1
|
Meevassana J, Varophas S, Prabsattru P, Kamolratanakul S, Ruangritchankul K, Kitkumthorn N. 5-Methylcytosine immunohistochemistry for predicting cutaneous melanoma prognosis. Sci Rep 2024; 14:7554. [PMID: 38555324 PMCID: PMC10981665 DOI: 10.1038/s41598-024-58011-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024] Open
Abstract
There is a correlation between DNA methylation and the diseased stage and poor survival. 5-methylcytosine (5-mC) is one of the epigenetic modifications of bases that researchers focus on. Staining with 5-mC immunohistochemistry was used to examine pathological samples taken from individuals diagnosed with cutaneous melanoma. Between Breslow levels 2 and 4, there was a significant difference in the H-score of 5-mC expression (p = 0.046). A significant reduction in 5-mC expression H-scores was seen in patients who were diagnosed with ulcers (p = 0.039). It was shown that patients with low 5-mC had a significantly worse overall survival rate (p = 0.027).
Collapse
Affiliation(s)
- Jiraroch Meevassana
- Center of Excellence in Burn and Wound Care, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Shananya Varophas
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Piyawan Prabsattru
- Center of Excellence in Burn and Wound Care, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Supitcha Kamolratanakul
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Nakarin Kitkumthorn
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, No. 6, Yothi Road, Ratchathewi District, Bangkok, 10400, Thailand.
| |
Collapse
|
2
|
Chong ZX, Ho WY, Yeap SK. Delineating the tumour-regulatory roles of EYA4. Biochem Pharmacol 2023; 210:115466. [PMID: 36849065 DOI: 10.1016/j.bcp.2023.115466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
Eyes absent homolog 4 (EYA4) is a protein that regulates many vital cellular processes and organogenesis pathways. It possesses phosphatase, hydrolase, and transcriptional activation functions. Mutations in the Eya4 gene can cause sensorineural hearing loss and heart disease. In most non-nervous system cancers such as those of the gastrointestinal tract (GIT), hematological and respiratory systems, EYA4 acts as a putative tumor suppressor. However, in nervous system tumors such as glioma, astrocytoma, and malignant peripheral nerve sheath tumor (MPNST), it plays a putative tumor-promoting role. EYA4 interacts with various signaling proteins of the PI3K/AKT, JNK/cJUN, Wnt/GSK-3β, and cell cycle pathways to exert its tumor-promoting or tumor-suppressing effect. The tissue expression level and methylation profiles of Eya4 can help predict the prognosis and anti-cancer treatment response among cancer patients. Targeting and altering Eya4 expression and activity could be a potential therapeutic strategy to suppress carcinogenesis. In conclusion, EYA4 may have both putative tumor-promoting and tumor-suppressing roles in different human cancers and has the potential to serve as a prognostic biomarker and therapeutic agent in various cancer types.
Collapse
Affiliation(s)
- Zhi Xiong Chong
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| | - Wan Yong Ho
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900 Sepang, Selangor, Malaysia.
| |
Collapse
|
3
|
Cristofani R, Piccolella M, Montagnani Marelli M, Tedesco B, Poletti A, Moretti RM. HSPB8 counteracts tumor activity of BRAF- and NRAS-mutant melanoma cells by modulation of RAS-prenylation and autophagy. Cell Death Dis 2022; 13:973. [PMID: 36400750 PMCID: PMC9674643 DOI: 10.1038/s41419-022-05365-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/19/2022]
Abstract
Cutaneous melanoma is one of the most aggressive and lethal forms of skin cancer. Some specific driver mutations have been described in multiple oncogenes including BRAF and NRAS that are mutated in 60-70% and 15-20% of melanoma, respectively. The aim of this study was to evaluate the role of Small Heat Shock Protein B8 (HSPB8) on cell growth and migration of both BLM (BRAFwt/NRASQ61R) and A375 (BRAFV600E/NRASwt) human melanoma cell lines. HSPB8 is a member of the HSPB family of chaperones involved in protein quality control (PQC) system and contributes to chaperone assisted selective autophagy (CASA) as well as in the regulation of mitotic spindle. In cancer, HSPB8 has anti- or pro-tumoral action depending on tumor type. In melanoma cell lines characterized by low HSPB8 levels, we demonstrated that the restoration of HSPB8 expression causes cell growth arrest, reversion of EMT (Epithelial-Mesenchymal Transition)-like phenotype switching and antimigratory effect, independently from the cell mutational status. We demonstrated that HSPB8 regulates the levels of the active prenylated form of NRAS in NRAS-mutant and NRAS-wild-type melanoma cell lines. Consequently, the inhibition of NRAS impairs the activation of Akt/mTOR pathway inducing autophagy activation. Autophagy can play a dual role in regulating cell death and survival. We have therefore demonstrated that HSPB8-induced autophagy is a crucial event that counteracts cell growth in melanoma. Collectively, our results suggest that HSPB8 has an antitumoral action in melanoma cells characterized by BRAF and NRAS mutations.
Collapse
Affiliation(s)
- Riccardo Cristofani
- grid.4708.b0000 0004 1757 2822Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Margherita Piccolella
- grid.4708.b0000 0004 1757 2822Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Marina Montagnani Marelli
- grid.4708.b0000 0004 1757 2822Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Barbara Tedesco
- grid.4708.b0000 0004 1757 2822Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy ,grid.417894.70000 0001 0707 5492Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Angelo Poletti
- grid.4708.b0000 0004 1757 2822Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Roberta Manuela Moretti
- grid.4708.b0000 0004 1757 2822Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
4
|
Karami Fath M, Azargoonjahromi A, Soofi A, Almasi F, Hosseinzadeh S, Khalili S, Sheikhi K, Ferdousmakan S, Owrangi S, Fahimi M, Zalpoor H, Nabi Afjadi M, Payandeh Z, Pourzardosht N. Current understanding of epigenetics role in melanoma treatment and resistance. Cancer Cell Int 2022; 22:313. [PMID: 36224606 PMCID: PMC9555085 DOI: 10.1186/s12935-022-02738-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022] Open
Abstract
Melanoma is the most aggressive form of skin cancer resulting from genetic mutations in melanocytes. Several factors have been considered to be involved in melanoma progression, including genetic alteration, processes of damaged DNA repair, and changes in mechanisms of cell growth and proliferation. Epigenetics is the other factor with a crucial role in melanoma development. Epigenetic changes have become novel targets for treating patients suffering from melanoma. These changes can alter the expression of microRNAs and their interaction with target genes, which involves cell growth, differentiation, or even death. Given these circumstances, we conducted the present review to discuss the melanoma risk factors and represent the current knowledge about the factors related to its etiopathogenesis. Moreover, various epigenetic pathways, which are involved in melanoma progression, treatment, and chemo-resistance, as well as employed epigenetic factors as a solution to the problems, will be discussed in detail.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Asma Soofi
- Department of Physical Chemistry, School of Chemistry, College of Sciences, University of Tehran, Tehran, Iran
| | - Faezeh Almasi
- Pharmaceutical Biotechnology Lab, Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Shahnaz Hosseinzadeh
- Department of Microbiology, Parasitology and Immunology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Kamran Sheikhi
- School of Medicine, Kurdistan University of Medical Sciences, Kurdistan, Iran
| | - Saeid Ferdousmakan
- Department of Pharmacy Practice, Nargund College of Pharmacy, Bangalore, 560085 India
| | - Soroor Owrangi
- Student Research Committe, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Zahra Payandeh
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
| | - Navid Pourzardosht
- Biochemistry Department, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
5
|
Rius FE, Papaiz DD, Azevedo HFZ, Ayub ALP, Pessoa DO, Oliveira TF, Loureiro APM, Andrade F, Fujita A, Reis EM, Mason CE, Jasiulionis MG. Genome-wide promoter methylation profiling in a cellular model of melanoma progression reveals markers of malignancy and metastasis that predict melanoma survival. Clin Epigenetics 2022; 14:68. [PMID: 35606887 PMCID: PMC9128240 DOI: 10.1186/s13148-022-01291-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/16/2022] [Indexed: 11/20/2022] Open
Abstract
The epigenetic changes associated with melanoma progression to advanced and metastatic stages are still poorly understood. To shed light on the CpG methylation dynamics during melanoma development, we analyzed the methylome profiles of a four-stage cell line model of melanoma progression: non-tumorigenic melanocytes (melan-a), premalignant melanocytes (4C), non-metastatic melanoma cells (4C11−), and metastatic melanoma cells (4C11+). We identified 540 hypo- and 37 hypermethylated gene promoters that together characterized a malignancy signature, and 646 hypo- and 520 hypermethylated promoters that distinguished a metastasis signature. Differentially methylated genes from these signatures were correlated with overall survival using TCGA-SKCM methylation data. Moreover, multivariate Cox analyses with LASSO regularization identified panels of 33 and 31 CpGs, respectively, from the malignancy and metastasis signatures that predicted poor survival. We found a concordant relationship between DNA methylation and transcriptional levels for genes from the malignancy (Pyroxd2 and Ptgfrn) and metastasis (Arnt2, Igfbp4 and Ptprf) signatures, which were both also correlated with melanoma prognosis. Altogether, this study reveals novel CpGs methylation markers associated with malignancy and metastasis that collectively could improve the survival prediction of melanoma patients.
Collapse
Affiliation(s)
- Flávia E Rius
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Debora D Papaiz
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Hatylas F Z Azevedo
- Divisão de Urologia, Departamento de Cirurgia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ana Luísa P Ayub
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Diogo O Pessoa
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Tiago F Oliveira
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, São Paulo, Brazil.,Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Paula M Loureiro
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Fernando Andrade
- Bioinformatics Graduate Program, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil.,Department of Biology, Loyola University Chicago, Chicago, USA
| | - André Fujita
- Departamento de Ciências da Computação, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil
| | - Eduardo M Reis
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, USA
| | - Miriam G Jasiulionis
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, 04039-032, Brazil.
| |
Collapse
|
6
|
Yates J, Boeva V. Deciphering the etiology and role in oncogenic transformation of the CpG island methylator phenotype: a pan-cancer analysis. Brief Bioinform 2022; 23:6520307. [PMID: 35134107 PMCID: PMC8921629 DOI: 10.1093/bib/bbab610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/06/2021] [Accepted: 12/30/2021] [Indexed: 12/25/2022] Open
Abstract
Numerous cancer types have shown to present hypermethylation of CpG islands, also known as a CpG island methylator phenotype (CIMP), often associated with survival variation. Despite extensive research on CIMP, the etiology of this variability remains elusive, possibly due to lack of consistency in defining CIMP. In this work, we utilize a pan-cancer approach to further explore CIMP, focusing on 26 cancer types profiled in the Cancer Genome Atlas (TCGA). We defined CIMP systematically and agnostically, discarding any effects associated with age, gender or tumor purity. We then clustered samples based on their most variable DNA methylation values and analyzed resulting patient groups. Our results confirmed the existence of CIMP in 19 cancers, including gliomas and colorectal cancer. We further showed that CIMP was associated with survival differences in eight cancer types and, in five, represented a prognostic biomarker independent of clinical factors. By analyzing genetic and transcriptomic data, we further uncovered potential drivers of CIMP and classified them in four categories: mutations in genes directly involved in DNA demethylation; mutations in histone methyltransferases; mutations in genes not involved in methylation turnover, such as KRAS and BRAF; and microsatellite instability. Among the 19 CIMP-positive cancers, very few shared potential driver events, and those drivers were only IDH1 and SETD2 mutations. Finally, we found that CIMP was strongly correlated with tumor microenvironment characteristics, such as lymphocyte infiltration. Overall, our results indicate that CIMP does not exhibit a pan-cancer manifestation; rather, general dysregulation of CpG DNA methylation is caused by heterogeneous mechanisms.
Collapse
Affiliation(s)
- Josephine Yates
- Institute for Machine Learning, Department of Computer Science, ETH Zürich, Zurich 8092, Switzerland
| | - Valentina Boeva
- Institute for Machine Learning, Department of Computer Science, ETH Zürich, Zurich 8092, Switzerland.,Swiss Institute for Bioinformatics (SIB), Zürich, Switzerland.,Cochin Institute, Inserm U1016, CNRS UMR 8104, Paris Descartes University UMR-S1016, Paris 75014, France
| |
Collapse
|
7
|
The BRAF V600E Mutation Detection by quasa Sensitive Real-Time PCR Assay in Northeast Romania Melanoma Patients. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11209511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Background: The prevalence of melanoma in Romanian patients is underestimated. There is a need to identify the BRAF V600E mutation to accurately treat patients with the newest approved BRAF inhibitor therapy. This is a pilot study in which we first aimed to choose the optimal DNA purification method from formalin fixation and paraffin embedding (FFPE) malignant melanoma skin samples to assess the BRAF mutation prevalence and correlate it with clinical pathological parameters. Methods: 30 FFPE samples were purified in parallel with two DNA extraction kits, a manual and a semi-automated kit. The extracted DNA in pure and optimum quantity was tested for the BRAF V600E mutation using the quantitative allele-specific amplification (quasa) method. quasa is a method for the sensitive detection of mutations that may be present in clinical samples at low levels. Results: The BRAF V600E mutation was detected in 60% (18/30) samples in patients with primary cutaneous melanoma of the skin. BRAFV600E mutation was equally distributed by gender and was associated with age >60, nodular melanoma, and trunk localization. Conclusions: The high prevalence of BRAF V600E mutations in our study group raises awareness for improvements to the national reporting system and initiation of the target therapy for patients with malignant melanoma of the skin.
Collapse
|
8
|
Diffuse PRAME Expression Is Highly Specific for Thin Melanomas in the Distinction from Severely Dysplastic Nevi but Does Not Distinguish Metastasizing from Non-Metastasizing Thin Melanomas. Cancers (Basel) 2021; 13:cancers13153864. [PMID: 34359765 PMCID: PMC8345662 DOI: 10.3390/cancers13153864] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/21/2021] [Accepted: 07/28/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Histological diagnoses within the spectrum from moderately dysplastic nevi to thin melanomas are neither accurate nor reproducible, emphasizing the need for more objective supplemental immunohistochemical markers. PRAME immunohistochemistry aids in differentiating unequivocal melanomas from unequivocal nevi. The aim of our study was to determine whether PRAME IHC also allows differentiation of severely dysplastic nevi from thin melanomas and whether PRAME is of prognostic significance in thin melanomas. We studied 70 thin melanomas, of which 35 metastasized and 35 did not metastasize and 35 severely dysplastic nevi. We found that diffuse PRAME expression was highly specific but only moderately sensitive for thin melanomas. Melanomas and severely dysplastic nevi with PRAME immunoreactivity had different staining patterns. Most Melanomas demonstrated diffuse PRAME staining of intraepidermal and dermal melanocytes while most severely dysplastic nevi showed a decreasing gradient with depth. PRAME did not allow for the differentiation of metastasizing and non-metastasizing melanomas. Abstract Background: PReferentially expressed Antigen in MElanoma (PRAME) immunohistochemistry is increasingly used as diagnostic adjunct in the evaluation of melanocytic tumors. The expression and prognostic significance of PRAME in melanomas ≤1.0 mm and its diagnostic utility in the distinction from severely dysplastic compound nevi (SDN) have not been studied. Methods: We investigated and compared the immunohistochemical PRAME expression in 70 matched thin metastasizing and non-metastasizing melanomas and 45 nevi from patients with long-term follow-up (35 SDN and 10 unequivocally benign compound nevi). Results: Diffuse PRAME staining in >75% of lesional epidermal and dermal melanocytes identified 58.6% of thin melanomas but did not distinguish metastasizing from non-metastasizing melanomas (p = 0.81). A superficial atypical melanocytic proliferation of uncertain significance, in which the final diagnostic interpretation favored a SDN was the only nevus with diffuse PRAME expression (1/45). Melanomas and SDN with PRAME immunoreactivity exhibited different staining patterns. Most melanomas (67.6%) showed uniform PRAME expression in the in situ and invasive component, whereas most SDN (81.0%) showed a decreasing gradient with depth. Conclusion: Diffuse intraepidermal and dermal PRAME staining is highly specific for melanomas in the distinction from SDN. PRAME expression is not a prognostic biomarker in melanomas ≤1.0 mm.
Collapse
|
9
|
Yang C, Liao F, Cao L. Web-based nomograms for predicting the prognosis of adolescent and young adult skin melanoma, a large population-based real-world analysis. Transl Cancer Res 2020; 9:7103-7112. [PMID: 35117315 PMCID: PMC8797661 DOI: 10.21037/tcr-20-1295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 09/12/2020] [Indexed: 11/28/2022]
Abstract
Background Invasive cutaneous melanoma is one of the most common malignant diseases among adolescents and young adults (aged 15–40 years) in the United States. We aimed to develop web-based nomograms to precisely predict overall survival and cancer-specific survival in this group of patients with cutaneous melanoma. Methods We analyzed the overall and caner-specific death events in 19,887 patients who underwent surgical resection of cutaneous melanoma from Surveillance, Epidemiology and End Results database and developed web-based clinic-pathologic prediction models for overall survival and cancer specific survival based on Cox regression. C-statistics of Harrell and time-dependent Receiver Operating Characteristic Curve (ROC) were used to evaluate the prognostic accuracy of nomograms. Results Multivariate Cox regression model analysis suggested that age, sex, race, tumor location, Clark level, ulceration, thickness, and N stage were independently associated with both overall survival and cancer-specific survival in adolescent and young adult patients with cutaneous melanoma. The nomograms performed excellently in predicting overall survival and cancer-specific survival with C-index being 0.875 (95% CI: 0.847–0.903) and 0.901 (95% CI: 0.876–0.925), respectively. Time-dependent ROC verified that the prognostic accuracy of nomograms was better than that of American Joint Committee on Cancer staging system and other prognostic factors. Conclusions These user-friendly nomograms can precisely predict overall survival and cancer-specific survival in cutaneous melanoma patients treated with surgical resection, which may help to make individualized postoperative follow-up and therapeutic schemes.
Collapse
Affiliation(s)
- Chen Yang
- Department of Dermatology, The Affiliated Suzhou Science & Technology Town Hospital of Nanjing Medical University, Suzhou, China
| | - Fei Liao
- Department of Dermatology, The Affiliated Suzhou Science & Technology Town Hospital of Nanjing Medical University, Suzhou, China
| | - Li Cao
- Department of Dermatology, The Affiliated Suzhou Science & Technology Town Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
10
|
Pham DDM, Guhan S, Tsao H. KIT and Melanoma: Biological Insights and Clinical Implications. Yonsei Med J 2020; 61:562-571. [PMID: 32608199 PMCID: PMC7329741 DOI: 10.3349/ymj.2020.61.7.562] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 01/15/2023] Open
Abstract
Melanoma, originating from epidermal melanocytes, is a heterogeneous disease that has the highest mortality rate among all types of skin cancers. Numerous studies have revealed the cause of this cancer as related to various somatic driver mutations, including alterations in KIT-a proto-oncogene encoding for a transmembrane receptor tyrosine kinase. Although accounting for only 3% of all melanomas, mutations in c-KIT are mostly derived from acral, mucosal, and chronically sun-damaged melanomas. As an important factor for cell differentiation, proliferation, and survival, inhibition of c-KIT has been exploited for clinical trials in advanced melanoma. Here, apart from the molecular background of c-KIT and its cellular functions, we will review the wide distribution of alterations in KIT with a catalogue of more than 40 mutations reported in various articles and case studies. Additionally, we will summarize the association of KIT mutations with clinicopathologic features (age, sex, melanoma subtypes, anatomic location, etc.), and the differences of mutation rate among subgroups. Finally, several therapeutic trials of c-KIT inhibitors, including imatinib, dasatinib, nilotinib, and sunitinib, will be analyzed for their success rates and limitations in advanced melanoma treatment. These not only emphasize c-KIT as an attractive target for personalized melanoma therapy but also propose the requirement for additional investigational studies to develop novel therapeutic trials co-targeting c-KIT and other cytokines such as members of signaling pathways and immune systems.
Collapse
Affiliation(s)
- Duc Daniel M Pham
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | | | - Hensin Tsao
- Harvard Medical School, Boston, MA, USA
- Department of Dermatology, Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Koroknai V, Szász I, Hernandez-Vargas H, Fernandez-Jimenez N, Cuenin C, Herceg Z, Vízkeleti L, Ádány R, Ecsedi S, Balázs M. DNA hypermethylation is associated with invasive phenotype of malignant melanoma. Exp Dermatol 2020; 29:39-50. [PMID: 31602702 DOI: 10.1111/exd.14047] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 08/29/2019] [Accepted: 10/06/2019] [Indexed: 01/01/2023]
Abstract
Tumor cell invasion is one of the key processes during cancer progression, leading to life-threatening metastatic lesions in melanoma. As methylation of cancer-related genes plays a fundamental role during tumorigenesis and may lead to cellular plasticity which promotes invasion, our aim was to identify novel epigenetic markers on selected invasive melanoma cells. Using Illumina BeadChip assays and Affymetrix Human Gene 1.0 microarrays, we explored the DNA methylation landscape of selected invasive melanoma cells and examined the impact of DNA methylation on gene expression patterns. Our data revealed predominantly hypermethylated genes in the invasive cells affecting the neural crest differentiation pathway and regulation of the actin cytoskeleton. Integrative analysis of the methylation and gene expression profiles resulted in a cohort of hypermethylated genes (IL12RB2, LYPD6B, CHL1, SLC9A3, BAALC, FAM213A, SORCS1, GPR158, FBN1 and ADORA2B) with decreased expression. On the other hand, hypermethylation in the gene body of the EGFR and RBP4 genes was positively correlated with overexpression of the genes. We identified several methylation changes that can have role during melanoma progression, including hypermethylation of the promoter regions of the ARHGAP22 and NAV2 genes that are commonly altered in locally invasive primary melanomas as well as during metastasis. Interestingly, the down-regulation of the methylcytosine dioxygenase TET2 gene, which regulates DNA methylation, was associated with hypermethylated promoter region of the gene. This can probably lead to the observed global hypermethylation pattern of invasive cells and might be one of the key changes during the development of malignant melanoma cells.
Collapse
Affiliation(s)
- Viktória Koroknai
- Public Health Research Institute, University of Debrecen, Debrecen, Hungary
- MTA-DE Public Health Research Group, Public Health Research Institute, University of Debrecen, Debrecen, Hungary
| | - István Szász
- Public Health Research Institute, University of Debrecen, Debrecen, Hungary
- MTA-DE Public Health Research Group, Public Health Research Institute, University of Debrecen, Debrecen, Hungary
| | | | | | - Cyrille Cuenin
- Epigenetics Group, International Agency for Research on Cancer (IARC), Lyon, France
| | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer (IARC), Lyon, France
| | - Laura Vízkeleti
- Public Health Research Institute, University of Debrecen, Debrecen, Hungary
- MTA-DE Public Health Research Group, Public Health Research Institute, University of Debrecen, Debrecen, Hungary
| | - Róza Ádány
- Public Health Research Institute, University of Debrecen, Debrecen, Hungary
- MTA-DE Public Health Research Group, Public Health Research Institute, University of Debrecen, Debrecen, Hungary
| | - Szilvia Ecsedi
- Public Health Research Institute, University of Debrecen, Debrecen, Hungary
- MTA-DE Public Health Research Group, Public Health Research Institute, University of Debrecen, Debrecen, Hungary
- Epigenetics Group, International Agency for Research on Cancer (IARC), Lyon, France
| | - Margit Balázs
- Public Health Research Institute, University of Debrecen, Debrecen, Hungary
- MTA-DE Public Health Research Group, Public Health Research Institute, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
12
|
Pradhan D, Jour G, Milton D, Vasudevaraja V, Tetzlaff MT, Nagarajan P, Curry JL, Ivan D, Long L, Ding Y, Ezhilarasan R, Sulman EP, Diab A, Hwu WJ, Prieto VG, Torres-Cabala CA, Aung PP. Aberrant DNA Methylation Predicts Melanoma-Specific Survival in Patients with Acral Melanoma. Cancers (Basel) 2019; 11:cancers11122031. [PMID: 31888295 PMCID: PMC6966546 DOI: 10.3390/cancers11122031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/06/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023] Open
Abstract
Acral melanoma (AM) is a rare, aggressive type of cutaneous melanoma (CM) with a distinct genetic profile. We aimed to identify a methylome signature distinguishing primary acral lentiginous melanoma (PALM) from primary non-lentiginous AM (NALM), metastatic ALM (MALM), primary non-acral CM (PCM), and acral nevus (AN). A total of 22 PALM, nine NALM, 10 MALM, nine PCM, and three AN were subjected to genome-wide methylation analysis using the Illumina Infinium Methylation EPIC array interrogating 866,562 CpG sites. A prominent finding was that the methylation profiles of PALM and NALM were distinct. Four of the genes most differentially methylated between PALM and NALM or MALM were HHEX, DIPK2A, NELFB, and TEF. However, when primary AMs (PALM + NALM) were compared with MALM, IFITM1 and SIK3 were the most differentially methylated, highlighting their pivotal role in the metastatic potential of AMs. Patients with NALM had significantly worse disease-specific survival (DSS) than patients with PALM. Aberrant methylation was significantly associated with aggressive clinicopathologic parameters and worse DSS. Our study emphasizes the importance of distinguishing the two epigenetically distinct subtypes of AM. We also identified novel epigenetic prognostic biomarkers that may serve to risk-stratify patients with AM and may be leveraged for the development of targeted therapies.
Collapse
Affiliation(s)
- Dinesh Pradhan
- Department of Pathology, Section of Dermatopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.P.); (M.T.T.); (P.N.); (J.L.C.); (D.I.); (V.G.P.)
| | - George Jour
- Department of Pathology and Dermatology, NYU Langone Medical Center, New York, NY 10016, USA; (G.J.); (V.V.)
| | - Denái Milton
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Varshini Vasudevaraja
- Department of Pathology and Dermatology, NYU Langone Medical Center, New York, NY 10016, USA; (G.J.); (V.V.)
| | - Michael T. Tetzlaff
- Department of Pathology, Section of Dermatopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.P.); (M.T.T.); (P.N.); (J.L.C.); (D.I.); (V.G.P.)
- Department of Translational and Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Priyadharsini Nagarajan
- Department of Pathology, Section of Dermatopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.P.); (M.T.T.); (P.N.); (J.L.C.); (D.I.); (V.G.P.)
| | - Jonathan L. Curry
- Department of Pathology, Section of Dermatopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.P.); (M.T.T.); (P.N.); (J.L.C.); (D.I.); (V.G.P.)
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Doina Ivan
- Department of Pathology, Section of Dermatopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.P.); (M.T.T.); (P.N.); (J.L.C.); (D.I.); (V.G.P.)
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lihong Long
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Yingwen Ding
- Department of Radiation Oncology, NYU Langone School of Medicine, New York, NY 10016, USA; (Y.D.); (R.E.); (E.P.S.)
| | - Ravesanker Ezhilarasan
- Department of Radiation Oncology, NYU Langone School of Medicine, New York, NY 10016, USA; (Y.D.); (R.E.); (E.P.S.)
| | - Erik P. Sulman
- Department of Radiation Oncology, NYU Langone School of Medicine, New York, NY 10016, USA; (Y.D.); (R.E.); (E.P.S.)
| | - Adi Diab
- Department of Melanoma Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.D.); (W.-J.H.)
| | - Wen-Jen Hwu
- Department of Melanoma Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.D.); (W.-J.H.)
| | - Victor G. Prieto
- Department of Pathology, Section of Dermatopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.P.); (M.T.T.); (P.N.); (J.L.C.); (D.I.); (V.G.P.)
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Carlos Antonio Torres-Cabala
- Department of Pathology, Section of Dermatopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.P.); (M.T.T.); (P.N.); (J.L.C.); (D.I.); (V.G.P.)
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: (C.A.T.-C.); (P.P.A.); Tel.: +713-752-2351 (C.A.T.-C.); +713-794-4951 (P.P.A.)
| | - Phyu P. Aung
- Department of Pathology, Section of Dermatopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.P.); (M.T.T.); (P.N.); (J.L.C.); (D.I.); (V.G.P.)
- Correspondence: (C.A.T.-C.); (P.P.A.); Tel.: +713-752-2351 (C.A.T.-C.); +713-794-4951 (P.P.A.)
| |
Collapse
|
13
|
Germano A, Cardili L, Carapeto FCL, Landman G. BRAFV600E and KIT immunoexpression in early-stage melanoma. An Bras Dermatol 2019; 94:458-460. [PMID: 31644622 PMCID: PMC7007021 DOI: 10.1590/abd1806-4841.20198349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/27/2018] [Indexed: 02/03/2023] Open
Abstract
Melanoma is widely known as the most lethal skin cancer. Specific tumor-related mortality can be significantly reduced if diagnosis and treatment are properly performed during initial phases of the disease. The current search for biomarkers in early-stage melanomas is a high-priority challenge for physicians and researchers. We aimed to assess the immunoexpression of BRAFV600E and KIT in a case series consisting of 44 early-stage melanomas. Formalin-fixed paraffin-embedded samples were systematically evaluated using a semi-quantitative method based on scores of percentage and intensity for immunostained tumor cells. We observed significant concordance between BRAFV600E and KIT immunoexpression in thin invasive melanomas. Our findings corroborate previous evidence showing abnormal expression of proteins associated with MAPK intracellular signaling pathway in early-stage melanomas.
Collapse
Affiliation(s)
- Andressa Germano
- Graduate Studies Program in Pathology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Leonardo Cardili
- Department of Pathology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Fernando Cintra Lopes Carapeto
- Graduate Studies Program in Pathology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Gilles Landman
- Department of Pathology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
14
|
Desjobert C, Carrier A, Delmas A, Marzese DM, Daunay A, Busato F, Pillon A, Tost J, Riond J, Favre G, Etievant C, Arimondo PB. Demethylation by low-dose 5-aza-2'-deoxycytidine impairs 3D melanoma invasion partially through miR-199a-3p expression revealing the role of this miR in melanoma. Clin Epigenetics 2019; 11:9. [PMID: 30651148 PMCID: PMC6335767 DOI: 10.1186/s13148-018-0600-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/17/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Efficient treatments against metastatic melanoma dissemination are still lacking. Here, we report that low-cytotoxic concentrations of 5-aza-2'-deoxycytidine, a DNA demethylating agent, prevent in vitro 3D invasiveness of metastatic melanoma cells and reduce lung metastasis formation in vivo. RESULTS We unravelled that this beneficial effect is in part due to MIR-199A2 re-expression by promoter demethylation. Alone, this miR showed an anti-invasive and anti-metastatic effect. Throughout integration of micro-RNA target prediction databases with transcriptomic analysis after 5-aza-2'-deoxycytidine treatments, we found that miR-199a-3p downregulates set of genes significantly involved in invasion/migration processes. In addition, analysis of data from melanoma patients showed a stage- and tissue type-dependent modulation of MIR-199A2 expression by DNA methylation. CONCLUSIONS Thus, our data suggest that epigenetic- and/or miR-based therapeutic strategies can be relevant to limit metastatic dissemination of melanoma.
Collapse
Affiliation(s)
- Cécile Desjobert
- FRE no. 3600 CNRS, Epigenetic Targeting of Cancer (ETaC), Toulouse, France
| | - Arnaud Carrier
- FRE no. 3600 CNRS, Epigenetic Targeting of Cancer (ETaC), Toulouse, France
| | - Audrey Delmas
- Cancer Research Center of Toulouse, CRCT, Toulouse, France
| | - Diego M Marzese
- Department of Translational Molecular Medicine, John Wayne Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Antoine Daunay
- Laboratory for Functional Genomics, Fondation Jean Dausset - CEPH, Paris, France
| | - Florence Busato
- Laboratory for Epigenetics and Environment, Centre National de la Recherche en Génomique Humaine, CEA, Evry, France
| | - Arnaud Pillon
- Institut de Recherche Pierre Fabre, CRDPF, Toulouse, France
| | - Jörg Tost
- Laboratory for Epigenetics and Environment, Centre National de la Recherche en Génomique Humaine, CEA, Evry, France
| | - Joëlle Riond
- FRE no. 3600 CNRS, Epigenetic Targeting of Cancer (ETaC), Toulouse, France.,UMR 1037 INSERM/Université Toulouse III, CRCT, Toulouse, France
| | - Gilles Favre
- Cancer Research Center of Toulouse, CRCT, Toulouse, France
| | | | - Paola B Arimondo
- FRE no. 3600 CNRS, Epigenetic Targeting of Cancer (ETaC), Toulouse, France. .,Institut Pasteur CNRS UMR3523, Epigenetic Chemical Biology, Paris, France.
| |
Collapse
|
15
|
de Unamuno Bustos B, Murria Estal R, Pérez Simó G, Simarro Farinos J, Pujol Marco C, Navarro Mira M, Alegre de Miquel V, Ballester Sánchez R, Sabater Marco V, Llavador Ros M, Palanca Suela S, Botella Estrada R. Aberrant DNA methylation is associated with aggressive clinicopathological features and poor survival in cutaneous melanoma. Br J Dermatol 2018; 179:394-404. [PMID: 29278418 DOI: 10.1111/bjd.16254] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2017] [Indexed: 01/19/2023]
Abstract
BACKGROUND Promoter methylation of tumour suppressor genes (TSGs) has recently been implicated in the pathogenesis of several types of cancer. Regarding melanoma, over 100 genes that contribute to its pathogenesis have been identified to be aberrantly hypermethylated. OBJECTIVES This is a retrospective observational study that aims to analyse the prevalence of CpG island methylation in a series of primary melanomas, to identify the associations with the main clinicopathological features, and to explore the prognostic significance of methylation in melanoma survival. MATERIALS AND METHODS DNA methylation was analysed using methylation-specific multiplex ligation-dependent probe amplification in a series of 170 melanoma formalin-fixed paraffin-embedded tumour samples. The relationship between the methylation status, known somatic mutations and clinicopathological features was evaluated. Disease-free survival (DFS) and overall survival (OS) were displayed by the Kaplan-Meier method. RESULTS In the entire cohort, one or more genes were detected to be methylated in 55% of the patients. The most prevalent methylated genes were RARB 31%, PTEN 24%, APC 16%, CDH13 16%, ESR1 14%, CDKN2A 6% and RASSF1 5%. An association between aberrant methylation and aggressive clinicopathological features was observed (older age, increased Breslow thickness, presence of mitosis and ulceration, fast-growing melanomas, advancing stage and TERT mutations). Furthermore, Kaplan-Meier survival analysis showed a correlation of methylation and poorer DFS and OS. CONCLUSIONS Aberrant methylation of TSGs is a frequent event in melanoma. It is associated with aggressive clinicopathological features and poorer survival. Epigenetic alterations may represent a significant prognostic marker with utility in routine practice.
Collapse
Affiliation(s)
- B de Unamuno Bustos
- Department of Dermatology, Hospital Universitari i Politecnic La Fe, Valencia, Spain
| | - R Murria Estal
- Department of Molecular Biology Laboratory, Service of Clinical Analysis, Hospital Universitari i Politecnic La Fe, Valencia, Spain
| | - G Pérez Simó
- Department of Molecular Biology Laboratory, Service of Clinical Analysis, Hospital Universitari i Politecnic La Fe, Valencia, Spain
| | - J Simarro Farinos
- Department of Molecular Biology Laboratory, Service of Clinical Analysis, Hospital Universitari i Politecnic La Fe, Valencia, Spain
| | - C Pujol Marco
- Department of Dermatology, Hospital Universitari i Politecnic La Fe, Valencia, Spain
| | - M Navarro Mira
- Department of Dermatology, Hospital Universitari i Politecnic La Fe, Valencia, Spain
| | - V Alegre de Miquel
- Department of Dermatology, Hospital General Universitario de Valencia, Valencia, Spain
| | | | - V Sabater Marco
- Department of Pathology, Hospital General Universitario de Valencia, Valencia, Spain
| | - M Llavador Ros
- Department of Pathology, Hospital Universitari i Politecnic La Fe, Valencia, Spain
| | - S Palanca Suela
- Department of Molecular Biology Laboratory, Service of Clinical Analysis, Hospital Universitari i Politecnic La Fe, Valencia, Spain
| | - R Botella Estrada
- Department of Dermatology, Hospital Universitari i Politecnic La Fe, Valencia, Spain
| |
Collapse
|
16
|
Micevic G, Theodosakis N, Bosenberg M. Aberrant DNA methylation in melanoma: biomarker and therapeutic opportunities. Clin Epigenetics 2017; 9:34. [PMID: 28396701 PMCID: PMC5381063 DOI: 10.1186/s13148-017-0332-8] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/24/2017] [Indexed: 12/18/2022] Open
Abstract
Aberrant DNA methylation is an epigenetic hallmark of melanoma, known to play important roles in melanoma formation and progression. Recent advances in genome-wide methylation methods have provided the means to identify differentially methylated genes, methylation signatures, and potential biomarkers. However, despite considerable effort and advances in cataloging methylation changes in melanoma, many questions remain unanswered. The aim of this review is to summarize recent developments, emerging trends, and important unresolved questions in the field of aberrant DNA methylation in melanoma. In addition to reviewing recent developments, we carefully synthesize the findings in an effort to provide a framework for understanding the current state and direction of the field. To facilitate clarity, we divided the review into DNA methylation changes in melanoma, biomarker opportunities, and therapeutic developments. We hope this review contributes to accelerating the utilization of the diagnostic, prognostic, and therapeutic potential of DNA methylation for the benefit of melanoma patients.
Collapse
Affiliation(s)
- Goran Micevic
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520 USA.,Department of Pathology, Yale University School of Medicine, New Haven, CT 06520 USA
| | - Nicholas Theodosakis
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520 USA.,Department of Pathology, Yale University School of Medicine, New Haven, CT 06520 USA
| | - Marcus Bosenberg
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520 USA.,Department of Pathology, Yale University School of Medicine, New Haven, CT 06520 USA
| |
Collapse
|
17
|
Rushton JG, Ertl R, Klein D, Nell B. Mutation analysis and gene expression profiling of ocular melanomas in cats. Vet Comp Oncol 2017; 15:1403-1416. [DOI: 10.1111/vco.12285] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 09/20/2016] [Accepted: 10/10/2016] [Indexed: 12/23/2022]
Affiliation(s)
- J. G. Rushton
- Department for Companion Animals and Horses; Vetmeduni Vienna; Vienna Austria
| | - R. Ertl
- VetCore Facility for Research; Vetmeduni Vienna; Vienna Austria
| | - D. Klein
- VetCore Facility for Research; Vetmeduni Vienna; Vienna Austria
| | - B. Nell
- Department for Companion Animals and Horses; Vetmeduni Vienna; Vienna Austria
| |
Collapse
|
18
|
Jiang W, Jia P, Hutchinson KE, Johnson DB, Sosman JA, Zhao Z. Clinically relevant genes and regulatory pathways associated with NRASQ61 mutations in melanoma through an integrative genomics approach. Oncotarget 2016; 6:2496-508. [PMID: 25537510 PMCID: PMC4385866 DOI: 10.18632/oncotarget.2954] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 12/09/2015] [Indexed: 12/25/2022] Open
Abstract
Therapies such as BRAF inhibitors have become standard treatment for melanoma patients whose tumors harbor activating BRAFV600 mutations. However, analogous therapies for inhibiting NRAS mutant signaling have not yet been well established. In this study, we performed an integrative analysis of DNA methylation, gene expression, and microRNA expression data to identify potential regulatory pathways associated with the most common driver mutations in NRAS (Q61K/L/R) through comparison of NRASQ61-mutated melanomas with pan-negative melanomas. Surprisingly, we found dominant hypomethylation (98.03%) in NRASQ61-mutated melanomas. We identified 1,150 and 49 differentially expressed genes and microRNAs, respectively. Integrated functional analyses of alterations in all three data types revealed important signaling pathways associated with NRASQ61 mutations, such as the MAPK pathway, as well as other novel cellular processes, such as axon guidance. Further analysis of the relationship between DNA methylation and gene expression changes revealed 9 hypermethylated and down-regulated genes and 112 hypomethylated and up-regulated genes in NRASQ61 melanomas. Finally, we identified 52 downstream regulatory cascades of three hypomethylated and up-regulated genes (PDGFD, ZEB1, and THRB). Collectively, our observation of predominant gene hypomethylation in NRASQ61 melanomas and the identification of NRASQ61-linked pathways will be useful for the development of targeted therapies against melanomas harboring NRASQ61 mutations.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Peilin Jia
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Katherine E Hutchinson
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Douglas B Johnson
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Department of Medicine/Division of Hematology-Oncology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jeffrey A Sosman
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Department of Medicine/Division of Hematology-Oncology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Zhongming Zhao
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
19
|
Marzagalli M, Montagnani Marelli M, Casati L, Fontana F, Moretti RM, Limonta P. Estrogen Receptor β in Melanoma: From Molecular Insights to Potential Clinical Utility. Front Endocrinol (Lausanne) 2016; 7:140. [PMID: 27833586 PMCID: PMC5080294 DOI: 10.3389/fendo.2016.00140] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/12/2016] [Indexed: 12/14/2022] Open
Abstract
Cutaneous melanoma is an aggressive tumor; its incidence has been reported to increase fast in the past decades. Melanoma is a heterogeneous tumor, with most patients harboring mutations in the BRAF or NRAS oncogenes, leading to the overactivation of the MAPK/ERK and PI3K/Akt pathways. The current therapeutic approaches are based on therapies targeting mutated BRAF and the downstream pathway, and on monoclonal antibodies against the immune checkpoint blockade. However, treatment resistance and side effects are common events of these therapeutic strategies. Increasing evidence supports that melanoma is a hormone-related cancer. Melanoma incidence is higher in males than in females, and females have a significant survival advantage over men. Estrogens exert their effects through estrogen receptors (ERα and ERβ) that affect cancer growth in an opposite way: ERα is associated with a proliferative action and ERβ with an anticancer effect. ERβ is the predominant ER in melanoma, and its expression decreases in melanoma progression, supporting its role as a tumor suppressor. Thus, ERβ is now considered as an effective molecular target for melanoma treatment. 17β-estradiol was reported to inhibit melanoma cells proliferation; however, clinical trials did not provide the expected survival benefits. In vitro studies demonstrate that ERβ ligands inhibit the proliferation of melanoma cells harboring the NRAS (but not the BRAF) mutation, suggesting that ERβ activation might impair melanoma development through the inhibition of the PI3K/Akt pathway. These data suggest that ERβ agonists might be considered as an effective treatment strategy, in combination with MAPK inhibitors, for NRAS mutant melanomas. In an era of personalized medicine, pretreatment evaluation of the expression of ER isoforms together with the concurrent oncogenic mutations should be considered before selecting the most appropriate therapeutic intervention. Natural compounds that specifically bind to ERβ have been identified. These phytoestrogens decrease the proliferation of melanoma cells. Importantly, these effects are unrelated to the oncogenic mutations of melanomas, suggesting that, in addition to their ERβ activating function, these compounds might impair melanoma development through additional mechanisms. A better identification of the role of ERβ in melanoma development will help increase the therapeutic options for this aggressive pathology.
Collapse
Affiliation(s)
- Monica Marzagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Marina Montagnani Marelli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Lavinia Casati
- Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Milano, Italy
| | - Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Roberta Manuela Moretti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
- *Correspondence: Patrizia Limonta,
| |
Collapse
|
20
|
Abstract
Melanoma, one of the most virulent forms of human malignancy, is the primary cause of mortality from cancers arising from the skin. The prognosis of metastatic melanoma remains dismal despite targeted therapeutic regimens that exploit our growing understanding of cancer immunology and genetic mutations that drive oncogenic cell signaling pathways in cancer. Epigenetic mechanisms, including DNA methylation/demethylation, histone modifications and noncoding RNAs recently have been shown to play critical roles in melanoma pathogenesis. Current evidence indicates that imbalance of DNA methylation and demethylation, dysregulation of histone modification and chromatin remodeling, and altered translational control by noncoding RNAs contribute to melanoma tumorigenesis. Here, we summarize the most recent insights relating to epigenetic markers, focusing on diagnostic potential as well as novel therapeutic approaches for more effective treatment of advanced melanoma.
Collapse
Affiliation(s)
- Weimin Guo
- Program in Dermatopathology, Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, 221 Longwood Ave. EBRC 401, Boston, MA 02115, USA
| | - Ting Xu
- Program in Dermatopathology, Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, 221 Longwood Ave. EBRC 401, Boston, MA 02115, USA
| | - Jonathan J Lee
- Program in Dermatopathology, Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, 221 Longwood Ave. EBRC 401, Boston, MA 02115, USA
| | - George F Murphy
- Program in Dermatopathology, Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, 221 Longwood Ave. EBRC 401, Boston, MA 02115, USA
| | - Christine G Lian
- Program in Dermatopathology, Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, 221 Longwood Ave. EBRC 401, Boston, MA 02115, USA
| |
Collapse
|
21
|
Lauss M, Ringnér M, Karlsson A, Harbst K, Busch C, Geisler J, Lønning PE, Staaf J, Jönsson G. DNA methylation subgroups in melanoma are associated with proliferative and immunological processes. BMC Med Genomics 2015; 8:73. [PMID: 26545983 PMCID: PMC4636848 DOI: 10.1186/s12920-015-0147-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 10/28/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND DNA methylation at CpG dinucleotides is modified in tumorigenesis with potential impact on transcriptional activity. METHODS We used the Illumina 450 K platform to evaluate DNA methylation patterns of 50 metastatic melanoma tumors, with matched gene expression data. RESULTS We identified three different methylation groups and validated the groups in independent data from The Cancer Genome Atlas. One group displayed hypermethylation of a developmental promoter set, genome-wide demethylation, increased proliferation and activity of the SWI/SNF complex. A second group had a methylation pattern resembling stromal and leukocyte cells, over-expressed an immune signature and had improved survival rates in metastatic tumors (p < 0.05). A third group had intermediate methylation levels and expressed both proliferative and immune signatures. The methylation groups corresponded to some degree with previously identified gene expression phenotypes. CONCLUSIONS Melanoma consists of divergent methylation groups that are distinguished by promoter methylation, proliferation and content of immunological cells.
Collapse
Affiliation(s)
- Martin Lauss
- Department of Oncology and Pathology, Clinical Sciences, Lund University Hospital, Lund University, Lund, 221 85, Sweden.
| | - Markus Ringnér
- Department of Oncology and Pathology, Clinical Sciences, Lund University Hospital, Lund University, Lund, 221 85, Sweden.
| | - Anna Karlsson
- Department of Oncology and Pathology, Clinical Sciences, Lund University Hospital, Lund University, Lund, 221 85, Sweden.
| | - Katja Harbst
- Department of Oncology and Pathology, Clinical Sciences, Lund University Hospital, Lund University, Lund, 221 85, Sweden.
| | - Christian Busch
- Section of Oncology, Department of Clinical Science, University of Bergen, Bergen, Norway. .,Department of Clinical Oncology, Haukeland University Hospital, Bergen, Norway.
| | - Jürgen Geisler
- Section of Oncology, Department of Clinical Science, University of Bergen, Bergen, Norway. .,Department of Clinical Oncology, Haukeland University Hospital, Bergen, Norway. .,Present Address: Department of Clinical Molecular Biology and Laboratory Sciences, Akershus University Hospital, Lørenskog, Norway.
| | - Per Eystein Lønning
- Section of Oncology, Department of Clinical Science, University of Bergen, Bergen, Norway. .,Department of Clinical Oncology, Haukeland University Hospital, Bergen, Norway. .,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Johan Staaf
- Department of Oncology and Pathology, Clinical Sciences, Lund University Hospital, Lund University, Lund, 221 85, Sweden.
| | - Göran Jönsson
- Department of Oncology and Pathology, Clinical Sciences, Lund University Hospital, Lund University, Lund, 221 85, Sweden.
| |
Collapse
|
22
|
Jin SG, Xiong W, Wu X, Yang L, Pfeifer GP. The DNA methylation landscape of human melanoma. Genomics 2015; 106:322-30. [PMID: 26384656 DOI: 10.1016/j.ygeno.2015.09.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 11/17/2022]
Abstract
Using MIRA-seq, we have characterized the DNA methylome of metastatic melanoma and normal melanocytes. Individual tumors contained several thousand hypermethylated regions. We discovered 179 tumor-specific methylation peaks present in all (27/27) melanomas that may be effective disease biomarkers, and 3113 methylation peaks were seen in >40% of the tumors. We found that 150 of the approximately 1200 tumor-associated methylation peaks near transcription start sites (TSSs) were marked by H3K27me3 in melanocytes. DNA methylation in melanoma was specific for distinct H3K27me3 peaks rather than for broadly covered regions. However, numerous H3K27me3 peak-associated TSS regions remained devoid of DNA methylation in tumors. There was no relationship between BRAF mutations and the number of methylation peaks. Gene expression analysis showed upregulated immune response genes in melanomas presumably as a result of lymphocyte infiltration. Down-regulated genes were enriched for melanocyte differentiation factors; e.g., KIT, PAX3 and SOX10 became methylated and downregulated in melanoma.
Collapse
Affiliation(s)
- Seung-Gi Jin
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA; Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Wenying Xiong
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Xiwei Wu
- Department of Molecular and Cellular Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Lu Yang
- Department of Molecular and Cellular Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Gerd P Pfeifer
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA; Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
23
|
Marzagalli M, Casati L, Moretti RM, Montagnani Marelli M, Limonta P. Estrogen Receptor β Agonists Differentially Affect the Growth of Human Melanoma Cell Lines. PLoS One 2015. [PMID: 26225426 PMCID: PMC4520550 DOI: 10.1371/journal.pone.0134396] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background Cutaneous melanoma is an aggressive malignancy; its incidence is increasing worldwide and its prognosis remains poor. Clinical observations indicate that estrogen receptor β (ERβ) is expressed in melanoma tissues and its expression decreases with tumor progression, suggesting its tumor suppressive function. These experiments were performed to investigate the effects of ERβ activation on melanoma cell growth. Methods and Results Protein expression was analyzed by Western blot and immunofluorescence assays. Cell proliferation was assessed by counting the cells by hemocytometer. ERβ transcriptional activity was evaluated by gene reporter assay. Global DNA methylation was analyzed by restriction enzyme assay and ERβ isoforms were identified by qRT-PCR. We demonstrated that ERβ is expressed in a panel of human melanoma cell lines (BLM, WM115, A375, WM1552). In BLM (NRAS-mutant) cells, ERβ agonists significantly and specifically inhibited cell proliferation. ERβ activation triggered its cytoplasmic-to-nuclear translocation and transcriptional activity. Moreover, the antiproliferative activity of ERβ agonists was associated with an altered expression of G1-S transition-related proteins. In these cells, global DNA was found to be hypomethylated when compared to normal melanocytes; this DNA hypomethylation status was reverted by ERβ activation. ERβ agonists also decreased the proliferation of WM115 (BRAF V600D-mutant) cells, while they failed to reduce the growth of A375 and WM1552 (BRAF V600E-mutant) cells. Finally, we could observe that ERβ isoforms are expressed at different levels in the various cell lines. Specific oncogenic mutations or differential expression of receptor isoforms might be responsible for the different responses of cell lines to ERβ agonists. Conclusions Our results demonstrate that ERβ is expressed in melanoma cell lines and that ERβ agonists differentially regulate the proliferation of these cells. These data confirm the notion that melanoma is a heterogeneous tumor and that genetic profiling is mandatory for the development of effective personalized therapeutic approaches for melanoma patients.
Collapse
Affiliation(s)
- Monica Marzagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Lavinia Casati
- Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Milano, Italy
| | - Roberta M. Moretti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Marina Montagnani Marelli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
- * E-mail:
| |
Collapse
|
24
|
DNA Methylation Levels of Melanoma Risk Genes Are Associated with Clinical Characteristics of Melanoma Patients. BIOMED RESEARCH INTERNATIONAL 2015; 2015:376423. [PMID: 26106605 PMCID: PMC4461735 DOI: 10.1155/2015/376423] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/23/2015] [Indexed: 12/17/2022]
Abstract
In melanoma development, oncogenic process is mediated by genetic and epigenetic mutations, and few studies have so far explored the role of DNA methylation either as predisposition factor or biomarker. We tested patient samples for germline CDKN2A methylation status and found no evidence of inactivation by promoter hypermethylation. We have also investigated the association of clinical characteristics of samples with the DNA methylation pattern of twelve genes relevant for melanomagenesis. Five genes (BAP1, MGMT, MITF, PALB2, and POT1) presented statistical association between blood DNA methylation levels and either CDKN2A-mutation status, number of lesions, or Breslow thickness. In tumors, five genes (KIT, MGMT, MITF, TERT, and TNF) exhibited methylation levels significantly different between tumor groups including acral compared to nonacral melanomas and matched primary lesions and metastases. Our data pinpoint that the methylation level of eight melanoma-associated genes could potentially represent markers for this disease both in peripheral blood and in tumor samples.
Collapse
|
25
|
Sinkovics JG. The cell survival pathways of the primordial RNA-DNA complex remain conserved in the extant genomes and may function as proto-oncogenes. Eur J Microbiol Immunol (Bp) 2015; 5:25-43. [PMID: 25883792 PMCID: PMC4397846 DOI: 10.1556/eujmi-d-14-00034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/22/2014] [Indexed: 01/09/2023] Open
Abstract
Malignantly transformed (cancer) cells of multicellular hosts, including human cells, operate activated biochemical pathways that recognizably derived from unicellular ancestors. The descendant heat shock proteins of thermophile archaea now chaperon oncoproteins. The ABC cassettes of toxin-producer zooxantella Symbiodinia algae pump out the cytoplasmic toxin molecules; malignantly transformed cells utilize the derivatives of these cassettes to get rid of chemotherapeuticals. High mobility group helix-loop-helix proteins, protein arginine methyltransferases, proliferating cell nuclear antigens, and Ki-67 nuclear proteins, that protect and repair DNA in unicellular life forms, support oncogenes in transformed cells. The cell survival pathways of Wnt-β-catenin, Hedgehog, PI3K, MAPK-ERK, STAT, Ets, JAK, Pak, Myb, achaete scute, circadian rhythms, Bruton kinase and others, which are physiological in uni- and early multicellular eukaryotic life forms, are constitutively encoded in complex oncogenic pathways in selected single cells of advanced multicellular eukaryotic hosts. Oncogenes and oncoproteins in advanced multicellular hosts recreate selected independently living and immortalized unicellular life forms, which are similar to extinct and extant protists. These unicellular life forms are recognized at the clinics as autologous "cancer cells".
Collapse
Affiliation(s)
- J G Sinkovics
- St. Joseph's Hospital Cancer Institute Affiliated with the H. L. Moffitt Comprehensive Cancer Center, Morsani College of Medicine, Department of Molecular Medicine, The University of South Florida Tampa, FL USA
| |
Collapse
|
26
|
Genome-Wide DNA Methylation Analysis in Melanoma Reveals the Importance of CpG Methylation in MITF Regulation. J Invest Dermatol 2015; 135:1820-1828. [PMID: 25705847 DOI: 10.1038/jid.2015.61] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 12/15/2022]
Abstract
The microphthalmia-associated transcription factor (MITF) is a key regulator of melanocyte development and a lineage-specific oncogene in melanoma; a highly lethal cancer known for its unpredictable clinical course. MITF is regulated by multiple intracellular signaling pathways, although the exact mechanisms that determine MITF expression and activity remain incompletely understood. In this study, we obtained genome-wide DNA methylation profiles from 50 stage IV melanomas, normal melanocytes, keratinocytes, and dermal fibroblasts and utilized The Cancer Genome Atlas data for experimental validation. By integrating DNA methylation and gene expression data, we found that hypermethylation of MITF and its co-regulated differentiation pathway genes corresponded to decreased gene expression levels. In cell lines with a hypermethylated MITF-pathway, overexpression of MITF did not alter the expression level or methylation status of the MITF pathway genes. In contrast, however, demethylation treatment of these cell lines induced MITF-pathway activity, confirming that gene regulation was controlled via methylation. The discovery that the activity of the master regulator of pigmentation, MITF, and its downstream targets may be regulated by hypermethylation has significant implications for understanding the development and evolvement of melanoma.
Collapse
|