1
|
Sun Z, Gao Q, Wei Y, Zhou Z, Chen Y, Xu C, Gao J, Liu D. Activated P2X receptors can up-regulate the expressions of inflammation-related genes via NF-κB pathway in spotted sea bass ( Lateolabrax maculatus). Front Immunol 2023; 14:1181067. [PMID: 37215129 PMCID: PMC10193947 DOI: 10.3389/fimmu.2023.1181067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
P2X receptors, including seven subtypes, i.e., P2X1-7, are the ligand-gated ion channels activated by the extracellular ATP playing the critical roles in inflammation and immune response. Even though the immune functions of P2X receptors have been characterized extensively in mammals, their functions in fish remain largely unknown. In this study, four P2X receptor homologues were characterized in spotted sea bass (Lateolabrax maculatus), which were named LmP2X2, LmP2X4, LmP2X5, and LmP2X7. Their tissue distributions and expression patterns were then investigated by real-time quantitative PCR (qPCR). Furthermore, their functions in regulating the expressions of inflammation-associated genes and possible signaling pathway were examined by qPCR and luciferase assay. The results showed that they share similar topological structures, conserved genomic organization, and gene synteny with their counterparts in other species previously investigated. And the four P2X receptors were expressed constitutively in the tested tissues. In addition, the expression of each of the four receptor genes was significantly induced by stimulation of Edwardsiella tarda and/or pathogen-associated molecular patterns (PAMPs) in vivo. Also, in primary head kidney leukocytes of spotted sea bass, LmP2X2 and LmP2X5 were induced by using PAMPs and/or ATP. Notably, the expressions of CCL2, IL-8, and TNF-α recognized as the pro-inflammatory cytokines, and of the four apoptosis-related genes, i.e., caspase3, caspase6, caspase7, and P53, were differentially upregulated in the HEK 293T cells with over-expressed LmP2X2 and/or LmP2X7 following ATP stimulation. Also, the over-expression of LmP2X4 can upregulate the expressions of IL-8, caspase6, caspase7, and P53, and LmP2X5 upregulates of IL-8, TNF-α, caspase7, and P53. Then in the present study it was demonstrated that the activation of any one of the four receptors significantly upregulated the activity of NF-κB promoter, suggesting that the activated LmP2Xs may regulate the expressions of pro-inflammatory cytokines via the NF-κB pathway. Taken together, the four P2X receptors were identified firstly from fish species in Perciformes, and they participate in innate immune response of spotted sea bass possibly by regulating the expressions of the inflammation-related genes. Our study provides the new evidences for the P2X receptors' involvement in fish immunity.
Collapse
Affiliation(s)
- Zhaosheng Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Qian Gao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Youchuan Wei
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Zhigang Zhou
- SinoNorway Fish Gastrointestinal Microbiota Joint Lab, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuxi Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Chong Xu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jiaqi Gao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Danjie Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
2
|
Sluyter R, Adriouch S, Fuller SJ, Nicke A, Sophocleous RA, Watson D. Animal Models for the Investigation of P2X7 Receptors. Int J Mol Sci 2023; 24:ijms24098225. [PMID: 37175933 PMCID: PMC10179175 DOI: 10.3390/ijms24098225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The P2X7 receptor is a trimeric ligand-gated cation channel activated by extracellular adenosine 5'-triphosphate. The study of animals has greatly advanced the investigation of P2X7 and helped to establish the numerous physiological and pathophysiological roles of this receptor in human health and disease. Following a short overview of the P2X7 distribution, roles and functional properties, this article discusses how animal models have contributed to the generation of P2X7-specific antibodies and nanobodies (including biologics), recombinant receptors and radioligands to study P2X7 as well as to the pharmacokinetic testing of P2X7 antagonists. This article then outlines how mouse and rat models have been used to study P2X7. These sections include discussions on preclinical disease models, polymorphic P2X7 variants, P2X7 knockout mice (including bone marrow chimeras and conditional knockouts), P2X7 reporter mice, humanized P2X7 mice and P2X7 knockout rats. Finally, this article reviews the limited number of studies involving guinea pigs, rabbits, monkeys (rhesus macaques), dogs, cats, zebrafish, and other fish species (seabream, ayu sweetfish, rainbow trout and Japanese flounder) to study P2X7.
Collapse
Affiliation(s)
- Ronald Sluyter
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Sahil Adriouch
- UniRouen, INSERM, U1234, Pathophysiology, Autoimmunity, and Immunotherapy, (PANTHER), Univ Rouen Normandie, University of Rouen, F-76000 Rouen, France
| | - Stephen J Fuller
- Sydney Medical School Nepean, Faculty of Medicine and Health, The University of Sydney, Nepean Hospital, Kingswood, NSW 2750, Australia
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, 80336 Munich, Germany
| | - Reece A Sophocleous
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Debbie Watson
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| |
Collapse
|
3
|
Morimoto N, Kono T, Sakai M, Hikima JI. Inflammasomes in Teleosts: Structures and Mechanisms That Induce Pyroptosis during Bacterial Infection. Int J Mol Sci 2021; 22:4389. [PMID: 33922312 PMCID: PMC8122782 DOI: 10.3390/ijms22094389] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Pattern recognition receptors (PRRs) play a crucial role in inducing inflammatory responses; they recognize pathogen-associated molecular patterns, damage-associated molecular patterns, and environmental factors. Nucleotide-binding oligomerization domain-leucine-rich repeat-containing receptors (NLRs) are part of the PRR family; they form a large multiple-protein complex called the inflammasome in the cytosol. In mammals, the inflammasome consists of an NLR, used as a sensor molecule, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) as an adaptor protein, and pro-caspase1 (Casp1). Inflammasome activation induces Casp1 activation, promoting the maturation of proinflammatory cytokines, such as interleukin (IL)-1β and IL-18, and the induction of inflammatory cell death called pyroptosis via gasdermin D cleavage in mammals. Inflammasome activation and pyroptosis in mammals play important roles in protecting the host from pathogen infection. Recently, numerous inflammasome-related genes in teleosts have been identified, and their conservation and/or differentiation between their expression in mammals and teleosts have also been elucidated. In this review, we summarize the current knowledge of the molecular structure and machinery of the inflammasomes and the ASC-spec to induce pyroptosis; moreover, we explore the protective role of the inflammasome against pathogenic infection in teleosts.
Collapse
Affiliation(s)
- Natsuki Morimoto
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan;
| | - Tomoya Kono
- Department of Biochemistry and Applied Bioscience, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan; (T.K.); (M.S.)
| | - Masahiro Sakai
- Department of Biochemistry and Applied Bioscience, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan; (T.K.); (M.S.)
| | - Jun-ichi Hikima
- Department of Biochemistry and Applied Bioscience, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan; (T.K.); (M.S.)
| |
Collapse
|
4
|
Martínez-Cuesta MÁ, Blanch-Ruiz MA, Ortega-Luna R, Sánchez-López A, Álvarez Á. Structural and Functional Basis for Understanding the Biological Significance of P2X7 Receptor. Int J Mol Sci 2020; 21:ijms21228454. [PMID: 33182829 PMCID: PMC7696479 DOI: 10.3390/ijms21228454] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/11/2022] Open
Abstract
The P2X7 receptor (P2X7R) possesses a unique structure associated to an as yet not fully understood mechanism of action that facilitates cell permeability to large ionic molecules through the receptor itself and/or nearby membrane proteins. High extracellular adenosine triphosphate (ATP) levels—inexistent in physiological conditions—are required for the receptor to be triggered and contribute to its role in cell damage signaling. The inconsistent data on its activation pathways and the few studies performed in natively expressed human P2X7R have led us to review the structure, activation pathways, and specific cellular location of P2X7R in order to analyze its biological relevance. The ATP-gated P2X7R is a homo-trimeric receptor channel that is occasionally hetero-trimeric and highly polymorphic, with at least nine human splice variants. It is localized predominantly in the cellular membrane and has a characteristic plasticity due to an extended C-termini, which confers it the capacity of interacting with membrane structural compounds and/or intracellular signaling messengers to mediate flexible transduction pathways. Diverse drugs and a few endogenous molecules have been highlighted as extracellular allosteric modulators of P2X7R. Therefore, studies in human cells that constitutively express P2X7R need to investigate the precise endogenous mediator located nearby the activation/modulation domains of the receptor. Such research could help us understand the possible physiological ATP-mediated P2X7R homeostasis signaling.
Collapse
Affiliation(s)
- María Ángeles Martínez-Cuesta
- Departamento de Farmacología, Facultad de Medicina y Odontología, Universidad de Valencia, 46010 Valencia, Spain; (M.A.B.-R.); (R.O.-L.); (A.S.-L.)
- CIBERehd, Valencia, Spain
- Correspondence: (M.Á.M.-C.); (Á.Á.); Tel.: +34-963983716 (M.Á.M.-C.); +34-963864898 (Á.Á.)
| | - María Amparo Blanch-Ruiz
- Departamento de Farmacología, Facultad de Medicina y Odontología, Universidad de Valencia, 46010 Valencia, Spain; (M.A.B.-R.); (R.O.-L.); (A.S.-L.)
| | - Raquel Ortega-Luna
- Departamento de Farmacología, Facultad de Medicina y Odontología, Universidad de Valencia, 46010 Valencia, Spain; (M.A.B.-R.); (R.O.-L.); (A.S.-L.)
| | - Ainhoa Sánchez-López
- Departamento de Farmacología, Facultad de Medicina y Odontología, Universidad de Valencia, 46010 Valencia, Spain; (M.A.B.-R.); (R.O.-L.); (A.S.-L.)
| | - Ángeles Álvarez
- Departamento de Farmacología, Facultad de Medicina y Odontología, Universidad de Valencia, 46010 Valencia, Spain; (M.A.B.-R.); (R.O.-L.); (A.S.-L.)
- CIBERehd, Valencia, Spain
- Correspondence: (M.Á.M.-C.); (Á.Á.); Tel.: +34-963983716 (M.Á.M.-C.); +34-963864898 (Á.Á.)
| |
Collapse
|
5
|
Li S, Chen X, Li J, Li X, Zhang T, Hao G, Sun J. Extracellular ATP is a potent signaling molecule in the activation of the Japanese flounder ( Paralichthys olivaceus) innate immune responses. Innate Immun 2020; 26:413-423. [PMID: 31914841 PMCID: PMC7903527 DOI: 10.1177/1753425918804635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Innate immunity is the first line of defense against pathogen infections. Extracellular ATP (eATP) is one of the most studied danger-associated molecular pattern molecules that can activate host innate immune responses through binding with and activating purinergic receptors on the plasma membrane. The detailed actions of eATP on fish innate immunity, however, remain poorly understood. In this study, we investigated bacterial pathogen-induced ATP release in head kidney cells of the Japanese flounder Paralichthys olivaceus. We also examined the actions of eATP on pro-inflammatory cytokine and immune-related gene expression, the activity of induced NO synthase (iNOS), and the production of reactive oxygen species (ROS) and NO in Japanese flounder immune cells. We demonstrate that ATP is dynamically released from Japanese flounder head kidney cells into the extracellular milieu during immune challenge by formalin-inactivated Edwardsiella tarda and Vibrio anguillarum. In addition, we show that eATP administration results in profound up-regulation of pro-inflammatory cytokine gene expression, iNOS activity, and inflammatory mediator production, including ROS and NO, in Japanese flounder immune cells. Altogether, our findings demonstrate that eATP is a potent signaling molecule for the activation of innate immune responses in fish.
Collapse
Affiliation(s)
- Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, China
| | - Xiaoli Chen
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, China
| | - Jiafang Li
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, China
| | - Xuejing Li
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, China
| | - Tianxu Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, China
| | - Gaixiang Hao
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, China
| |
Collapse
|
6
|
Li S, Li J, Peng W, Hao G, Sun J. Characterization of the responses of the caspase 2, 3, 6 and 8 genes to immune challenges and extracellular ATP stimulation in the Japanese flounder (Paralichthys olivaceus). BMC Vet Res 2019; 15:20. [PMID: 30621683 PMCID: PMC6325855 DOI: 10.1186/s12917-018-1763-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 12/26/2018] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Caspases are a family of conserved intracellular cysteine-dependent aspartate-specific cysteine proteases that play important roles in regulating cell death and inflammation. Our previous study revealed the importance of the inflammatory caspase 1 gene in extracellular ATP-mediated immune signaling in Japanese flounder, Paralichthys olivaceus. To explore the potential roles of other caspases in P. olivaceus innate immunity, we extended our study by characterizing of the responses of four additional P. olivaceus caspase genes, termed JfCaspase 2, 3, 6 and 8, to inflammatory challenge and extracellular ATP stimulation. RESULTS Sequence analysis revealed that the domain structures of all the Japanese flounder caspase proteins are evolutionarily conserved. Quantitative real-time PCR analysis showed that the JfCaspase 2, 3, 6 and 8 genes were expressed ubiquitously but at unequal levels in all examined Japanese flounder normal tissues. In addition, the basal gene expression levels of JfCaspase 2, 3, 6 and 8 were higher than those of JfCaspase 1 in both Japanese flounder head kidney macrophages (HKMs) and peripheral blood leukocytes (PBLs). Furthermore, immune challenge experiments showed that the inflammatory stimuli LPS and poly(I:C) significantly modulated the expression of the JfCaspase 2, 3, 6 and 8 genes in Japanese flounder immune cells. Finally, DNA fragmentation, associated with increased extracellular ATP-induced JfCaspase 2, 3, 6 and 8 gene expression and enzymatic activity, was inhibited by the caspase inhibitor Z-VAD-FMK in the HKMs. CONCLUSION Our findings demonstrate broad participation of multiple caspase genes in response to inflammatory stimulation in Japanese flounder immune cells and provide new evidence for the involvement of caspase(s) in extracellular ATP-induced apoptosis in fish.
Collapse
Affiliation(s)
- Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Tianjin, 300387 Xiqing District China
| | - Jiafang Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Tianjin, 300387 Xiqing District China
| | - Weijiao Peng
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Tianjin, 300387 Xiqing District China
| | - Gaixiang Hao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Tianjin, 300387 Xiqing District China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Tianjin, 300387 Xiqing District China
| |
Collapse
|
7
|
Li S, Li J, Wang N, Hao G, Sun J. Characterization of UDP-Activated Purinergic Receptor P2Y₆ Involved in Japanese Flounder Paralichthys olivaceus Innate Immunity. Int J Mol Sci 2018; 19:ijms19072095. [PMID: 30029501 PMCID: PMC6073673 DOI: 10.3390/ijms19072095] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 07/08/2018] [Accepted: 07/16/2018] [Indexed: 11/24/2022] Open
Abstract
Uridine 5’-diphosphate (UDP)-activated purinergic receptor P2Y6 is a member of a G-protein-coupled purinergic receptor family that plays an important role in mammalian innate immunity. However, the role of the P2Y6 receptor (P2Y6R) in fish immunity has not been investigated. In this report, we characterized a P2Y6R gene from Japanese flounder (Paralichthys olivaceus) and examined its role in fish innate immunity. Sequence analysis reveals that the Japanese flounder P2Y6R protein is conserved and possesses four potential glycosylation sites. Quantitative real-time RT-PCR analysis shows that P2Y6R is broadly distributed in all examined Japanese flounder tissues with dominant expression in the liver. In addition, P2Y6R gene expression was up-regulated in head kidney macrophages (HKMs) upon lipopolysaccharides (LPS) and poly(I:C) stimulations but down-regulated by LPS challenge in peripheral blood leukocytes (PBLs). Furthermore, pharmacological inhibition of the endogenous P2Y6 receptor activity by the potently selective P2Y6R antagonist, MRS 2578, greatly up-regulated pro-inflammatory cytokine interleukin (IL)-1β, IL-6 and TNF-α gene expression in PBL cells treated with UDP. Moreover, LPS- and poly(I:C)-induced gene expression of IL-1β and TNF-α in Japanese flounder PBL cells was attenuated significantly by inhibition of P2Y6R activity with antagonist MRS 2578. Collectively, we, for the first time, showed the involvement of functional purinergic P2Y6R in fish innate immunity.
Collapse
Affiliation(s)
- Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.
| | - Jiafang Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.
| | - Nan Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.
| | - Gaixiang Hao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
8
|
Paredes C, Li S, Chen X, Coddou C. Divalent metal modulation of Japanese flounder ( Paralichthys olivaceus) purinergic P2X7 receptor. FEBS Open Bio 2018; 8:383-389. [PMID: 29511615 PMCID: PMC5832984 DOI: 10.1002/2211-5463.12375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 01/09/2023] Open
Abstract
Paralichthys olivaceus P2X7 receptor (poP2X7R) is a recently identified as a P2X7 purinergic receptor involved in innate immunity of the Japanese flounder Paralichthys olivaceus. Divalent metals are allosteric modulators of mammalian P2XRs, but there is no information for fish P2XRs. Here, we characterized the effects of divalent metals on poP2X7R channel activity by electrophysiology and molecular biology techniques. Copper, zinc and mercury inhibited poP2X7R‐mediated currents with different maximal inhibition potency, while cadmium had no effect on poP2X7R activity. Mercury‐induced inhibition was irreversible, but the inhibitory effects of copper and zinc were reversed after washout. Cooper and zinc also reduced poP2X7R‐mediated interleukin‐1 mRNA production. These findings suggest that divalent metals have potential effects on the Japanese flounder innate immune response through modulation of poP2X7R activity.
Collapse
Affiliation(s)
- Carolina Paredes
- Department of Biomedical Sciences Faculty of Medicine Universidad Católica del Norte Coquimbo Chile
| | - Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance College of Life Sciences Tianjin Normal University China
| | - Xiaoli Chen
- Tianjin Key Laboratory of Animal and Plant Resistance College of Life Sciences Tianjin Normal University China
| | - Claudio Coddou
- Department of Biomedical Sciences Faculty of Medicine Universidad Católica del Norte Coquimbo Chile
| |
Collapse
|
9
|
Li S, Peng W, Hao G, Li J, Geng X, Sun J. Identification and functional analysis of dual-specificity MAP kinase phosphatase 6 gene (dusp6) in response to immune challenges in Japanese flounder Paralichthys olivaceus. FISH & SHELLFISH IMMUNOLOGY 2017; 60:411-419. [PMID: 27940366 DOI: 10.1016/j.fsi.2016.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/29/2016] [Accepted: 12/05/2016] [Indexed: 06/06/2023]
Abstract
Dual-specificity phosphatase 6 (Dusp6) is a member of mitogen-activated protein kinase (MAPK) phosphatases that play crucial roles in regulating MAPK signaling and immune response. The immunological relevance of Dusp6 in fish, however, remains largely uncharacterized. In the present study, a full-length Japanese flounder dusp6 cDNA ortholog, termed PoDusp6, was identified and characterized from Paralichthys olivaceus. The deduced PoDusp6 protein is comprised of 383 amino acids with a conserved N-terminal regulatory rhodanese homology domain and a C-terminal catalytic domain. Immunofluorescence microscopy revealed that PoDusp6 protein is mainly localized in cytoplasm. Sequence analysis indicates that PoDusp6 is highly conserved (>70% identity) throughout the evolution from teleost to mammals. In unstimulated conditions, PoDusp6 mRNA was present in all examined tissues and showed the highest expression in Japanese flounder head kidney macrophages (HKMs). Immune challenge experiments revealed that the expression of PoDusp6 was down-regulated at the early stage after LPS and poly(I:C) stimulations but significantly up-regulated at the later stage in the HKMs. The similar expression pattern was also observed in the Japanese flounder immune-related tissues including head kidney, gill and spleen upon bacterial challenge with Edwardsiella tarda. Overexpression of PoDusp6 in Japanese flounder FG-9307 cells led to a significant down-regulation of proinflammatory cytokine genes IL-1beta, TNF-alpha and IFN-gamma, and antiviral gene Mx. Interestingly, inhibition of Dusp6 activity also down-regulated the LPS-induced IL-beta gene expression but did not affected on the LPS-induced IFN-gamma and TNF-alpha expression in the HKMs. Our findings suggest that the expression of PoDusp6 is modulated by immune stimuli and PoDusp6 may act as an essential modulator in fish inflammatory response.
Collapse
Affiliation(s)
- Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China.
| | - Weijiao Peng
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Gaixiang Hao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Jiafang Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Xuyun Geng
- Tianjin Center for Control and Prevention of Aquatic Animal Infectious Disease, 442 South Jiefang Road, Hexi District, Tianjin 300221, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China.
| |
Collapse
|
10
|
Abstract
The P2X7 receptor is a trimeric ion channel gated by extracellular adenosine 5'-triphosphate. The receptor is present on an increasing number of different cells types including stem, blood, glial, neural, ocular, bone, dental, exocrine, endothelial, muscle, renal and skin cells. The P2X7 receptor induces various downstream events in a cell-specific manner, including inflammatory molecule release, cell proliferation and death, metabolic events, and phagocytosis. As such this receptor plays important roles in heath and disease. Increasing knowledge about the P2X7 receptor has been gained from studies of, but not limited to, protein chemistry including cloning, site-directed mutagenesis, crystal structures and atomic modeling, as well as from studies of primary tissues and transgenic mice. This chapter focuses on the P2X7 receptor itself. This includes the P2RX7 gene and its products including splice and polymorphic variants. This chapter also reviews modulators of P2X7 receptor activation and inhibition, as well as the transcriptional regulation of the P2RX7 gene via its promoter and enhancer regions, and by microRNA and long-coding RNA. Furthermore, this chapter discusses the post-translational modification of the P2X7 receptor by N-linked glycosylation, adenosine 5'-diphosphate ribosylation and palmitoylation. Finally, this chapter reviews interaction partners of the P2X7 receptor, and its cellular localisation and trafficking within cells.
Collapse
Affiliation(s)
- Ronald Sluyter
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia. .,Centre for Medical and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia. .,Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
11
|
Li S, Peng W, Chen X, Geng X, Zhan W, Sun J. Expression and role of gap junction protein connexin43 in immune challenge-induced extracellular ATP release in Japanese flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2016; 55:348-357. [PMID: 27291350 DOI: 10.1016/j.fsi.2016.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/02/2016] [Accepted: 06/08/2016] [Indexed: 06/06/2023]
Abstract
Connexin43 (Cx43) is the best characterized gap junction protein that allows the direct exchange of signaling molecules during cell-to-cell communications. The immunological functions and ATP permeable properties of Cx43 have been insensitively examined in mammals. The similar biological significance of Cx43 in lower vertebrates, however, is not yet understood. In the present study we identified and characterized a Cx43 ortholog (termed PoCx43) from Japanese flounder (Paralichthys olivaceus) and investigated its role in immune challenge-induced extracellular ATP release. PoCx43 mRNA transcripts are widely distributed in all tested normal tissues and cells with predominant expression in the brain, and are significantly up-regulated by LPS, poly(I:C) and zymosan challenges and Edwardsiella tarda infections as well, suggesting that PoCx43 expression was modulated by the inflammatory stresses. In addition, cyclic AMP (cAMP), an essential second messenger, also plays an important role in regulating PoCx43 gene expression, by which the PoCx43-mediated gap junctional communication may be regulated. Furthermore, overexpression of PoCx43 in Japanese flounder FG-9307 cells significantly potentiates the LPS- and poly(I:C)-induced extracellular ATP release and this enhanced ATP release was attenuated by pre-incubation with Cx43 inhibitor carbenoxolone. In a complementary experiment, down-regulation of PoCx43 endogenous expression in FG-9307 cells with small interfering RNA also significantly reduced the PAMP-induced extracellular ATP release, suggesting that PoCx43 is an important ATP release conduit under the immune challenge conditions. Finally, we showed that extracellular ATP stimulation led to an increased PoCx43 expression which probably provides a feedback mechanism in regulating PoCx43 expression at the transcriptional level. These findings suggest that PoCx43 is an inducible immune response gene and an important conduit for immune challenge-induced extracellular ATP release in fish.
Collapse
Affiliation(s)
- Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China.
| | - Weijiao Peng
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Xiaoli Chen
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Xuyun Geng
- Tianjin Center for Control and Prevention of Aquatic Animal Infectious Disease, 442 South Jiefang Road, Hexi District, Tianjin 300221, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, LMMEC, Ocean University of China, Qingdao 266003, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China.
| |
Collapse
|
12
|
Li S, Chen X, Hao G, Geng X, Zhan W, Sun J. Identification and characterization of ATP-gated P2X2 receptor gene dominantly expressed in the Japanese flounder (Paralichthys olivaceus) head kidney macrophages. FISH & SHELLFISH IMMUNOLOGY 2016; 54:312-321. [PMID: 27103003 DOI: 10.1016/j.fsi.2016.04.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 03/17/2016] [Accepted: 04/15/2016] [Indexed: 06/05/2023]
Abstract
P2X2 receptor (P2X2R) belongs to the family of purinergic receptors that have been shown to play important roles in regulating host innate immune response. Although the immunologic significance of P2X2R has been studied in mammals, the presence and immune relevance of P2X2R in fish remains unclear. In this study we extended our previous observations by identifying and characterizing a P2X2R ortholog (termed PoP2X2R) from Japanese flounder (Paralichthys olivaceus). Quantitative real-time PCR analysis revealed that PoP2X2R mRNA transcripts are widely distributed in all examined normal tissues and are dominantly expressed in hepatopancreas tissue. In addition, we for the first time showed that multiple P2XR subtypes, including P2X2R, P2X4R and P2X7R are co-expressed in the Japanese flounder head kidney macrophages (HKMs) and peripheral blood lymphocytes (PBLs), indicating that they may assemble into hetero-receptor complex or interact in the form of homotrimers to trigger diverse purinergic signaling in the Japanese flounder immune cells. Compared with the known Japanese flounder P2X4 and P2X7 receptors, however, PoP2X2R is much more abundantly expressed in the Japanese flounder HKM cells, suggesting that PoP2X2R may play an important role in this type of immune cells. Glycosylation and immunohistochemistry analyses revealed that PoP2X2R is a glycoprotein expressed on the plasma membrane. Immune challenges experiments showed that PoP2X2R was significantly induced by LPS, poly(I:C) and zymosan stimulations in the HKM and PBL cells, and by Edwardsiella tarda infections in spleen and gill tissues as well. Taken together, we have identified and characterized a new P2X2R member that is involved in fish innate immune response.
Collapse
Affiliation(s)
- Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China.
| | - Xiaoli Chen
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Gaixiang Hao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Xuyun Geng
- Tianjin Center for Control and Prevention of Aquatic Animal Infectious Disease, 442 South Jiefang Road, Hexi District, Tianjin 300221, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, LMMEC, Ocean University of China, Qingdao 266003, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China.
| |
Collapse
|
13
|
Li S, Chen X, Peng W, Hao G, Geng X, Zhan W, Sun J. Cloning and characterization of apoptosis-associated speck-like protein containing a CARD domain (ASC) gene from Japanese flounder Paralichthys olivaceus. FISH & SHELLFISH IMMUNOLOGY 2016; 54:294-301. [PMID: 27103005 DOI: 10.1016/j.fsi.2016.04.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 04/10/2016] [Accepted: 04/15/2016] [Indexed: 06/05/2023]
Abstract
Apoptosis-associated speck-like protein containing a CARD domain (ASC) is a critical adaptor molecule in multiple inflammasome protein complexes that mediate inflammation and host defense. However, few studies have been performed in lower vertebrates such as in teleost. Here we identified and characterized a novel ASC gene (namely PoASC) from Japanese flounder Paralichthys olivaceus. The complete cDNA sequence of PoASC contains a 22 bp 5'-untranslated sequence, a 612 bp open reading frame, and a 438 bp 3'-untranslated sequence. The deduced PoASC protein is comprised of 203 amino acids with a conserved N-terminal PYD domain and a C-terminal CARD domain and shows 35-62% sequence identity with other vertebrate ASC proteins. PoASC mRNA transcripts was detected in various Japanese flounder tissues and is dominantly expressed in hepatopancreas. Oligomeric speck-like structures were observed when PoASC was exogenously expressed in Japanese flounder FG-9307 cells. Immune challenge experiments revealed that PoASC gene expression was significantly induced in the Japanese flounder head kidney macrophages and peripheral blood leukocytes by the canonical TLR ligands LPS, Poly(I:C) and zymosan stimulations. In addition, the induction of PoASC was also observed in Edwardsiella tarda challenged head kidney and gill tissues. Furthermore, we for the first time showed that extracellular ATP, an important signaling molecule in triggering innate immune response and activation of NLR inflammasome, significantly up-regulates PoASC expression in the Japanese flounder head kidney macrophages in a dose-dependent manner. Together, these findings addressed the involvement of PoASC in TLR and extracellular ATP-mediated innate immune signaling in the Japanese flounders.
Collapse
Affiliation(s)
- Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China.
| | - Xiaoli Chen
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Weijiao Peng
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Gaixiang Hao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Xuyun Geng
- Tianjin Center for Control and Prevention of Aquatic Animal Infectious Disease, 442 South Jiefang Road, Hexi District, Tianjin 300221, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, LMMEC, Ocean University of China, Qingdao 266003, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China.
| |
Collapse
|
14
|
Li S, Chen X, Hao G, Geng X, Zhan W, Sun J. Identification and characterization of a novel NOD-like receptor family CARD domain containing 3 gene in response to extracellular ATP stimulation and its role in regulating LPS-induced innate immune response in Japanese flounder (Paralichthys olivaceus) head kidney macrophages. FISH & SHELLFISH IMMUNOLOGY 2016; 50:79-90. [PMID: 26820104 DOI: 10.1016/j.fsi.2016.01.029] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 01/20/2016] [Accepted: 01/22/2016] [Indexed: 06/05/2023]
Abstract
Nucleotide oligomerization domain (NOD)-like receptor (NLR) family with a caspase activation and recruitment domain (CARD) containing 3 (NLRC3) protein is an important cytosolic pattern recognition receptor that negatively regulates innate immune response in mammals. Hitherto, the immunological significance of NLRC3 protein in fish remains largely uncharacterized. Here we identified and characterized a novel NLRC3 gene (named poNLRC3) implicated in regulation of fish innate immunity from Japanese flounder Paralichthys olivaceus. The poNLRC3 protein is a cytoplasmic protein with an undefined N-terminal domain, a NACHT domain, a fish-specific NACHT associated domain, six LRR motifs, and a C-terminal fish-specific PYR/SPYR (B30.2) domain but only shares less than 40% sequence identities with the known Japanese flounder NLRC proteins. poNLRC3 gene is ubiquitously expressed in all tested tissues and is dominantly expressed in the Japanese flounder head kidney macrophages (HKMs). We for the first time showed that poNLRC3 expression was significantly modulated by the stimulation of extracellular ATP, an important danger/damage-associated molecular pattern in activating innate immunity in P. olivaceus. Importantly, we revealed that poNLRC3 plays an important role in positively regulating ATP-induced IL-1beta and IL-6 gene expression, suggesting the involvement of poNLRC3 in extracellular ATP-mediated immune signaling. In addition, we showed that poNLRC3 mRNA expression was up-regulated in response to LPS and Edwardsiella tarda immune challenges. Finally, we showed that down-regulating the endogenous poNLRC3 expression with small interfering RNA significantly reduced LPS-induced proinflammatory cytokine gene expression in the Japanese flounder HKM cells. Altogether, we have identified a novel inducible fish NLR member, poNLRC3, which is involved in extracellular ATP-mediated immune signaling and may positively regulate the LPS-induced innate immune response in the Japanese flounder HKM cells.
Collapse
Affiliation(s)
- Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China.
| | - Xiaoli Chen
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Gaixiang Hao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Xuyun Geng
- Tianjin Center for Control and Prevention of Aquatic Animal Infectious Disease, 442 South Jiefang Road, Hexi District, Tianjin 300221, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, LMMEC, Ocean University of China, Qingdao 266003, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China.
| |
Collapse
|
15
|
Li S, Chen X, Li X, Geng X, Lin R, Li M, Sun J. Molecular characterization of purinergic receptor P2X4 involved in Japanese flounder (Paralichthys olivaceus) innate immune response and its interaction with ATP release channel Pannexin1. FISH & SHELLFISH IMMUNOLOGY 2015; 47:100-109. [PMID: 26321132 DOI: 10.1016/j.fsi.2015.08.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/25/2015] [Accepted: 08/26/2015] [Indexed: 06/04/2023]
Abstract
P2X4 receptor (P2X4R) is a member of trimeric ATP-gated receptor channel family. Despite the importance of P2X4R in innate immunity has been addressed in mammals, the immunological significance of P2X4R has not been characterized in fish. In the present study we identified a full-length P2X4R cDNA sequence from Japanese flounder Paralichthys olivaceus (termed poP2X4R) by RT-PCR and RACE approaches and analyzed its gene expression patterns under normal and immune challenge conditions. Qualitative RT-PCR analyses revealed that poP2X4R has a widespread distribution in all examined tissues but dominantly expressed in hepatopancreas. In Japanese flounder head kidney macrophages and peripheral blood lymphocytes, poP2X4R was rapidly and significantly up-regulated by the immune challenges of LPS, poly(I:C) and zymosan. In addition, poP2X4R was up-regulated in spleen, head kidney and gill tissues by Edwardsiella tarda infections. Furthermore, we showed that poP2X4R is a membrane glycoprotein which could interact with ATP release channel Pannexin1, an important component in extracellular ATP-activated purinergic signaling pathways involved in Japanese flounder innate immune response. From a comparative immunological point of view, our results have provided new evidence for the involvement of extracellular ATP-gated P2XRs in fish innate immunity.
Collapse
Affiliation(s)
- Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China.
| | - Xiaoli Chen
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Xuejing Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Xuyun Geng
- Tianjin Center for Control and Prevention of Aquatic Animal Infectious Disease, 442 South Jiefang Road, Hexi District, Tianjin 300221, China
| | - Rongxin Lin
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Ming Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China.
| |
Collapse
|
16
|
Li S, Chen X, Geng X, Zhan W, Sun J. Identification and expression analysis of nascent polypeptide-associated complex alpha gene in response to immune challenges in Japanese flounder Paralichthys olivaceus. FISH & SHELLFISH IMMUNOLOGY 2015; 46:261-267. [PMID: 26142144 DOI: 10.1016/j.fsi.2015.06.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/25/2015] [Accepted: 06/25/2015] [Indexed: 06/04/2023]
Abstract
Nascent polypeptide-associated complex (NAC) is a conserved heterodimeric protein consisting of alpha and beta subunits. In addition to acting as a protein translation chaperone by forming a heterodimer with the beta subunit, NAC alpha (NACA) also shows important immune significance independent of NAC beta in mammalian cells. In lower vertebrates, however, the immunological relevance of NACA has not been revealed yet. In the present study, we identified and characterized a NACA gene (termed poNACA) involved in innate immune response in Japanese flounder Paralichthys olivaceus. poNACA encodes a 215-amino-acid protein, with an apparent molecular weight of 23.5 kDa and an isoelectric point of 4.51. Tissue distribution analysis revealed that poNACA gene was constitutively expressed in all examined tissues and showed dominant expression in hepatopancreas and gonad tissues. In enriched Japanese flounder head kidney macrophages and peripheral blood leucocytes, the expression of poNACA mRNA transcript was significantly induced by LPS, Poly(I:C) and zymosan stimulations. In vivo experiments further revealed that poNACA gene expression was up-regulated in head kidney, gill and spleen tissues in response to Edwardsiella tarda challenges. Furthermore, overexpression of poNACA in Japanese flounder FG-9307 cells resulted in increased gene expression of IL-1beta, IL-11 and TNF-alpha, and myxovirus resistance (Mx). Taken together, our findings indicate that an immune response gene, poNACA, involved in innate immune regulation in P. olivaceus has been identified.
Collapse
Affiliation(s)
- Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China.
| | - Xiaoli Chen
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Xuyun Geng
- Tianjin Center for Control and Prevention of Aquatic Animal Infectious Disease, 442 South Jiefang Road, Hexi District, Tianjin 300221, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, LMMEC, Ocean University of China, Qingdao 266003, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China.
| |
Collapse
|
17
|
Huang L, Li G, Mo Z, Xiao P, Li J, Huang J. De Novo assembly of the Japanese flounder (Paralichthys olivaceus) spleen transcriptome to identify putative genes involved in immunity. PLoS One 2015; 10:e0117642. [PMID: 25723398 PMCID: PMC4344349 DOI: 10.1371/journal.pone.0117642] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 12/30/2014] [Indexed: 12/23/2022] Open
Abstract
Background Japanese flounder (Paralichthys olivaceus) is an economically important marine fish in Asia and has suffered from disease outbreaks caused by various pathogens, which requires more information for immune relevant genes on genome background. However, genomic and transcriptomic data for Japanese flounder remain scarce, which limits studies on the immune system of this species. In this study, we characterized the Japanese flounder spleen transcriptome using an Illumina paired-end sequencing platform to identify putative genes involved in immunity. Methodology/Principal Findings A cDNA library from the spleen of P. olivaceus was constructed and randomly sequenced using an Illumina technique. The removal of low quality reads generated 12,196,968 trimmed reads, which assembled into 96,627 unigenes. A total of 21,391 unigenes (22.14%) were annotated in the NCBI Nr database, and only 1.1% of the BLASTx top-hits matched P. olivaceus protein sequences. Approximately 12,503 (58.45%) unigenes were categorized into three Gene Ontology groups, 19,547 (91.38%) were classified into 26 Cluster of Orthologous Groups, and 10,649 (49.78%) were assigned to six Kyoto Encyclopedia of Genes and Genomes pathways. Furthermore, 40,928 putative simple sequence repeats and 47, 362 putative single nucleotide polymorphisms were identified. Importantly, we identified 1,563 putative immune-associated unigenes that mapped to 15 immune signaling pathways. Conclusions/Significance The P. olivaceus transciptome data provides a rich source to discover and identify new genes, and the immune-relevant sequences identified here will facilitate our understanding of the mechanisms involved in the immune response. Furthermore, the plentiful potential SSRs and SNPs found in this study are important resources with respect to future development of a linkage map or marker assisted breeding programs for the flounder.
Collapse
Affiliation(s)
- Lin Huang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- College of Life Science, Qingdao University, Qingdao, China
| | - Guiyang Li
- Key Laboratory of Sustainable Development of Marine Fisheries, The Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhaolan Mo
- Key Laboratory of Sustainable Development of Marine Fisheries, The Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- National Laboratory for Marine Science and Technology, Qingdao, China
- * E-mail:
| | - Peng Xiao
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Jie Li
- Key Laboratory of Sustainable Development of Marine Fisheries, The Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jie Huang
- Key Laboratory of Sustainable Development of Marine Fisheries, The Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
18
|
Li S, Li X, Chen X, Geng X, Sun J. ATP release channel Pannexin1 is a novel immune response gene in Japanese flounder Paralichthys olivaceus. FISH & SHELLFISH IMMUNOLOGY 2014; 40:164-173. [PMID: 25007779 DOI: 10.1016/j.fsi.2014.06.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/22/2014] [Accepted: 06/27/2014] [Indexed: 06/03/2023]
Abstract
Extracellular ATP is an important damage-associated molecular pattern molecule that plays key roles in innate immunity. In fish, however, the mechanism for extracellular ATP release remains largely undefined. Pannexin1 (Panx1) is a newly discovered extracellular ATP release channel with a wide tissue distribution and diverse biological functions in mammals. In the present study, we identified and characterized a Panx1 homolog cDNA, termed poPanx1, from Japanese flounder Paralichthys olivaceus, which is one of the most important economic mariculture fish species in China. PoPanx1 is a membrane protein that is composed of 437 amino acids with an estimated molecular mass of 48.7 kDa and an isoelectric point of 6.46. The poPanx1 mRNA ubiquitously expresses in all examined tissues but with predominant expression in hepatopancreas in unstimulated healthy adult Japanese flounder. In Japanese flounder head kidney primary cells, poPanx1 gene expression could be significantly induced by pathogen-associated molecular patterns (PAMPs; polyinosinic-polycytidylic acid and bacterial endotoxin LPS) stimulations. In vivo experiments revealed that poPanx1 mRNA expression was significantly up-regulated upon immune challenges with Edwardsiella tarda and Vibrio anguillarum. Furthermore, we showed that poPanx1 is an important channel protein for PAMP-induced extracellular ATP release that is required for activation of purinergic signaling in fish innate immunity. Taken together, our findings suggest that the ATP release channel, poPanx1, is a novel immune response gene in purinergic signaling of Japanese flounder P. olivaceus.
Collapse
Affiliation(s)
- Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 Binshuixidao, Xiqing District, Tianjin 300387, China.
| | - Xuejing Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 Binshuixidao, Xiqing District, Tianjin 300387, China
| | - Xiaoli Chen
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 Binshuixidao, Xiqing District, Tianjin 300387, China
| | - Xuyun Geng
- Tianjin Center for Control and Prevention of Aquatic Animal Infectious Disease, 442 South Jiefang Road, Hexi District, Tianjin 300221, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 Binshuixidao, Xiqing District, Tianjin 300387, China.
| |
Collapse
|