1
|
Kantaputra P, Guven Y, Aksu B, Kalayci T, Doğan C, Intachai W, Olsen B, Tongsima S, Ngamphiw C, Noppakun K. Distal renal tubular acidosis, autoimmune thyroiditis, enamel hypomaturation, and tooth agenesis caused by homozygosity of a novel double-nucleotide substitution in SLC4A4. J Am Dent Assoc 2022; 153:668-676. [DOI: 10.1016/j.adaj.2021.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 01/10/2023]
|
2
|
Alotaibi RN, Howe BJ, Moreno Uribe LM, Sanchez C, Deleyiannis FW, Padilla C, Poletta FA, Orioli IM, Buxó CJ, Wehby GL, Vieira AR, Murray J, Valencia-Ramírez C, Restrepo Muñeton CP, Long RE, Shaffer JR, Reis SE, Weinberg SM, Neiswanger K, McNeil DW, Marazita ML. Genetic Analyses of Enamel Hypoplasia in Multiethnic Cohorts. Hum Hered 2022; 87:000522642. [PMID: 35172313 PMCID: PMC9378791 DOI: 10.1159/000522642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/09/2022] [Indexed: 11/19/2022] Open
Abstract
Enamel hypoplasia causes reduction in the thickness of affected enamel and is one of the most common dental anomalies. This defect is caused by environmental and/or genetic factors that interfere with tooth formation, emphasizing the importance of investigating enamel hypoplasia on an epidemiological and genetic level. A genome-wide association of enamel hypoplasia was performed in multiple cohorts, overall comprising 7,159 individuals ranging in age from 7-82 years. Mixed-models were used to test for genetic association while simultaneously accounting for relatedness and genetic population structure. Meta-analysis was then performed. More than 5 million single-nucleotide polymorphisms were tested in individual cohorts. Analyses of the individual cohorts and meta-analysis identified association signals close to genome-wide significance (P < 510-8), and many suggestive association signals (510-8 < P < 510-6) near genes with plausible roles in tooth/enamel development. The strongest association signal (P = 1.5710-9) was observed near BMP2K in one of the individual cohorts. Additional suggestive signals were observed near genes with plausible roles in tooth development in the meta-analysis, such as SLC4A4 which can influence enamel hypoplasia. Additional human genetic studies are needed to replicate these results and functional studies in model systems are needed to validate our findings.
Collapse
Affiliation(s)
- Rasha N. Alotaibi
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Craniofacial and Dental Genetics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Brian J. Howe
- Department of Family Dentistry, College of Dentistry, University of Iowa, Iowa City, Iowa, USA
| | - Lina M. Moreno Uribe
- The Iowa Institute for Oral Health Research, College of Dentistry, University of Iowa, Iowa City, Iowa, USA
- Department of Orthodontics, School of Dentistry, University of Iowa, Iowa City, Iowa, USA
| | - Carla Sanchez
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Craniofacial and Dental Genetics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Carmencita Padilla
- Department of Pediatrics, College of Medicine, University of the Philippines, Manila, Philippines
| | - Fernando A. Poletta
- ECLAMC/INAGEMP CEMIC, Dirección de Investigación A. Galván, Buenos Aires, Argentina
| | - Ieda M. Orioli
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carmen J. Buxó
- School of Dental Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - George L. Wehby
- Department of Health Management and Policy, College of Public Health, University of Iowa, Iowa City, Iowa, USA
| | - Alexandre R. Vieira
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jeffrey Murray
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | | | | | - Ross E. Long
- Lancaster Cleft Palate Clinic, Lancaster, Pennsylvania, USA
| | - John R. Shaffer
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Craniofacial and Dental Genetics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Steven E. Reis
- Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Seth M. Weinberg
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Craniofacial and Dental Genetics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Katherine Neiswanger
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Craniofacial and Dental Genetics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Daniel W. McNeil
- Department of Psychology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, West Virginia, USA
- Department of Dental Practice and Rural Health, School of Dentistry, West Virginia University, Morgantown, West Virginia, USA
| | - Mary L. Marazita
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Craniofacial and Dental Genetics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Salerno EE, Patel SP, Marshall A, Marshall J, Alsufayan T, Mballo CSA, Quade BN, Parker MD. Extrarenal Signs of Proximal Renal Tubular Acidosis Persist in Nonacidemic Nbce1b/c-Null Mice. J Am Soc Nephrol 2019; 30:979-989. [PMID: 31040187 DOI: 10.1681/asn.2018050545] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 03/05/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The SLC4A4 gene encodes electrogenic sodium bicarbonate cotransporter 1 (NBCe1). Inheritance of recessive mutations in SLC4A4 causes proximal renal tubular acidosis (pRTA), a disease characterized by metabolic acidosis, growth retardation, ocular abnormalities, and often dental abnormalities. Mouse models of pRTA exhibit acidemia, corneal edema, weak dental enamel, impacted colons, nutritional defects, and a general failure to thrive, rarely surviving beyond weaning. Alkali therapy remains the preferred treatment for pRTA, but it is unclear which nonrenal signs are secondary to acidemia and which are a direct consequence of NBCe1 loss from nonrenal sites (such as the eye and enamel organ) and therefore require separate therapy. SLC4A4 encodes three major NBCe1 variants: NBCe1-A, NBCe1-B, and NBCe1-C. NBCe1-A is expressed in proximal tubule epithelia; its dysfunction causes the plasma bicarbonate insufficiency that underlies acidemia. NBCe1-B and NBCe1-C exhibit a broad extra-proximal-tubular distribution. METHODS To explore the consequences of Nbce1b/c loss in the absence of acidemia, we engineered a novel strain of Nbce1b/c-null mice and assessed them for signs of pRTA. RESULTS Nbce1b/c-null mice have normal blood pH, but exhibit increased mortality, growth retardation, corneal edema, and tooth enamel defects. CONCLUSIONS The correction of pRTA-related acidemia should not be considered a panacea for all signs of pRTA. The phenotype of Nbce1b/c-null mice highlights the physiologic importance of NBCe1 variants expressed beyond the proximal tubular epithelia and potential limitations of pH correction by alkali therapy in pRTA. It also suggests a novel genetic locus for corneal dystrophy and enamel hypomineralization without acidemia.
Collapse
Affiliation(s)
| | - Sangita P Patel
- Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York.,State University of New York Eye Institute, Buffalo, New York; and.,Research and Ophthalmology Services, VA Western New York Healthcare System, Buffalo, New York
| | | | | | | | | | | | - Mark D Parker
- Departments of Physiology and Biophysics and .,Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York.,State University of New York Eye Institute, Buffalo, New York; and
| |
Collapse
|
4
|
Costa SA, Souza SDFC, Nunes AMM. Oral manifestations of renal tubular acidosis associated with secondary rickets: case report. ACTA ACUST UNITED AC 2018; 41:433-435. [PMID: 30199559 PMCID: PMC6788841 DOI: 10.1590/2175-8239-jbn-2018-0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/13/2018] [Indexed: 11/22/2022]
Abstract
This report describes the oral manifestations of renal tubular acidosis (RTA)
associated with secondary rickets and discusses the biological plausibility of
these findings. The characteristic electrolyte changes during RTA or genetic
mutations that trigger RTA may be responsible for impaired amelogenesis, dental
malocclusion, impacted teeth, and absent lamina dura. This report reinforces the
possibility of an association between RTA and the oral manifestations
described.
Collapse
Affiliation(s)
- Susilena Arouche Costa
- Universidade Federal do Maranhão, Programa de Pós-Graduação em Odontologia, São Luís, MA, Brasil
| | | | | |
Collapse
|
5
|
Yin K, Guo J, Lin W, Robertson SYT, Soleimani M, Paine ML. Deletion of Slc26a1 and Slc26a7 Delays Enamel Mineralization in Mice. Front Physiol 2017; 8:307. [PMID: 28559854 PMCID: PMC5432648 DOI: 10.3389/fphys.2017.00307] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 04/28/2017] [Indexed: 12/12/2022] Open
Abstract
Amelogenesis features two major developmental stages—secretory and maturation. During maturation stage, hydroxyapatite deposition and matrix turnover require delicate pH regulatory mechanisms mediated by multiple ion transporters. Several members of the Slc26 gene family (Slc26a1, Slc26a3, Slc26a4, Slc26a6, and Slc26a7), which exhibit bicarbonate transport activities, have been suggested by previous studies to be involved in maturation-stage amelogenesis, especially the key process of pH regulation. However, details regarding the functional role of these genes in enamel formation are yet to be clarified, as none of the separate mutant animal lines demonstrates any discernible enamel defects. Continuing with our previous investigation of Slc26a1−/− and Slc26a7−/− animal models, we generated a double-mutant animal line with the absence of both Slc26a1 and Slc26a7. We showed in the present study that the double-mutant enamel density was significantly lower in the regions that represent late maturation-, maturation- and secretory-stage enamel development in wild-type mandibular incisors. However, the “maturation” and “secretory” enamel microstructures in double-mutant animals resembled those observed in wild-type secretory and/or pre-secretory stages. Elemental composition analysis revealed a lack of mineral deposition and an accumulation of carbon and chloride in double-mutant enamel. Deletion of Slc26a1 and Slc26a7 did not affect the stage-specific morphology of the enamel organ. Finally, compensatory expression of pH regulator genes and ion transporters was detected in maturation-stage enamel organs of double-mutant animals when compared to wild-type. Combined with the findings from our previous study, these data indicate the involvement of SLC26A1and SLC26A7 as key ion transporters in the pH regulatory network during enamel maturation.
Collapse
Affiliation(s)
- Kaifeng Yin
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry of University of Southern CaliforniaLos Angeles, CA, USA.,Department of Orthodontics, Herman Ostrow School of Dentistry of University of Southern CaliforniaLos Angeles, CA, USA
| | - Jing Guo
- Department of Endodontics, Herman Ostrow School of Dentistry of University of Southern CaliforniaLos Angeles, CA, USA
| | - Wenting Lin
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry of University of Southern CaliforniaLos Angeles, CA, USA
| | - Sarah Y T Robertson
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry of University of Southern CaliforniaLos Angeles, CA, USA
| | - Manoocher Soleimani
- Department of Medicine, University of Cincinnati, Research Services, Veterans Affairs Medical CenterCincinnati, OH, USA
| | - Michael L Paine
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry of University of Southern CaliforniaLos Angeles, CA, USA
| |
Collapse
|
6
|
Abstract
Hypomineralization of developing enamel is associated with changes in ameloblast modulation during the maturation stage. Modulation (or pH cycling) involves the cyclic transformation of ruffle-ended (RE) ameloblasts facing slightly acidic enamel into smooth-ended (SE) ameloblasts near pH-neutral enamel. The mechanism of ameloblast modulation is not clear. Failure of ameloblasts of Cftr-null and anion exchanger 2 ( Ae2)-null mice to transport Cl- into enamel acidifies enamel, prevents modulation, and reduces mineralization. It suggests that pH regulation is critical for modulation and for completion of enamel mineralization. This report presents a review of the major types of transmembrane molecules that ameloblasts express to transport calcium to form crystals and bicarbonates to regulate pH. The type of transporter depends on the developmental stage. Modulation is proposed to be driven by the pH of enamel fluid and the compositional and/or physicochemical changes that result from increased acidity, which may turn RE ameloblasts into SE mode. Amelogenins delay outgrowth of crystals and keep the intercrystalline space open for diffusion of mineral ions into complete depth of enamel. Modulation enables stepwise removal of amelogenins from the crystal surface, their degradation, and removal from the enamel. Removal of matrix allows slow expansion of crystals. Modulation also reduces the stress that ameloblasts experience when exposed to high acid levels generated by mineral formation or by increased intracellular Ca2+. By cyclically interrupting Ca2+ transport by RE ameloblasts and their transformation into SE ameloblasts, proton production ceases shortly and enables the ameloblasts to recover. Modulation also improves enamel crystal quality by selectively dissolving immature Ca2+-poor crystals, removing impurities as Mg2+ and carbonates, and recrystallizing into more acid-resistant crystals.
Collapse
Affiliation(s)
- A L J J Bronckers
- 1 Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute, Amsterdam, Netherlands
| |
Collapse
|
7
|
Yin K, Lei Y, Wen X, Lacruz RS, Soleimani M, Kurtz I, Snead ML, White SN, Paine ML. SLC26A Gene Family Participate in pH Regulation during Enamel Maturation. PLoS One 2015; 10:e0144703. [PMID: 26671068 PMCID: PMC4679777 DOI: 10.1371/journal.pone.0144703] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/23/2015] [Indexed: 12/15/2022] Open
Abstract
The bicarbonate transport activities of Slc26a1, Slc26a6 and Slc26a7 are essential to physiological processes in multiple organs. Although mutations of Slc26a1, Slc26a6 and Slc26a7 have not been linked to any human diseases, disruption of Slc26a1, Slc26a6 or Slc26a7 expression in animals causes severe dysregulation of acid-base balance and disorder of anion homeostasis. Amelogenesis, especially the enamel formation during maturation stage, requires complex pH regulation mechanisms based on ion transport. The disruption of stage-specific ion transporters frequently results in enamel pathosis in animals. Here we present evidence that Slc26a1, Slc26a6 and Slc26a7 are highly expressed in rodent incisor ameloblasts during maturation-stage tooth development. In maturation-stage ameloblasts, Slc26a1, Slc26a6 and Slc26a7 show a similar cellular distribution as the cystic fibrosis transmembrane conductance regulator (Cftr) to the apical region of cytoplasmic membrane, and the distribution of Slc26a7 is also seen in the cytoplasmic/subapical region, presumably on the lysosomal membrane. We have also examined Slc26a1 and Slc26a7 null mice, and although no overt abnormal enamel phenotypes were observed in Slc26a1-/- or Slc26a7-/- animals, absence of Slc26a1 or Slc26a7 results in up-regulation of Cftr, Ca2, Slc4a4, Slc4a9 and Slc26a9, all of which are involved in pH homeostasis, indicating that this might be a compensatory mechanism used by ameloblasts cells in the absence of Slc26 genes. Together, our data show that Slc26a1, Slc26a6 and Slc26a7 are novel participants in the extracellular transport of bicarbonate during enamel maturation, and that their functional roles may be achieved by forming interaction units with Cftr.
Collapse
Affiliation(s)
- Kaifeng Yin
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry of University of Southern California, Los Angeles, California, United States of America
| | - Yuejuan Lei
- Department of Operative and Endodontics, The Affiliated Stomatological Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Xin Wen
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry of University of Southern California, Los Angeles, California, United States of America
| | - Rodrigo S. Lacruz
- Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York, United States of America
| | - Manoocher Soleimani
- Department of Medicine, University of Cincinnati, Research Services, Veterans Affairs Medical Center, Cincinnati, Ohio, United States of America
| | - Ira Kurtz
- Division of Nephrology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Malcolm L. Snead
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry of University of Southern California, Los Angeles, California, United States of America
| | - Shane N. White
- School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Michael L. Paine
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry of University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
8
|
Fang YW, Yang SS, Chau T, Nakamura M, Yamazaki O, Seki G, Yamada H, Hsu HM, Cheng CJ, Lin SH. Therapeutic effect of prenatal alkalization and PTC124 in Na(+)/HCO3(-) cotransporter 1 p.W516* knock-in mice. Gene Ther 2015; 22:374-81. [PMID: 25716530 DOI: 10.1038/gt.2015.7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 12/30/2014] [Accepted: 01/15/2015] [Indexed: 01/01/2023]
Abstract
We created Na(+)/HCO3(-) cotransporter 1 (NBCe1) p.W516* knock-in mice as a model of isolated proximal renal tubular acidosis showing early lethality associated with severe metabolic acidosis to investigate the therapeutic effects of prenatal alkalization or posttranscriptional control 124 (PTC124). NBCe1(W516*/W516*) mice were treated with non-alkalization (control, n=12), prenatal alkalization postcoitus (prenatal group, n=7) and postnatal alkalization from postnatal day 6 (postnatal group, n=12). Mutation-specific therapy, PTC124 (60 mg kg(-1)) or gentamicin (30 mg kg(-1)), was administered intraperitoneally from postnatal day 6. Blood and urine biochemistry, acid-base analysis, survival rate and renal histology were examined. NBCe1 protein, mRNA abundance and activity ex vivo were assessed after PTC124 and gentamicin treatment. Prenatal group mice had similar initial body weight to wild-type mice and achieved significant weight gain thereafter compared with controls. They had higher serum bicarbonate level (15.5 ± 1.4 vs 5.5 ± 0.1 mmol l(-1), P<0.05) on postnatal day 14 and better renal function, histology and survival rates (60.8 ± 23.5 vs 41.1 ± 15.8 days, P<0.05) than the postnatal group. Compared with the control and gentamicin therapies, PTC124 therapy significantly increased NBCe1 protein abundance despite unchanged mRNA transcription. Only PTC124 therapy significantly increased survival rate and partially rescued NBCe1 activity ex vivo. In NBCe1(W516*/W516*) mice, prenatal alkali therapy achieved higher survival rates and ameliorated organ dysfunction. PTC124 therapy for this nonsense mutation was partially effective in increasing NBCe1 expression and activity.
Collapse
Affiliation(s)
- Y-W Fang
- 1] Division of Nephrology, Department of Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan [2] Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
| | - S-S Yang
- 1] Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan [2] Division of Nephrology, Department of Medicine, Tri-Service General Hospital, Taipei, Taiwan
| | - T Chau
- Department of Medicine, Providence St Vincent Medical Center, Portland, OR, USA
| | - M Nakamura
- Department of Internal Medicine, Faculty of Medicine, Tokyo University, Tokyo, Japan
| | - O Yamazaki
- Department of Internal Medicine, Faculty of Medicine, Tokyo University, Tokyo, Japan
| | - G Seki
- Department of Internal Medicine, Faculty of Medicine, Tokyo University, Tokyo, Japan
| | - H Yamada
- Department of Internal Medicine, Faculty of Medicine, Tokyo University, Tokyo, Japan
| | - H-M Hsu
- Division of Nephrology, Department of Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - C-J Cheng
- 1] Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan [2] Division of Nephrology, Department of Medicine, Tri-Service General Hospital, Taipei, Taiwan
| | - S-H Lin
- 1] Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan [2] Division of Nephrology, Department of Medicine, Tri-Service General Hospital, Taipei, Taiwan
| |
Collapse
|
9
|
Wright JT, Carrion IA, Morris C. The molecular basis of hereditary enamel defects in humans. J Dent Res 2014; 94:52-61. [PMID: 25389004 DOI: 10.1177/0022034514556708] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The formation of human enamel is highly regulated at the molecular level and involves thousands of genes. Requisites for development of this highly mineralized tissue include cell differentiation; production of a unique extracellular matrix; processing of the extracellular matrix; altering of cell function during different stages of enamel formation; cell movement and attachment; regulation of ion and protein movement; and regulation of hydration, pH, and other conditions of the microenvironment, to name just a few. Not surprising, there is a plethora of hereditary conditions with an enamel phenotype. The objective of this review was to identify the hereditary conditions listed on Online Mendelian Inheritance in Man (OMIM) that have an associated enamel phenotype and whether a causative gene has been identified. The OMIM database was searched with the terms amelogenesis, enamel, dental, and tooth, and all results were screened by 2 individuals to determine if an enamel phenotype was identified. Gene and gene product function was reviewed on OMIM and from publications identified in PubMed. The search strategy revealed 91 conditions listed in OMIM as having an enamel phenotype, and of those, 71 have a known molecular etiology or linked genetic loci. The purported protein function of those conditions with a known genetic basis included enzymes, regulatory proteins, extracellular matrix proteins, transcription factors, and transmembrane proteins. The most common enamel phenotype was a deficient amount of enamel, or enamel hypoplasia, with hypomineralization defects being reported less frequently. Knowing these molecular defects allows an initial cataloging of molecular pathways that lead to hereditary enamel defects in humans. This knowledge provides insight into the diverse molecular pathways involved in enamel formation and can be useful when searching for the genetic etiology of hereditary conditions that involve enamel.
Collapse
Affiliation(s)
- J T Wright
- Department of Pediatric Dentistry, School of Dentistry, The University of North Carolina, Chapel Hill, NC, USA
| | - I A Carrion
- Meharry School of Dentistry, Nashville, TN, USA
| | - C Morris
- Bon Secours Pediatric Dental Associates, Richmond, VA, USA
| |
Collapse
|
10
|
Kurtz I. NBCe1 as a model carrier for understanding the structure-function properties of Na⁺ -coupled SLC4 transporters in health and disease. Pflugers Arch 2014; 466:1501-16. [PMID: 24515290 DOI: 10.1007/s00424-014-1448-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/07/2014] [Accepted: 01/08/2014] [Indexed: 01/17/2023]
Abstract
SLC4 transporters are membrane proteins that in general mediate the coupled transport of bicarbonate (carbonate) and share amino acid sequence homology. These proteins differ as to whether they also transport Na(+) and/or Cl(-), in addition to their charge transport stoichiometry, membrane targeting, substrate affinities, developmental expression, regulatory motifs, and protein-protein interactions. These differences account in part for the fact that functionally, SLC4 transporters have various physiological roles in mammals including transepithelial bicarbonate transport, intracellular pH regulation, transport of Na(+) and/or Cl(-), and possibly water. Bicarbonate transport is not unique to the SLC4 family since the structurally unrelated SLC26 family has at least three proteins that mediate anion exchange. The present review focuses on the first of the sodium-dependent SLC4 transporters that was identified whose structure has been most extensively studied: the electrogenic Na(+)-base cotransporter NBCe1. Mutations in NBCe1 cause proximal renal tubular acidosis (pRTA) with neurologic and ophthalmologic extrarenal manifestations. Recent studies have characterized the important structure-function properties of the transporter and how they are perturbed as a result of mutations that cause pRTA. It has become increasingly apparent that the structure of NBCe1 differs in several key features from the SLC4 Cl(-)-HCO3 (-) exchanger AE1 whose structural properties have been well-studied. In this review, the structure-function properties and regulation of NBCe1 will be highlighted, and its role in health and disease will be reviewed in detail.
Collapse
Affiliation(s)
- Ira Kurtz
- Division of Nephrology, David Geffen School of Medicine, and Brain Research Institute, UCLA, Los Angeles, CA, USA,
| |
Collapse
|