cells (BMDCs) with mycobacterial antigen Rv3416 or live infection with Mycobacterium bovis BCG increases the SUMOylation of host proteins. Inhibition of SUMOylation significantly decreased intracellular bacterial loads in DCs. Additionally, inhibiting SUMOylation, induces protective immune responses by increasing oxidative burst, pro-inflammatory cytokine expression and surface expression of T cell co-stimulatory molecules, and activation of pSTAT1 and Mitogen Activated Protein Kinases (MAPK) proteins- pp38 and pERK. SUMOylation inhibition also increased apoptosis and autophagy in BMDCs. Intriguingly, mycobacteria increased SUMOylation of many of the above molecules. Furthermore, inhibiting SUMOylation in DCs primed T cells that in turn attenuated bacterial burden in infected macrophages. These findings demonstrate that SUMOylation pathway is exploited by mycobacteria to thwart protective host immune responses.
Collapse
Affiliation(s)
- Vandana Anang
- Infectious Disease Immunology Lab, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Aayushi Singh
- Infectious Disease Immunology Lab, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Ankush Kumar Rana
- Infectious Disease Immunology Lab, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | | | - Upasana Bandyopadhyay
- Infectious Disease Immunology Lab, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Chaitenya Verma
- Infectious Disease Immunology Lab, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Attinder Chadha
- Infectious Disease Immunology Lab, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Krishnamurthy Natarajan
- Infectious Disease Immunology Lab, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| |
Collapse
|
5
|
Saraswati SSK, Rana AK, Singh A, Anang V, Singh A, Natarajan K. HSP-27 and HSP-70 negatively regulate protective defence responses from macrophages during mycobacterial infection. Microbes Infect 2023; 25:105126. [PMID: 36931492 DOI: 10.1016/j.micinf.2023.105126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/23/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
Mycobacterium tuberculosis attenuates many defence responses from alveolar macrophages to create a niche at sites of infection in the human lung. Levels of Heat Shock Proteins have been reported to increase many folds in the serum of active TB patients than in latently infected individuals. Here we investigated the regulation of key defence responses by HSPs during mycobacterial infection. We show that infection of macrophages with M. bovis BCG induces higher expression of HSP-27 and HSP-70. Inhibiting HSP-27 and HSP-70 prior to mycobacterial infection leads to a significant decrease in mycobacterial growth inside macrophages. Further, inhibiting HSPs resulted in a significant increase in intracellular oxidative burst levels. This was accompanied by an increase in the levels of T cell activation molecules CD40 and IL-12 receptor and a concomitant decrease in the levels of T cell inhibitory molecules PD-L1 and IL-10 receptor. Furthermore, inhibiting HSPs significantly increased the expression of key proteins in the autophagy pathway along with increased activation of pro-inflammatory promoting transcription factors NF-κB and p-CREB. Interestingly, we also show that both HSP-27 and HSP-70 are associated with anti-apoptotic proteins Bcl-2 and Beclin-1. These results point towards a suppressive role for host HSP-27 and HSP-70 during mycobacterial infection.
Collapse
Affiliation(s)
| | - Ankush Kumar Rana
- Infectious Disease Immunology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Aayushi Singh
- Infectious Disease Immunology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Vandana Anang
- Infectious Disease Immunology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Aarti Singh
- Infectious Disease Immunology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Krishnamurthy Natarajan
- Infectious Disease Immunology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India.
| |
Collapse
|
6
|
Verma C, Ankush KR, Anang V, Tiwari BK, Singh A, Surender Kumar Saraswati S, Shariff M, Natarajan K. Calcium Dynamics Regulate Protective Responses and Growth of Staphylococcus aureus in Macrophages. Biomol Concepts 2020; 11:230-239. [PMID: 33726488 DOI: 10.1515/bmc-2020-0021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is a gram-positive bacteria, which causes various fatal respiratory infections including pneumonia. The emergence of Methicillin-Resistance Staphylococcus aureus (MRSA) demands a thorough understanding of host-pathogen interactions. Here we report the role of calcium in regulating defence responses of S. aureus in macrophages. Regulating calcium fluxes in cells by different routes differentially governs the expression of T cell costimulatory molecule CD80 and Th1 promoting IL-12 receptor. Inhibiting calcium influx from extracellular medium increased expression of IFN-γ and IL-10 while blocking calcium release from the intracellular stores inhibited TGF-β levels. Blocking voltage-gated calcium channels (VGCC) inhibited the expression of multiple cytokines. While VGCC regulated the expression of apoptosis protein Bax, extracellular calcium-regulated the expression of Cytochrome-C. Similarly, VGCC regulated the expression of autophagy initiator Beclin-1. Blocking VGCC or calcium release from intracellular stores promoted phagosome-lysosome fusion, while activating VGCC inhibited phagosomelysosome fusion. Finally, calcium homeostasis regulated intracellular growth of Staphylococcus, although using different mechanisms. While blocking extracellular calcium influx seems to rely on IFN-γ and IL-12Rβ receptor mediated reduction in bacterial survival, blocking either intracellular calcium release or via VGCC route seem to rely on enhanced autophagy mediated reduction of intracellular bacterial survival. These results point to fine-tuning of defence responses by routes of calcium homeostasis.
Collapse
Affiliation(s)
- Chaitenya Verma
- Infectious Disease Immunology Lab, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India.,Department of Pathology, Wexner Medical Center,The Ohio State University, OH-43210, USA
| | - Kumar Rana Ankush
- Infectious Disease Immunology Lab, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Vandana Anang
- Infectious Disease Immunology Lab, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Brijendra K Tiwari
- Infectious Disease Immunology Lab, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Aayushi Singh
- Infectious Disease Immunology Lab, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | | | - Malini Shariff
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110007, India
| | - Krishnamurthy Natarajan
- Infectious Disease Immunology Lab, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| |
Collapse
|
7
|
Singh A, Anang V, Kumar Rana A, Verma C, Surender Kumar Saraswati S, Kumari P, Singh A, Natarajan K. Deciphering the role of calcium homeostasis in T cells functions during mycobacterial infection. Cell Immunol 2020; 357:104198. [DOI: 10.1016/j.cellimm.2020.104198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 01/11/2023]
|
8
|
Kak G, Tiwari BK, Singh Y, Natarajan K. Regulation of Interferon-γ receptor (IFN-γR) expression in macrophages during Mycobacterium tuberculosis infection. Biomol Concepts 2020; 11:76-85. [PMID: 32271156 DOI: 10.1515/bmc-2020-0006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 02/28/2020] [Indexed: 11/15/2022] Open
Abstract
Interferon-gamma (IFN-γ) is a key cytokine that mediates immunity to tuberculosis (TB). Mycobacterium tuberculosis (M. tb) is known to downregulate the surface expression of IFN-γ receptor (IFN-γR) on macrophages and peripheral blood mononuclear cells (PBMCs) of patients with active TB disease. Many M. tb antigens also downmodulate IFN-γR levels in macrophages when compared with healthy controls. In the current study, we aimed at deciphering key factors involved in M. tb mediated downregulation of IFN-γR levels on macrophage surface. Our data showed that both M. tb H37Rv and M. bovis BCG infections mediate downmodulation of IFN-γR on human macrophages. This downmodulation is regulated at the level of TLR signaling pathway, second messengers such as calcium and cellular kinases i.e. PKC and ERK-MAPK, indicating that fine tuning of calcium response is critical to maintaining IFN-γR levels on macrophage surface. In addition, genes in the calcium and cysteine protease pathways which were previously identified by us to play a negative role during M. tb infection, also regulated IFN-γR expression. Thus, modulations in IFN-γR levels by utilizing host machinery may be a key immune suppressive strategy adopted by the TB pathogen to ensure its persistence and thwart host defense.
Collapse
Affiliation(s)
- Gunjan Kak
- From the Infectious Disease Immunology Lab, Dr. B R Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Brijendra K Tiwari
- From the Infectious Disease Immunology Lab, Dr. B R Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Yogendra Singh
- Department of Zoology, University of Delhi, Delhi 110007, India
- Allergy and Infectious Diseases Lab, Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Mall Road, Delhi 110007, India
| | - Krishnamurthy Natarajan
- From the Infectious Disease Immunology Lab, Dr. B R Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| |
Collapse
|
9
|
Li X, Huang S, Yu T, Liang G, Liu H, Pu D, Peng N. MiR-140 modulates the inflammatory responses of Mycobacterium tuberculosis-infected macrophages by targeting TRAF6. J Cell Mol Med 2019; 23:5642-5653. [PMID: 31199066 PMCID: PMC6653720 DOI: 10.1111/jcmm.14472] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/10/2019] [Accepted: 04/30/2019] [Indexed: 12/21/2022] Open
Abstract
This study aimed to examine miR‐140 expression in clinical samples from tuberculosis (TB) patients and to explore the molecular mechanisms of miR‐140 in host‐bacterial interactions during Mycobacterium tuberculosis (M tb) infections. The miR‐140 expression and relevant mRNA expression were detected by quantitative real‐time PCR (qRT‐PCR); the protein expression levels were analysed by ELISA and western blot; M tb survival was measured by colony formation unit assay; potential interactions between miR‐140 and the 3′ untranslated region (UTR) of tumour necrosis factor receptor‐associated factor 6 (TRAF6) was confirmed by luciferase reporter assay. MiR‐140 was up‐regulated in the human peripheral blood mononuclear cells (PBMCs) from TB patients and in THP‐1 and U937 cells with M tb infection. Overexpression of miR‐140 promoted M tb survival; on the other hand, miR‐140 knockdown attenuated M tb survival. The pro‐inflammatory cytokines including interleukin 6, tumour necrosis‐α, interleukin‐1β and interferon‐γ were enhanced by M tb infection in THP‐1 and U937 cells. MiR‐140 overexpression reduced these pro‐inflammatory cytokines levels in THP‐1 and U937 cells with M tb infection; while knockdown of miR‐140 exerted the opposite actions. TRAF6 was identified to be a downstream target of miR‐140 and was negatively modulated by miR‐140. TRAF6 overexpression increased the pro‐inflammatory cytokines levels and partially restored the suppressive effects of miR‐140 overexpression on pro‐inflammatory cytokines levels in THP‐1 and U937 cells with M tb infection. In conclusion, our results implied that miR‐140 promoted M tb survival and reduced the pro‐inflammatory cytokines levels in macrophages with M tb infection partially via modulating TRAF6 expression.
Collapse
Affiliation(s)
- Xiaofei Li
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an City, China.,Department of Clinical Laboratory, The Third People's Hospital of Kunming City, Kunming, China
| | - Shan Huang
- Department of Clinical Laboratory, The Third People's Hospital of Kunming City, Kunming, China
| | - Tingting Yu
- Department of Clinical Laboratory, The Third People's Hospital of Kunming City, Kunming, China
| | - Guiliang Liang
- Department of Clinical Laboratory, The Third People's Hospital of Kunming City, Kunming, China
| | - Hongwei Liu
- Department of Clinical Laboratory, The Third People's Hospital of Kunming City, Kunming, China
| | - Dong Pu
- Department of Clinical Laboratory, The Third People's Hospital of Kunming City, Kunming, China
| | - Niancai Peng
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an City, China.,School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an City, China
| |
Collapse
|
10
|
Lam A, Karekar P, Shah K, Hariharan G, Fleyshman M, Kaur H, Singh H, Gururaja Rao S. Drosophila Voltage-Gated Calcium Channel α1-Subunits Regulate Cardiac Function in the Aging Heart. Sci Rep 2018; 8:6910. [PMID: 29720608 PMCID: PMC5932002 DOI: 10.1038/s41598-018-25195-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 04/17/2018] [Indexed: 12/20/2022] Open
Abstract
Ion channels maintain numerous physiological functions and regulate signaling pathways. They are the key targets for cellular reactive oxygen species (ROS), acting as signaling switches between ROS and ionic homeostasis. We have carried out a paraquat (PQ) screen in Drosophila to identify ion channels regulating the ROS handling and survival in Drosophila melanogaster. Our screen has revealed that α1-subunits (D-type, T-type, and cacophony) of voltage-gated calcium channels (VGCCs) handle PQ-mediated ROS stress differentially in a gender-based manner. Since ROS are also involved in determining the lifespan, we discovered that the absence of T-type and cacophony decreased the lifespan while the absence of D-type maintained a similar lifespan to that of the wild-type strain. VGCCs are also responsible for electrical signaling in cardiac cells. The cardiac function of each mutant was evaluated through optical coherence tomography (OCT), which revealed that α1-subunits of VGCCs are essential in maintaining cardiac rhythmicity and cardiac function in an age-dependent manner. Our results establish specific roles of α1-subunits of VGCCs in the functioning of the aging heart.
Collapse
Affiliation(s)
- Alexander Lam
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Priyanka Karekar
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Kajol Shah
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Girija Hariharan
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Michelle Fleyshman
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Harmehak Kaur
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Harpreet Singh
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA. .,Division of Cardiology, Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
| | - Shubha Gururaja Rao
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
| |
Collapse
|
11
|
Sharma D, Tiwari BK, Mehto S, Antony C, Kak G, Singh Y, Natarajan K. Suppression of Protective Responses upon Activation of L-Type Voltage Gated Calcium Channel in Macrophages during Mycobacterium bovis BCG Infection. PLoS One 2016; 11:e0163845. [PMID: 27723836 PMCID: PMC5056721 DOI: 10.1371/journal.pone.0163845] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/15/2016] [Indexed: 12/22/2022] Open
Abstract
The prevalence of Mycobacterium tuberculosis (M. tb) strains eliciting drug resistance has necessitated the need for understanding the complexities of host pathogen interactions. The regulation of calcium homeostasis by Voltage Gated Calcium Channel (VGCCs) upon M. tb infection has recently assumed importance in this area. We previously showed a suppressor role of VGCC during M. tb infections and recently reported the mechanisms of its regulation by M. tb. Here in this report, we further characterize the role of VGCC in mediating defence responses of macrophages during mycobacterial infection. We report that activation of VGCC during infection synergistically downmodulates the generation of oxidative burst (ROS) by macrophages. This attenuation of ROS is regulated in a manner which is dependent on Toll like Receptor (TLR) and also on the route of calcium influx, Protein Kinase C (PKC) and by Mitogen Activation Protein Kinase (MAPK) pathways. VGCC activation during infection increases cell survival and downmodulates autophagy. Concomitantly, pro-inflammatory responses such as IL-12 and IFN-γ secretion and the levels of their receptors on cell surface are inhibited. Finally, the ability of phagosomes to fuse with lysosomes in M. bovis BCG and M. tb H37Rv infected macrophages is also compromised when VGCC activation occurs during infection. The results point towards a well-orchestrated strategy adopted by mycobacteria to supress protective responses mounted by the host. This begins with the increase in the surface levels of VGCCs by mycobacteria and their antigens by well-controlled and regulated mechanisms. Subsequent activation of the upregulated VGCC following tweaking of calcium levels by molecular sensors in turn mediates suppressor responses and prepare the macrophages for long term persistent infection.
Collapse
Affiliation(s)
- Deepika Sharma
- Infectious Disease Immunology Lab, Dr. B R Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
| | - Brijendra Kumar Tiwari
- Infectious Disease Immunology Lab, Dr. B R Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
| | - Subhash Mehto
- Infectious Disease Immunology Lab, Dr. B R Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
| | - Cecil Antony
- Infectious Disease Immunology Lab, Dr. B R Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
| | - Gunjan Kak
- Infectious Disease Immunology Lab, Dr. B R Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
| | - Yogendra Singh
- Department of Zoology, University of Delhi, Delhi, India
| | - Krishnamurthy Natarajan
- Infectious Disease Immunology Lab, Dr. B R Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
| |
Collapse
|
12
|
Duda J, Pötschke C, Liss B. Converging roles of ion channels, calcium, metabolic stress, and activity pattern of Substantia nigra dopaminergic neurons in health and Parkinson's disease. J Neurochem 2016; 139 Suppl 1:156-178. [PMID: 26865375 PMCID: PMC5095868 DOI: 10.1111/jnc.13572] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/03/2016] [Accepted: 02/05/2016] [Indexed: 12/18/2022]
Abstract
Dopamine‐releasing neurons within the Substantia nigra (SN DA) are particularly vulnerable to degeneration compared to other dopaminergic neurons. The age‐dependent, progressive loss of these neurons is a pathological hallmark of Parkinson's disease (PD), as the resulting loss of striatal dopamine causes its major movement‐related symptoms. SN DA neurons release dopamine from their axonal terminals within the dorsal striatum, and also from their cell bodies and dendrites within the midbrain in a calcium‐ and activity‐dependent manner. Their intrinsically generated and metabolically challenging activity is created and modulated by the orchestrated function of different ion channels and dopamine D2‐autoreceptors. Here, we review increasing evidence that the mechanisms that control activity patterns and calcium homeostasis of SN DA neurons are not only crucial for their dopamine release within a physiological range but also modulate their mitochondrial and lysosomal activity, their metabolic stress levels, and their vulnerability to degeneration in PD. Indeed, impaired calcium homeostasis, lysosomal and mitochondrial dysfunction, and metabolic stress in SN DA neurons represent central converging trigger factors for idiopathic and familial PD. We summarize double‐edged roles of ion channels, activity patterns, calcium homeostasis, and related feedback/feed‐forward signaling mechanisms in SN DA neurons for maintaining and modulating their physiological function, but also for contributing to their vulnerability in PD‐paradigms. We focus on the emerging roles of maintained neuronal activity and calcium homeostasis within a physiological bandwidth, and its modulation by PD‐triggers, as well as on bidirectional functions of voltage‐gated L‐type calcium channels and metabolically gated ATP‐sensitive potassium (K‐ATP) channels, and their probable interplay in health and PD.
We propose that SN DA neurons possess several feedback and feed‐forward mechanisms to protect and adapt their activity‐pattern and calcium‐homeostasis within a physiological bandwidth, and that PD‐trigger factors can narrow this bandwidth. We summarize roles of ion channels in this view, and findings documenting that both, reduced as well as elevated activity and associated calcium‐levels can trigger SN DA degeneration.
This article is part of a special issue on Parkinson disease.
Collapse
Affiliation(s)
- Johanna Duda
- Department of Applied Physiology, Ulm University, Ulm, Germany
| | | | - Birgit Liss
- Department of Applied Physiology, Ulm University, Ulm, Germany.
| |
Collapse
|
13
|
Vashishta M, Khan N, Mehto S, Sehgal D, Natarajan K. Pneumococal Surface Protein A (PspA) Regulates Programmed Death Ligand 1 Expression on Dendritic Cells in a Toll-Like Receptor 2 and Calcium Dependent Manner. PLoS One 2015. [PMID: 26214513 PMCID: PMC4516265 DOI: 10.1371/journal.pone.0133601] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Pneumonia leads to high mortality in children under the age of five years worldwide, resulting in close to 20 percent of all deaths in this age group. Therefore, investigations into host-pathogen interactions during Streptococcus pneumoniae infection are key in devising strategies towards the development of better vaccines and drugs. To that end, in this study we investigated the role of S. pneumoniae and its surface antigen Pneumococcal surface protein A (PspA) in modulating the expression of co-stimulatory molecule Programmed Death Ligand 1 (PD-L1) expression on dendritic cells (DCs) and the subsequent effects of increased PD-L1 on key defence responses. Our data indicate that stimulation of DCs with PspA increases the surface expression of PD-L1 in a time and dose dependent manner. Characterization of mechanisms involved in PspA induced expression of PD-L1 indicate the involvement of Toll-Like Receptor 2 (TLR2) and calcium homeostasis. While calcium release from intracellular stores positively regulated PD-L1 expression, calcium influx from external milieu negatively regulated PD-L1 expression. Increase in PD-L1 expression, when costimulated with PspA and through TLR2 was higher than when stimulated with PspA or through TLR2. Further, knockdown of TLR2 and the intermediates in the TLR signaling machinery pointed towards the involvement of a MyD88 dependent pathway in PspA induced PD-L1 expression. Incubation of DCs with S. pneumoniae resulted in the up-regulation of PD-L1 expression, while infection with a strain lacking surface PspA failed to do so. Our data also suggests the role of PspA in ROS generation. These results suggest a novel and specific role for PspA in modulating immune responses against S. pneumoniae by regulating PD-L1 expression.
Collapse
Affiliation(s)
- Mohit Vashishta
- Infectious Disease Immunology Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
- * E-mail: (MV); (KN); (DS)
| | - Naeem Khan
- Molecular Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Subhash Mehto
- Infectious Disease Immunology Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
| | - Devinder Sehgal
- Molecular Immunology Laboratory, National Institute of Immunology, New Delhi, India
- * E-mail: (MV); (KN); (DS)
| | - Krishnamurthy Natarajan
- Infectious Disease Immunology Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
- * E-mail: (MV); (KN); (DS)
| |
Collapse
|
14
|
Chadha A, Mehto S, Selvakumar A, Vashishta M, Kamble SS, Popli S, Raman R, Singh Y, Natarajan K. Suppressive role of neddylation in dendritic cells during Mycobacterium tuberculosis infection. Tuberculosis (Edinb) 2015; 95:599-607. [PMID: 26096160 DOI: 10.1016/j.tube.2015.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 01/29/2023]
Abstract
Multiple strategies evolved by Mycobacterium tuberculosis (M. tb) have contributed to its successful prevalence. We previously identified specific genes in the cysteine protease and calcium-calmodulin pathways that regulated immune responses from dendritic cells (DCs). In this study we have characterized the role of neddylation in regulating various defense responses from DCs during mycobacterial infection. Neddylation is a process that is similar to ubiquitination. It however has its own enzyme machinery. It is coupled to ubiquitination and is important for maintaining cellular homeostasis. Here we show that stimulation of DCs with M. tb antigens Rv2463 and Rv3416 as well as infection with live M. tb modulates the expression levels of key proteins in the neddylation pathway. Further, stimulation with the two antigens promoted the association of NEDD8 with its target Cullin-1. The modulation in the expression levels of NEDD8 and SENtrin specific Protein 8 (SENP8) by the two antigens was in a calcium, MAPK and TLR dependent mechanism. Further, knockdown of specific genes of neddylation promoted the generation of oxidative burst, promoted phagolysosome fusion in mycobacteria infected DCs and induced higher expression of autophagy and apoptosis associated proteins in DCs. These results point toward a unique strategy employed by mycobacteria and its antigens towards immune suppression via modulating neddylation in DCs.
Collapse
Affiliation(s)
- Attinder Chadha
- From the Infectious Disease Immunology Lab, Dr. B R Ambedkar Centre for Biomedical Research, University of Delhi, Delhi 110007, India.
| | - Subhash Mehto
- From the Infectious Disease Immunology Lab, Dr. B R Ambedkar Centre for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Arti Selvakumar
- From the Infectious Disease Immunology Lab, Dr. B R Ambedkar Centre for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Mohit Vashishta
- From the Infectious Disease Immunology Lab, Dr. B R Ambedkar Centre for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Shashank S Kamble
- Allergy and Infectious Diseases Lab, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Sonam Popli
- Gut Biology Lab, Department of Zoology, University of Delhi, 110007, India
| | - Rajagopal Raman
- Gut Biology Lab, Department of Zoology, University of Delhi, 110007, India
| | - Yogendra Singh
- Allergy and Infectious Diseases Lab, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Krishnamurthy Natarajan
- From the Infectious Disease Immunology Lab, Dr. B R Ambedkar Centre for Biomedical Research, University of Delhi, Delhi 110007, India.
| |
Collapse
|
15
|
Antony C, Mehto S, Tiwari BK, Singh Y, Natarajan K. Regulation of L-type Voltage Gated Calcium Channel CACNA1S in Macrophages upon Mycobacterium tuberculosis Infection. PLoS One 2015; 10:e0124263. [PMID: 25915405 PMCID: PMC4411123 DOI: 10.1371/journal.pone.0124263] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 03/11/2015] [Indexed: 01/17/2023] Open
Abstract
We demonstrated earlier the inhibitory role played by Voltage Gated Calcium Channels (VGCCs) in regulating Mycobacterium tuberculosis (M. tb) survival and pathogenesis. In this report, we investigated mechanisms and key players that regulate the surface expression of VGCC-CACNA1S by Rv2463 and M. tb infection in macrophages. Our earlier work identified Rv2463 to be expressed at early times post infection in macrophages that induced suppressor responses to dendritic cells and macrophages. Our results in this study demonstrate a role of MyD88 independent TLR pathway in mediating CACNA1S expression. Dissecting the role for second messengers, we show that calcium homeostasis plays a key role in CACNA1S expression during M. tb infection. Using siRNAs against molecular sensors of calcium regulation, we show an involvement of ER associated Stromal Interaction Molecules 1 and 2 (STIM1 and STIM2), and transcription factor pCREB, towards CACNA1S expression that also involved the MyD88 independent pathway. Interestingly, reactive oxygen species played a negative role in M. tb mediated CACNA1S expression. Further, a cross-regulation of ROS and pCREB was noted that governed CACNA1S expression. Characterizing the mechanisms governing CACNA1S expression would improve our understanding of the regulation of VGCC expression and its role in M. tb pathogenesis during M. tb infection.
Collapse
Affiliation(s)
- Cecil Antony
- Infectious Disease Immunology Lab, Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, 110007, India
- * E-mail: (CA); (KN)
| | - Subhash Mehto
- Infectious Disease Immunology Lab, Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Brijendra K. Tiwari
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India
| | - Yogendra Singh
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India
| | - Krishnamurthy Natarajan
- Infectious Disease Immunology Lab, Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, 110007, India
- * E-mail: (CA); (KN)
| |
Collapse
|
16
|
Dopamine midbrain neurons in health and Parkinson’s disease: Emerging roles of voltage-gated calcium channels and ATP-sensitive potassium channels. Neuroscience 2015; 284:798-814. [DOI: 10.1016/j.neuroscience.2014.10.037] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/20/2014] [Accepted: 10/22/2014] [Indexed: 12/14/2022]
|