1
|
Shuai Y, Xu N, Zhao C, Yang F, Ning Z, Li G. MicroRNA-10 Family Promotes Renal Fibrosis through the VASH-1/Smad3 Pathway. Int J Mol Sci 2024; 25:5232. [PMID: 38791272 PMCID: PMC11120755 DOI: 10.3390/ijms25105232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Renal fibrosis (RF) stands as a pivotal pathological process in the advanced stages of chronic kidney disease (CKD), and impeding its progression is paramount for delaying the advancement of CKD. The miR-10 family, inclusive of miR-10a and miR-10b, has been implicated in the development of various fibrotic diseases. Nevertheless, the precise role of miR-10 in the development of RF remains enigmatic. In this study, we utilized both an in vivo model involving unilateral ureteral obstruction (UUO) in mice and an in vitro model employing TGF-β1 stimulation in HK-2 cells to unravel the mechanism underlying the involvement of miR-10a/b in RF. The findings revealed heightened expression of miR-10a and miR-10b in the kidneys of UUO mice, accompanied by a substantial increase in p-Smad3 and renal fibrosis-related proteins. Conversely, the deletion of these two genes led to a notable reduction in p-Smad3 levels and the alleviation of RF in mouse kidneys. In the in vitro model of TGF-β1-stimulated HK-2 cells, the co-overexpression of miR-10a and miR-10b fostered the phosphorylation of Smad3 and RF, while the inhibition of miR-10a and miR-10b resulted in a decrease in p-Smad3 levels and RF. Further research revealed that miR-10a and miR-10b, through binding to the 3'UTR region of Vasohibin-1 (VASH-1), suppressed the expression of VASH-1, thereby promoting the elevation of p-Smad3 and exacerbating the progression of RF. The miR-10 family may play a pivotal role in RF.
Collapse
Affiliation(s)
| | | | | | | | | | - Guoxia Li
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
2
|
Gacche RN. Changing landscape of anti-angiogenic therapy: Novel approaches and clinical perspectives. Biochim Biophys Acta Rev Cancer 2023; 1878:189020. [PMID: 37951481 DOI: 10.1016/j.bbcan.2023.189020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023]
Abstract
Targeting angiogenesis has remained one of the important aspects in disease biology in general and cancer in particular. Currently (June 2023), over 593 clinical trials have been registered at ClinicalTrials.gov having inference of term 'angiogenesis'. A panel of 14 anti-angiogenic drugs have been approved by FDA for the treatment of variety of cancers and other human ailments. Although the anti-angiogenic therapy (AAT) has gained significant clinical attention as a promising approach in the treatment of various diseases, particularly cancer, however, sizable literature has accumulated in the recent past describing the aggressive nature of tumours after the drug holidays, evolving drug resistance and off-target toxicities. Nevertheless, the emergence of inscrutable compensatory or alternative angiogenic mechanisms is limiting the efficacy of anti-angiogenic drugs and focussing the therapeutic regime as a puzzle of 'Lernaean hydra'. This review offers an overview of recent updates on the efficacy of antiangiogenic therapy and the current clinical performance of aaRTK inhibitors. Additionally, it also explores the changing application landscape of AAT, focusing on its role in diabetic nephropathy, age-related macular degeneration and other neovascular ocular disorders. Combination therapy with antiangiogenic drugs and immune check point inhibitors (ICIs) has emerged as a potential strategy to enhance the therapeutic index of cancer immunotherapy. While clinical studies have demonstrated the clinical efficacy of this approach, they also highlight the complex and sometimes unpredictable adverse events associated with it. Normalizing tumour vasculature has been identified as a key factor in unlocking the full potential of ICIs, thereby providing hope for improved treatment outcomes. The future prospects and challenges of AAT have been described with special reference to integration of technological advances for enhancing its efficacy and applications beyond its discovery.
Collapse
Affiliation(s)
- Rajesh N Gacche
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, MS, India.
| |
Collapse
|
3
|
Heo SC, Kim YN, Keum BR, Joo JY, Bae MK, Kim HJ. Vasohibin-1 promotes osteoclast differentiation in periodontal disease by stimulating the expression of RANKL in gingival fibroblasts. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166632. [PMID: 36566872 DOI: 10.1016/j.bbadis.2022.166632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Vasohibin-1 (VASH1) is a key inhibitor of vascular endothelial growth factor-induced angiogenesis. Although the involvement of VASH1 in various pathological processes has been extensively studied, its role in periodontal disease (PD) remains unclear. We aimed to investigate the role of VASH1 in PD by focusing on osteoclastogenesis regulation. We investigated VASH1 expression in PD by analyzing data from the online Gene Expression Omnibus (GEO) database and using a mouse ligature-induced periodontitis model. The effects of VASH1 on osteoclast differentiation and osteoclastogenesis-supporting cells were assessed in mouse bone marrow-derived macrophages (BMMs) and human gingival fibroblasts (GFs). To identify the stimulant of VASH1, we used culture broth from Porphyromonas gingivalis (Pg), a periopathogen. The GEO database and mouse periodontitis model revealed that VASH1 expression was upregulated in periodontitis-affected gingival tissues, which was further supported by immunohistochemistry and qRT-PCR analyses. VASH1 expression was significantly stimulated in GFs after treatment with the Pg broth. Direct treatment with recombinant VASH1 protein did not stimulate osteoclast differentiation in BMMs but did contribute to osteoclast differentiation by inducing RANKL expression in GFs through a paracrine mechanism. Small interfering RNA-mediated silencing of VASH1 in GFs abrogated RANKL-mediated osteoclast differentiation in BMMs. Additionally, VASH1-activated RANKL expression in GFs was significantly suppressed by MK-2206, a selective inhibitor of AKT. These results suggest that Pg-induced VASH1 may be associated with RANKL expression in GFs in a paracrine manner, contributing to osteoclastogenesis via an AKT-dependent mechanism during PD progression.
Collapse
Affiliation(s)
- Soon Chul Heo
- Department of Oral Physiology, Periodontal Diseases Signaling Network Research Center, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| | - Yu Na Kim
- Department of Oral Physiology, Periodontal Diseases Signaling Network Research Center, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| | - Bo Ram Keum
- Department of Oral Physiology, Periodontal Diseases Signaling Network Research Center, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| | - Ji-Young Joo
- Department of Periodontology and Dental Research Institute, Pusan National University Dental Hospital, Yangsan, Republic of Korea
| | - Moon-Kyoung Bae
- Department of Oral Physiology, Periodontal Diseases Signaling Network Research Center, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| | - Hyung Joon Kim
- Department of Oral Physiology, Periodontal Diseases Signaling Network Research Center, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Republic of Korea.
| |
Collapse
|
4
|
Assessment of the Concentration of Endogenous Factors Regulating Angiogenesis, VASH-1 and VEGF-A, in the Blood Serum of Patients with Neuroendocrine Neoplasms. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9084393. [PMID: 35372578 PMCID: PMC8966743 DOI: 10.1155/2022/9084393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 11/18/2022]
Abstract
Neuroendocrine neoplasms (NENs) constitute about 2% of all malignant neoplasms, and the angiogenesis process in these tumors is still of a great interest. Vasohibin-1 (VASH-1) is an angiogenesis inhibitor, while vascular endothelial growth factor A (VEGF-A) is one of the main factors promoting vascular formation. The subject of this study was to assess serum concentration of these factors in patients with diagnosed NEN and in control group. Methods. The study group consisted of 120 patients with diagnosed NENs, while the control group consisted of 69 healthy volunteers. The concentrations of VASH-1 and VEGF-A in serum were tested using the ELISA. We also analyzed the association of the concentration of these factors with demographic data (e.g., age and gender), body mass index (BMI), primary tumor location, histological grade, metastasis, clinical staging, selected biochemical parameters and markers of NENs, and information on smoking habits. Results. The mean concentration of VASH-1 was 218.8 ± 359.8 pg/ml in the study group and 973.1 ± 1239.4 pg/ml in the control group, that difference was statistically significant (p < 0.05). In the NEN group, the highest concentration of VASH-1 was in patients with pancreatic NENs in relation to NENs with different location of the primary tumor (p < 0.05). Negative correlation was found between the concentration of VASH-1 and serotonin (rS = −0.19, p < 0.05). No statistically significant differences were observed for VEGF-A (p = 0.658). Conclusions. Patients with NENs showed lower serum level of VASH-1 in comparison to healthy volunteers. The highest level of VASH-1 was observed in tumors localized in pancreas. This might reflect the relevant function of VASH-1 in NENs and requires further evaluation to further knowledge of angiogenesis in NENs. Furthermore, the serum concentration of VEGF-A showed no statistical differences and probably does not have diagnostic value in this group of patients.
Collapse
|
5
|
Microvascular disease in chronic kidney disease: the base of the iceberg in cardiovascular comorbidity. Clin Sci (Lond) 2020; 134:1333-1356. [PMID: 32542397 PMCID: PMC7298155 DOI: 10.1042/cs20200279] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/29/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023]
Abstract
Chronic kidney disease (CKD) is a relentlessly progressive disease with a very high mortality mainly due to cardiovascular complications. Endothelial dysfunction is well documented in CKD and permanent loss of endothelial homeostasis leads to progressive organ damage. Most of the vast endothelial surface area is part of the microcirculation, but most research in CKD-related cardiovascular disease (CVD) has been devoted to macrovascular complications. We have reviewed all publications evaluating structure and function of the microcirculation in humans with CKD and animals with experimental CKD. Microvascular rarefaction, defined as a loss of perfused microvessels resulting in a significant decrease in microvascular density, is a quintessential finding in these studies. The median microvascular density was reduced by 29% in skeletal muscle and 24% in the heart in animal models of CKD and by 32% in human biopsy, autopsy and imaging studies. CKD induces rarefaction due to the loss of coherent vessel systems distal to the level of smaller arterioles, generating a typical heterogeneous pattern with avascular patches, resulting in a dysfunctional endothelium with diminished perfusion, shunting and tissue hypoxia. Endothelial cell apoptosis, hypertension, multiple metabolic, endocrine and immune disturbances of the uremic milieu and specifically, a dysregulated angiogenesis, all contribute to the multifactorial pathogenesis. By setting the stage for the development of tissue fibrosis and end organ failure, microvascular rarefaction is a principal pathogenic factor in the development of severe organ dysfunction in CKD patients, especially CVD, cerebrovascular dysfunction, muscular atrophy, cachexia, and progression of kidney disease. Treatment strategies for microvascular disease are urgently needed.
Collapse
|
6
|
Plasma vasohibin-1 and vasohibin-2 are useful biomarkers in patients with esophageal squamous cell carcinoma. Esophagus 2020; 17:289-297. [PMID: 31980976 DOI: 10.1007/s10388-020-00719-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Vasohibins (VASH), which are angiogenesis regulators, consist of Vasohibin-1 (VASH1) and Vasohibin-2 (VASH2). VASH1 is an angiogenesis inhibitor, while VASH2 is a proangiogenic factor. Patients with esophageal squamous cell carcinoma (ESCC) with high tumor expression levels of VASH1 and VASH2 have been reported to show a poor prognosis. The clinical significance of VASH concentrations in the blood of patients with ESCC has not yet been investigated. METHODS Plasma samples from 89 patients with ESCC were analyzed, and the relationships between the plasma VASH concentrations and the clinicopathological factors of the patients were evaluated. Immunohistochemical examination (IHC) of the resected tumor specimens for VASH was performed in 56 patients, and the correlation between the plasma VASH concentrations and tumor expression levels of VASH was analyzed. RESULTS The patient group with high plasma concentrations of VASH1 showed a higher frequency of lymph node metastasis (P = 0.01) and an invasive growth pattern (P = 0.05). Furthermore, poorly differentiated cancer occurred at a higher frequency in the patient group with high plasma concentrations of VASH2 (P < 0.01). High tumor expression levels of VASH1 were encountered more frequently in the patient group with high plasma concentrations of VASH1 (P = 0.03), and high tumor expression levels of VASH2 were encountered more frequently in the patient group with high plasma concentrations of VASH2 (P = 0.04). CONCLUSIONS In patients with ESCC, high plasma concentrations were associated with poor clinical outcomes for both VASH1 and VASH2. We propose that results indicate that plasma VASH1 and VASH2 are useful biomarkers in patients with ESCC.
Collapse
|
7
|
Targeting angiogenesis and lymphangiogenesis in kidney disease. Nat Rev Nephrol 2020; 16:289-303. [PMID: 32144398 DOI: 10.1038/s41581-020-0260-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2020] [Indexed: 12/17/2022]
Abstract
The kidney is permeated by a highly complex vascular system with glomerular and peritubular capillary networks that are essential for maintaining the normal functions of glomerular and tubular epithelial cells. The integrity of the renal vascular network depends on a balance of proangiogenic and antiangiogenic factors, and disruption of this balance has been identified in various kidney diseases. Decreased levels of the predominant proangiogenic factor, vascular endothelial growth factor A (VEGFA), can result in glomerular microangiopathy and contribute to the onset of preeclampsia, whereas upregulation of VEGFA has roles in diabetic kidney disease (DKD) and polycystic kidney disease (PKD). Other factors that regulate angiogenesis, such as angiopoietin 1 and vasohibin 1, have been shown to be protective in animal models of DKD and renal fibrosis. The renal lymphatic system is important for fluid homeostasis in the kidney, as well as the transport of immune cells and antigens. Experimental studies suggest that the lymphangiogenic factor VEGFC might have protective effects in PKD, DKD and renal fibrosis. Understanding the physiological and pathological roles of factors that regulate angiogenesis and lymphangiogenesis in the kidney has led to the development of novel therapeutic strategies for kidney diseases.
Collapse
|
8
|
Evaluation of oxysterol levels of patients with silicosis by LC–MS/MS method. Mol Cell Biochem 2020; 467:117-125. [DOI: 10.1007/s11010-020-03706-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 02/15/2020] [Indexed: 01/10/2023]
|
9
|
Tanimura S, Tanabe K, Miyake H, Masuda K, Tsushida K, Morioka T, Sugiyama H, Sato Y, Wada J. Renal tubular injury exacerbated by vasohibin-1 deficiency in a murine cisplatin-induced acute kidney injury model. Am J Physiol Renal Physiol 2019; 317:F264-F274. [PMID: 31091125 DOI: 10.1152/ajprenal.00045.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Acute kidney injury (AKI) is frequently encountered in clinical practice, particularly secondarily to cardiovascular surgery and administration of nephrotoxic agents, and is increasingly recognized for initiating a transition to chronic kidney disease. Clarifying the pathogenesis of AKI could facilitate the development of novel preventive strategies, because the occurrence of hospital-acquired AKI is often anticipated. Vasohibin-1 (VASH1) was initially identified as an antiangiogenic factor derived from endothelial cells. VASH1 expression in endothelial cells has subsequently been reported to enhance cellular stress tolerance. Considering the importance of maintaining peritubular capillaries in preventing the progression of AKI, the present study aimed to examine whether VASH1 deletion is involved in the pathogenesis of cisplatin-induced AKI. For this, we injected male C57BL/6J wild-type (WT) and VASH1 heterozygous knockout (VASH1+/-) mice intraperitoneally with either 20 mg/kg cisplatin or vehicle solution. Seventy-two hours after cisplatin injection, increased serum creatinine concentrations and renal tubular injury accompanied by apoptosis and oxidative stress were more prominent in VASH1+/- mice than in WT mice. Cisplatin-induced peritubular capillary loss was also accelerated by VASH1 deficiency. Moreover, the increased expression of ICAM-1 in the peritubular capillaries of cisplatin-treated VASH1+/- mice was associated with a more marked infiltration of macrophages into the kidney. Taken together, VASH1 expression could have protective effects on cisplatin-induced AKI probably by maintaining the number and function of peritubular capillaries.
Collapse
Affiliation(s)
- Satoshi Tanimura
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama , Japan
| | - Katsuyuki Tanabe
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama , Japan
| | - Hiromasa Miyake
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama , Japan
| | - Kana Masuda
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama , Japan
| | - Keigo Tsushida
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama , Japan
| | - Tomoyo Morioka
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama , Japan
| | - Hitoshi Sugiyama
- Department of Human Resource Development of Dialysis Therapy for Kidney Disease, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama , Japan
| | - Yasufumi Sato
- Department of Vascular Biology, Institute of Development, Aging, and Cancer, Tohoku University , Sendai , Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama , Japan
| |
Collapse
|
10
|
Endogenous Antiangiogenic Factors in Chronic Kidney Disease: Potential Biomarkers of Progression. Int J Mol Sci 2018; 19:ijms19071859. [PMID: 29937525 PMCID: PMC6073618 DOI: 10.3390/ijms19071859] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 06/17/2018] [Accepted: 06/22/2018] [Indexed: 12/17/2022] Open
Abstract
Chronic kidney disease (CKD) is a major global health problem. Unless intensive intervention is initiated, some patients can rapidly progress to end-stage kidney disease. However, it is often difficult to predict renal outcomes using conventional laboratory tests in individuals with CKD. Therefore, many researchers have been searching for novel biomarkers to predict the progression of CKD. Angiogenesis is involved in physiological and pathological processes in the kidney and is regulated by the balance between a proangiogenic factor, vascular endothelial growth factor (VEGF)-A, and various endogenous antiangiogenic factors. In recent reports using genetically engineered mice, the roles of these antiangiogenic factors in the pathogenesis of kidney disease have become increasingly clear. In addition, recent clinical studies have demonstrated associations between circulating levels of antiangiogenic factors and renal dysfunction in CKD patients. In this review, we summarize recent advances in the study of representative endogenous antiangiogenic factors, including soluble fms-related tyrosine kinase 1, soluble endoglin, pigment epithelium-derived factor, VEGF-A165b, endostatin, and vasohibin-1, in associations with kidney diseases and discuss their predictive potentials as biomarkers of progression of CKD.
Collapse
|
11
|
Antiangiogenic Therapy for Diabetic Nephropathy. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5724069. [PMID: 28835895 PMCID: PMC5556994 DOI: 10.1155/2017/5724069] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/16/2017] [Accepted: 06/13/2017] [Indexed: 12/28/2022]
Abstract
Angiogenesis has been shown to be a potential therapeutic target for early stages of diabetic nephropathy in a number of animal experiments. Vascular endothelial growth factor (VEGF) is the main mediator for abnormal angiogenesis in diabetic glomeruli. Although beneficial effects of anti-VEGF antibodies have previously been demonstrated in diabetic animal experiments, recent basic and clinical evidence has revealed that the blockade of VEGF signaling resulted in proteinuria and renal thrombotic microangiopathy, suggesting the importance of maintaining normal levels of VEGF in the kidneys. Therefore, antiangiogenic therapy for diabetic nephropathy should eliminate excessive glomerular angiogenic response without accelerating endothelial injury. Some endogenous antiangiogenic factors such as endostatin and tumstatin inhibit overactivation of endothelial cells but do not specifically block VEGF signaling. In addition, the novel endothelium-derived antiangiogenic factor vasohibin-1 enhances stress tolerance and survival of the endothelial cells, while inhibiting excess angiogenesis. These factors have been demonstrated to suppress albuminuria and glomerular alterations in a diabetic mouse model. Thus, antiangiogenic therapy with promising candidates will possibly improve renal prognosis in patients with early stages of diabetic nephropathy.
Collapse
|
12
|
Mikami S, Oya M, Kosaka T, Mizuno R, Miyazaki Y, Sato Y, Okada Y. Increased vasohibin-1 expression is associated with metastasis and poor prognosis of renal cell carcinoma patients. J Transl Med 2017; 97:854-862. [PMID: 28287633 DOI: 10.1038/labinvest.2017.26] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/19/2017] [Accepted: 01/26/2017] [Indexed: 02/01/2023] Open
Abstract
The microvascular density detected by markers of endothelial cells (ECs), such as CD31 and CD34, is considered to be a biomarker for angiogenesis, and it is generally associated with the malignant potential of solid tumors. However, there is a conflicting relationship between the microvascular density and prognosis in clear-cell renal cell carcinoma (ccRCC) patients. It may be explained by the suggestion that the microvascular density cannot fully reflect the angiogenic activity in ccRCC, as the markers of ECs are expressed by both quiescent and activated ECs. To investigate the real angiogenic activity, we examined vasohibin-1 (VASH1), a recently identified regulator of angiogenesis, which was demonstrated to be specifically expressed by ECs of newly formed blood vessels. Expression of VASH1 and CD34 were immunohistochemically examined in 116 primary untreated ccRCCs, 10 metastatic untreated ccRCCs, and 9 metastatic ccRCCs treated with sunitinib. ECs in the tumor microvessels were sporadically immunostained for VASH1, although no VASH1 staining was observed in the non-neoplastic renal tissues. CD34 was ubiquitously expressed by all ECs in both ccRCC and non-neoplastic renal tissues. Multivariate Cox analysis indicated that an elevated VASH1 density, but not microvascular density, was a significant and independent predictor of overall survival (odds ratio, 7.71; P=0.003). The microvascular density was significantly decreased in the sunitinib-treated metastases compared with untreated tumors (P=0.001). On the other hand, the VASH1 density was significantly higher in the metastatic ccRCCs treated with sunitinib compared with non-treated ones (P=0.010), indicating that VASH1 may be associated with the resistance of ECs to sunitinib treatment. Thus, VASH1 expression may reflect the actual activity of angiogenesis, and VASH1 can serve as a new prognostic and predictive biomarker in patients with ccRCC.
Collapse
Affiliation(s)
- Shuji Mikami
- Division of Diagnostic Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Takeo Kosaka
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Ryuichi Mizuno
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Yasumasa Miyazaki
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Yasufumi Sato
- Department of Vascular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yasunori Okada
- Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
13
|
Sato Y. Novel Link between Inhibition of Angiogenesis and Tolerance to Vascular Stress. J Atheroscler Thromb 2015; 22:327-34. [PMID: 25739825 DOI: 10.5551/jat.28902] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The functional integrity of the vascular endothelium is an essential component required for the maintenance of vascular health, thus counteracting the onset of vascular diseases, including atherosclerosis and vascular complications of diabetes. In light of this important role, the vascular endothelium is expected to have a self-defense system. One candidate factor of such a system is vasohibin-1 (VASH1), a protein that is preferentially expressed in vascular endothelial cells (ECs). The unique features of VASH1 are its anti-angiogenic activity and ability to promote the stress tolerance and survival of ECs. This review summarizes current knowledge regarding VASH1 in terms of its roles in maintaining vascular integrity and protecting the vasculature against various forms of stress.
Collapse
Affiliation(s)
- Yasufumi Sato
- Department of Vascular Biology, Institute of Development, Aging and Cancer, Tohoku University
| |
Collapse
|
14
|
Hinamoto N, Maeshima Y, Yamasaki H, Nasu T, Saito D, Watatani H, Ujike H, Tanabe K, Masuda K, Arata Y, Sugiyama H, Sato Y, Makino H. Exacerbation of diabetic renal alterations in mice lacking vasohibin-1. PLoS One 2014; 9:e107934. [PMID: 25255225 PMCID: PMC4178006 DOI: 10.1371/journal.pone.0107934] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 08/17/2014] [Indexed: 01/06/2023] Open
Abstract
Vasohibin-1 (VASH1) is a unique endogenous inhibitor of angiogenesis that is induced in endothelial cells by pro-angiogenic factors. We previously reported renoprotective effect of adenoviral delivery of VASH1 in diabetic nephropathy model, and herein investigated the potential protective role of endogenous VASH1 by using VASH1-deficient mice. Streptozotocin-induced type 1 diabetic VASH1 heterozygous knockout mice (VASH1+/−) or wild-type diabetic mice were sacrificed 16 weeks after inducing diabetes. In the diabetic VASH1+/− mice, albuminuria were significantly exacerbated compared with the diabetic wild-type littermates, in association with the dysregulated distribution of glomerular slit diaphragm related proteins, nephrin and ZO-1, glomerular basement membrane thickning and reduction of slit diaphragm density. Glomerular monocyte/macrophage infiltration and glomerular nuclear translocation of phosphorylated NF-κB p65 were significantly exacerbated in the diabetic VASH1+/− mice compared with the diabetic wild-type littermates, accompanied by the augmentation of VEGF-A, M1 macrophage-derived MCP-1 and phosphorylation of IκBα, and the decrease of angiopoietin-1/2 ratio and M2 macrophage-derived Arginase-1. The glomerular CD31+ endothelial area was also increased in the diabetic VASH1+/− mice compared with the diabetic-wild type littermates. Furthermore, the renal and glomerular hypertrophy, glomerular accumulation of mesangial matrix and type IV collagen and activation of renal TGF-β1/Smad3 signaling, a key mediator of renal fibrosis, were exacerbated in the diabetic VASH1+/− mice compared with the diabetic wild-type littermates. In conditionally immortalized mouse podocytes cultured under high glucose condition, transfection of VASH1 small interfering RNA (siRNA) resulted in the reduction of nephrin, angiopoietin-1 and ZO-1, and the augmentation of VEGF-A compared with control siRNA. These results suggest that endogenous VASH1 may regulate the development of diabetic renal alterations, partly via direct effects on podocytes, and thus, a strategy to recover VASH1 might potentially lead to the development of a novel therapeutic approach for diabetic nephropathy.
Collapse
Affiliation(s)
- Norikazu Hinamoto
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yohei Maeshima
- Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- * E-mail:
| | - Hiroko Yamasaki
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tatsuyo Nasu
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Daisuke Saito
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroyuki Watatani
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Haruyo Ujike
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Katsuyuki Tanabe
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kana Masuda
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yuka Arata
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hitoshi Sugiyama
- Department of Chronic Kidney Disease and Peritoneal Dialysis, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yasufumi Sato
- Department of Vascular Biology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Hirofumi Makino
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|