1
|
Babler KM, Sharkey ME, Amirali A, Boone MM, Comerford S, Currall BB, Grills GS, Laine J, Mason CE, Reding B, Schürer S, Stevenson M, Vidović D, Williams SL, Solo-Gabriele HM. Expanding a Wastewater-Based Surveillance Methodology for DNA Isolation from a Workflow Optimized for SARS-CoV-2 RNA Quantification. J Biomol Tech 2023; 34:3fc1f5fe.dfa8d906. [PMID: 38268997 PMCID: PMC10805363 DOI: 10.7171/3fc1f5fe.dfa8d906] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Wastewater-based surveillance (WBS) is a noninvasive, epidemiological strategy for assessing the spread of COVID-19 in communities. This strategy was based upon wastewater RNA measurements of the viral target, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The utility of WBS for assessing the spread of COVID-19 has motivated research to measure targets beyond SARS-CoV-2, including pathogens containing DNA. The objective of this study was to establish the necessary steps for isolating DNA from wastewater by modifying a long-standing RNA-specific extraction workflow optimized for SARS-CoV-2 detection. Modifications were made to the sample concentration process and included an evaluation of bead bashing prior to the extraction of either DNA or RNA. Results showed that bead bashing reduced detection of RNA from wastewater but improved recovery of DNA as assessed by quantitative polymerase chain reaction (qPCR). Bead bashing is therefore not recommended for the quantification of RNA viruses using qPCR. Whereas for Mycobacterium bacterial DNA isolation, bead bashing was necessary for improving qPCR quantification. Overall, we recommend 2 separate workflows, one for RNA viruses that does not include bead bashing and one for other microbes that use bead bashing for DNA isolation. The experimentation done here shows that current-standing WBS program methodologies optimized for SARS-CoV-2 need to be modified and reoptimized to allow for alternative pathogens to be readily detected and monitored, expanding its utility as a tool for public health assessment.
Collapse
Affiliation(s)
- Kristina M. Babler
- Department of ChemicalEnvironmental and Materials
EngineeringUniversity of MiamiCoral GablesFlorida33124USA
| | - Mark E. Sharkey
- Department of MedicineUniversity of Miami Miller School
of MedicineMiamiFlorida33136USA
| | - Ayaaz Amirali
- Department of ChemicalEnvironmental and Materials
EngineeringUniversity of MiamiCoral GablesFlorida33124USA
| | - Melinda M. Boone
- Sylvester Comprehensive Cancer CenterUniversity of Miami
Miller School of MedicineMiamiFlorida33136USA
| | - Samuel Comerford
- Department of MedicineUniversity of Miami Miller School
of MedicineMiamiFlorida33136USA
| | - Benjamin B. Currall
- Sylvester Comprehensive Cancer CenterUniversity of Miami
Miller School of MedicineMiamiFlorida33136USA
| | - George S. Grills
- Sylvester Comprehensive Cancer CenterUniversity of Miami
Miller School of MedicineMiamiFlorida33136USA
| | - Jennifer Laine
- Environmental Health and SafetyUniversity of MiamiMiamiFlorida33136USA
| | - Christopher E. Mason
- Department of Physiology and BiophysicsWeill Cornell
MedicineNew YorkNew York10065USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Al-Saud
Institute for Computational BiomedicineWeill Cornell MedicineNew
YorkNew York10065USA
- The WorldQuant Initiative for Quantitative PredictionWeill Cornell MedicineNew YorkNew YorkUSA 10065USA
| | - Brian Reding
- Environmental Health and SafetyUniversity of MiamiMiamiFlorida33136USA
| | - Stephan Schürer
- Sylvester Comprehensive Cancer CenterUniversity of Miami
Miller School of MedicineMiamiFlorida33136USA
- Department of Molecular and Cellular PharmacologyUniversity of Miami Miller School of MedicineMiamiFlorida33136USA
- Institute for Data Science & Computing, University of
MiamiCoral GablesFlorida33146USA
| | - Mario Stevenson
- Department of MedicineUniversity of Miami Miller School
of MedicineMiamiFlorida33136USA
| | - Dušica Vidović
- Department of Molecular and Cellular PharmacologyUniversity of Miami Miller School of MedicineMiamiFlorida33136USA
| | - Sion L. Williams
- Sylvester Comprehensive Cancer CenterUniversity of Miami
Miller School of MedicineMiamiFlorida33136USA
| | - Helena M. Solo-Gabriele
- Department of ChemicalEnvironmental and Materials
EngineeringUniversity of MiamiCoral GablesFlorida33124USA
| |
Collapse
|
2
|
Madhu B, Miller BM, Levy M. Single-cell analysis and spatial resolution of the gut microbiome. Front Cell Infect Microbiol 2023; 13:1271092. [PMID: 37860069 PMCID: PMC10582963 DOI: 10.3389/fcimb.2023.1271092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023] Open
Abstract
Over the past decade it has become clear that various aspects of host physiology, metabolism, and immunity are intimately associated with the microbiome and its interactions with the host. Specifically, the gut microbiome composition and function has been shown to play a critical role in the etiology of different intestinal and extra-intestinal diseases. While attempts to identify a common pattern of microbial dysbiosis linked with these diseases have failed, multiple studies show that bacterial communities in the gut are spatially organized and that disrupted spatial organization of the gut microbiome is often a common underlying feature of disease pathogenesis. As a result, focus over the last few years has shifted from analyzing the diversity of gut microbiome by sequencing of the entire microbial community, towards understanding the gut microbiome in spatial context. Defining the composition and spatial heterogeneity of the microbiome is critical to facilitate further understanding of the gut microbiome ecology. Development in single cell genomics approach has advanced our understanding of microbial community structure, however, limitations in approaches exist. Single cell genomics is a very powerful and rapidly growing field, primarily used to identify the genetic composition of microbes. A major challenge is to isolate single cells for genomic analyses. This review summarizes the different approaches to study microbial genomes at single-cell resolution. We will review new techniques for microbial single cell sequencing and summarize how these techniques can be applied broadly to answer many questions related to the microbiome composition and spatial heterogeneity. These methods can be used to fill the gaps in our understanding of microbial communities.
Collapse
Affiliation(s)
| | | | - Maayan Levy
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
3
|
Young GR, Yew WC, Nelson A, Bridge SH, Berrington JE, Embleton ND, Smith DL. Optimisation and Application of a Novel Method to Identify Bacteriophages in Maternal Milk and Infant Stool Identifies Host-Phage Communities Within Preterm Infant Gut. Front Pediatr 2022; 10:856520. [PMID: 35558373 PMCID: PMC9087270 DOI: 10.3389/fped.2022.856520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Human milk oligosaccharides, proteins, such as lactoferrin, and bacteria represent just some of the bioactive components of mother's breast milk (BM). Bacteriophages (viruses that infect bacteria) are an often-overlooked component of BM that can cause major changes in microbial composition and metabolism. BM bacteriophage composition has been explored in term and healthy infants, suggesting vertical transmission of bacteriophages occurs between mothers and their infants. Several important differences between term and very preterm infants (<30 weeks gestational age) may limit this phenomenon in the latter. To better understand the link between BM bacteriophages and gut microbiomes of very preterm infants in health and disease, standardised protocols are required for isolation and characterisation from BM. In this study, we use isolated nucleic acid content, bacteriophage richness and Shannon diversity to validate several parameters applicable during bacteriophage isolation from precious BM samples. Parameters validated include sample volume required; centrifugal sedimentation of microbes; hydrolysis of milk samples with digestive enzymes; induction of temperate bacteriophages and concentration/purification of isolated bacteriophage particles in donor milk (DM). Our optimised method enables characterisation of bacteriophages from as little as 0.1 mL BM. We identify viral families that were exclusively identified with the inclusion of induction of temperate bacteriophages (Inoviridae) and hydrolysis of milk lipid processes (Iridoviridae and Baculoviridae). Once applied to a small clinical cohort we demonstrate the vertical transmission of bacteriophages from mothers BM to the gut of very preterm infants at the species level. This optimised method will enable future research characterising the bacteriophage composition of BM in very preterm infants to determine their clinical relevance in the development of a healthy preterm infant gut microbiome.
Collapse
Affiliation(s)
- Gregory R Young
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom.,Hub for Biotechnology in the Built Environment, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Wen C Yew
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Andrew Nelson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Simon H Bridge
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom.,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Janet E Berrington
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.,Newcastle upon Tyne Hospitals National Health Service Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Nicholas D Embleton
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.,Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Darren L Smith
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom.,Hub for Biotechnology in the Built Environment, Northumbria University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
4
|
Pujato S, Galliani V, Irazoqui JM, Amadío A, Quiberoni A, Mercanti D. Analysis of CRISPR systems of types II-A, I-E and I-C in strains of Lacticaseibacillus. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
5
|
Callanan J, Stockdale SR, Shkoporov A, Draper LA, Ross RP, Hill C. Biases in Viral Metagenomics-Based Detection, Cataloguing and Quantification of Bacteriophage Genomes in Human Faeces, a Review. Microorganisms 2021; 9:524. [PMID: 33806607 PMCID: PMC8000950 DOI: 10.3390/microorganisms9030524] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/17/2021] [Accepted: 03/02/2021] [Indexed: 12/21/2022] Open
Abstract
The human gut is colonised by a vast array of microbes that include bacteria, viruses, fungi, and archaea. While interest in these microbial entities has largely focused on the bacterial constituents, recently the viral component has attracted more attention. Metagenomic advances, compared to classical isolation procedures, have greatly enhanced our understanding of the composition, diversity, and function of viruses in the human microbiome (virome). We highlight that viral extraction methodologies are crucial in terms of identifying and characterising communities of viruses infecting eukaryotes and bacteria. Different viral extraction protocols, including those used in some of the most significant human virome publications to date, have introduced biases affecting their a overall conclusions. It is important that protocol variations should be clearly highlighted across studies, with the ultimate goal of identifying and acknowledging biases associated with different protocols and, perhaps, the generation of an unbiased and standardised method for examining this portion of the human microbiome.
Collapse
Affiliation(s)
| | | | | | | | | | - Colin Hill
- APC Microbiome Ireland and School of Microbiology, University College Cork, T12 YT20 Cork, Ireland; (J.C.); (S.R.S.); (A.S.); (L.A.D.); (R.P.R.)
| |
Collapse
|
6
|
d'Humières C, Touchon M, Dion S, Cury J, Ghozlane A, Garcia-Garcera M, Bouchier C, Ma L, Denamur E, P C Rocha E. A simple, reproducible and cost-effective procedure to analyse gut phageome: from phage isolation to bioinformatic approach. Sci Rep 2019; 9:11331. [PMID: 31383878 PMCID: PMC6683287 DOI: 10.1038/s41598-019-47656-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/18/2019] [Indexed: 01/08/2023] Open
Abstract
The microbiota of the human gut is a complex and rich community where bacteria and their viruses, the bacteriophages, are dominant. There are few studies on the phage community and no clear standard for isolating them, sequencing and analysing their genomes. Since this makes comparisons between studies difficult, we aimed at defining an easy, low-cost, and reproducible methodology. We analysed five different techniques to isolate phages from human adult faeces and developed an approach to analyse their genomes in order to quantify contamination and classify phage contigs in terms of taxonomy and lifestyle. We chose the polyethylene glycol concentration method to isolate phages because of its simplicity, low cost, reproducibility, and of the high number and diversity of phage sequences that we obtained. We also tested the reproducibility of this method with multiple displacement amplification (MDA) and showed that MDA severely decreases the phage genetic diversity of the samples and the reproducibility of the method. Lastly, we studied the influence of sequencing depth on the analysis of phage diversity and observed the beginning of a plateau for phage contigs at 20,000,000 reads. This work contributes to the development of methods for the isolation of phages in faeces and for their comparative analysis.
Collapse
Affiliation(s)
- Camille d'Humières
- IAME, UMR 1137, INSERM, Université Paris Diderot, 75018, Paris, France. .,AP-HP, Laboratoire de Bactériologie, Hôpital Bichat, 75018, Paris, France. .,Ecole doctorale Frontières du vivant, Université Paris Diderot, 75013, Paris, France. .,Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, Paris, 75015, France.
| | - Marie Touchon
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, Paris, 75015, France
| | - Sara Dion
- IAME, UMR 1137, INSERM, Université Paris Diderot, 75018, Paris, France
| | - Jean Cury
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, Paris, 75015, France
| | - Amine Ghozlane
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, Paris, France
| | - Marc Garcia-Garcera
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, Paris, 75015, France
| | - Christiane Bouchier
- Genomics Platform, BIOMICS, Institut Pasteur, 25-28 rue Dr Roux, Paris, 75015, France
| | - Laurence Ma
- Genomics Platform, BIOMICS, Institut Pasteur, 25-28 rue Dr Roux, Paris, 75015, France
| | - Erick Denamur
- IAME, UMR 1137, INSERM, Université Paris Diderot, 75018, Paris, France.,AP-HP, Laboratoire de Génétique Moléculaire, Hôpital Bichat, Paris, France
| | - Eduardo P C Rocha
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, Paris, 75015, France
| |
Collapse
|
7
|
Garcia-Garcera M, Touchon M, Brisse S, Rocha EPC. Metagenomic assessment of the interplay between the environment and the genetic diversification of Acinetobacter. Environ Microbiol 2017; 19:5010-5024. [PMID: 28967182 PMCID: PMC5767740 DOI: 10.1111/1462-2920.13949] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 09/08/2017] [Accepted: 09/26/2017] [Indexed: 01/22/2023]
Abstract
Most bacteria have poorly characterized environmental reservoirs and unknown closely related species. This hampers the study of bacterial evolutionary ecology because both the environment and the genetic background of ancestral lineages are unknown. We combined metagenomics, comparative genomics and phylogenomics to overcome this limitation, to identify novel taxa and to propose environments where they can be isolated. We applied this method to characterize the ecological distribution of known and novel lineages of Acinetobacter spp. We observed two major environmental transitions at deep phylogenetic levels, splitting the genus into three ecologically differentiated clades. One of these has rapidly shifted towards host‐association by acquiring genes involved in bacteria‐eukaryote interactions. We show that environmental perturbations affect species distribution in predictable ways: bovines have very diverse communities of Acinetobacter, unless they were administered antibiotics, in which case they show highly uniform communities of Acinetobacter spp. that resemble those of humans. Our results uncover the diversity of bacterial lineages, overpassing the limitations of classical cultivation methods and highlight the role of the environment in shaping their evolution.
Collapse
Affiliation(s)
- Marc Garcia-Garcera
- Microbial Evolutionary Genomics, Institut Pasteur, 25-28 rue Dr Roux, Paris 75015, France.,CNRS, UMR3525, Unité de Génétique des Genomes, 25-28 rue Dr. Roux, Paris 75015, France
| | - Marie Touchon
- Microbial Evolutionary Genomics, Institut Pasteur, 25-28 rue Dr Roux, Paris 75015, France.,CNRS, UMR3525, Unité de Génétique des Genomes, 25-28 rue Dr. Roux, Paris 75015, France
| | - Sylvain Brisse
- Microbial Evolutionary Genomics, Institut Pasteur, 25-28 rue Dr Roux, Paris 75015, France.,CNRS, UMR3525, Unité de Génétique des Genomes, 25-28 rue Dr. Roux, Paris 75015, France
| | - Eduardo P C Rocha
- Microbial Evolutionary Genomics, Institut Pasteur, 25-28 rue Dr Roux, Paris 75015, France.,CNRS, UMR3525, Unité de Génétique des Genomes, 25-28 rue Dr. Roux, Paris 75015, France
| |
Collapse
|
8
|
Ferrer M, Raczkowska BA, Martínez-Martínez M, Barbas C, Rojo D. Phenotyping of gut microbiota: Focus on capillary electrophoresis. Electrophoresis 2017; 38:2275-2286. [DOI: 10.1002/elps.201700056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/04/2017] [Accepted: 06/01/2017] [Indexed: 01/29/2023]
Affiliation(s)
- Manuel Ferrer
- Institute of Catalysis; Consejo Superior de Investigaciones Científicas (CSIC); Madrid Spain
| | - Beata Anna Raczkowska
- Department of Endocrinology; Diabetology and Internal Medicine, Medical University of Bialystok; Bialystok Poland
| | | | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO); Facultad de Farmacia, Universidad CEU San Pablo, Campus Montepríncipe; Madrid Spain
| | - David Rojo
- Centro de Metabolómica y Bioanálisis (CEMBIO); Facultad de Farmacia, Universidad CEU San Pablo, Campus Montepríncipe; Madrid Spain
| |
Collapse
|
9
|
Rojo D, Méndez-García C, Raczkowska BA, Bargiela R, Moya A, Ferrer M, Barbas C. Exploring the human microbiome from multiple perspectives: factors altering its composition and function. FEMS Microbiol Rev 2017; 41:453-478. [PMID: 28333226 PMCID: PMC5812509 DOI: 10.1093/femsre/fuw046] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/15/2016] [Indexed: 02/07/2023] Open
Abstract
Our microbiota presents peculiarities and characteristics that may be altered by multiple factors. The degree and consequences of these alterations depend on the nature, strength and duration of the perturbations as well as the structure and stability of each microbiota. The aim of this review is to sketch a very broad picture of the factors commonly influencing different body sites, and which have been associated with alterations in the human microbiota in terms of composition and function. To do so, first, a graphical representation of bacterial, fungal and archaeal genera reveals possible associations among genera affected by different factors. Then, the revision of sequence-based predictions provides associations with functions that become part of the active metabolism. Finally, examination of microbial metabolite contents and fluxes reveals whether metabolic alterations are a reflection of the differences observed at the level of population structure, and in the last step, link microorganisms to functions under perturbations that differ in nature and aetiology. The utilisation of complementary technologies and methods, with a special focus on metabolomics research, is thoroughly discussed to obtain a global picture of microbiota composition and microbiome function and to convey the urgent need for the standardisation of protocols.
Collapse
Affiliation(s)
- David Rojo
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Campus Montepríncipe, 28668 Madrid, Spain
| | | | - Beata Anna Raczkowska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Rafael Bargiela
- Institute of Catalysis, Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain
| | - Andrés Moya
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Community Public Health (FISABIO), 46020 Valencia, Spain
- Network Research Center for Epidemiology and Public Health (CIBER-ESP), 28029 Madrid, Spain
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, Paterna, 46980 Valencia, Spain
- These authors contributed equally to this work
| | - Manuel Ferrer
- Institute of Catalysis, Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain
- Corresponding author: Institute of Catalysis, Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain. Tel: (+34) 915854872; E-mail:
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Campus Montepríncipe, 28668 Madrid, Spain
- These authors contributed equally to this work
| |
Collapse
|
10
|
Leuconostoc mesenteroides and Leuconostoc pseudomesenteroides bacteriophages: Genomics and cross-species host ranges. Int J Food Microbiol 2017. [PMID: 28651078 DOI: 10.1016/j.ijfoodmicro.2017.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Unveiling virus-host interactions are relevant for understanding the biology and evolution of microbes globally, but in particular, it has also a paramount impact on the manufacture of fermented dairy products. In this study, we aim at characterizing phages infecting the commonly used heterofermentative Leuconostoc spp. on the basis of host range patterns and genome analysis. Host range of six Leuconostoc phages was investigated using three methods (efficiency of plaquing, spot and turbidity tests) against Ln. mesenteroides and Ln. pseudomesenteroides strains. Complete genome sequencing from four out of the six studied Leuconostoc phages were obtained in this work, while the remaining two have been sequenced previously. According to our results, cross-species host specificity was demonstrated, as all phages tested were capable of infecting both Ln. pseudomesenteroides and Ln. mesenteroides strains, although with different efficiency of plaquing (EOP). Phage adsorption rates and ability of low-EOP host strains to propagate phages by crossing the Leuconostoc species' barrier confirm results. At the genome level, phages CHA, CHB, Ln-7, Ln-8 and Ln-9 revealed high similarity with previously characterized phages infecting mostly Ln. mesenteroides strains, while phage LDG was highly similar to phages infecting Ln. pseudomesenteroides. Additionally, correlation between receptor binding protein (RBP) and host range patterns allowed us to unveil a finer clustering of Leuconostoc phages studied into four groups. This is the first report of overlapped phage host ranges between Leuconostoc species.
Collapse
|
11
|
Džunková M, D’Auria G, Moya A. Direct sequencing of human gut virome fractions obtained by flow cytometry. Front Microbiol 2015; 6:955. [PMID: 26441889 PMCID: PMC4568480 DOI: 10.3389/fmicb.2015.00955] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 08/28/2015] [Indexed: 02/05/2023] Open
Abstract
The sequence assembly of the human gut virome encounters several difficulties. A high proportion of human and bacterial matches is detected in purified viral samples. Viral DNA extraction results in a low DNA concentration, which does not reach the minimal limit required for sequencing library preparation. Therefore, the viromes are usually enriched by whole genome amplification (WGA), which is, however, prone to the development of chimeras and amplification bias. In addition, as there is a very wide diversity of gut viral species, very extensive sequencing efforts must be made for the assembling of whole viral genomes. We present an approach to improve human gut virome assembly by employing a more precise preparation of a viral sample before sequencing. Particles present in a virome previously filtered through 0.2 μm pores were further divided into groups in accordance with their size and DNA content by fluorescence activated cell sorting (FACS). One selected viral fraction was sequenced excluding the WGA step, so that unbiased sequences with high reliability were obtained. The DNA extracted from the 314 viral particles of the selected fraction was assembled into 34 contigs longer than 1,000 bp. This represents an increase to the number of assembled long contigs per sequenced Gb in comparison with other studies where non-fractioned viromes are sequenced. Seven of these contigs contained open reading frames (ORFs) with explicit matches to proteins related to bacteriophages. The remaining contigs also possessed uncharacterized ORFs with bacteriophage-related domains. When the particles that are present in the filtered viromes are sorted into smaller groups by FACS, large pieces of viral genomes can be recovered easily. This approach has several advantages over the conventional sequencing of non-fractioned viromes: non-viral contamination is reduced and the sequencing efforts required for viral assembly are minimized.
Collapse
Affiliation(s)
- Mária Džunková
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana – Salud Pública, ValenciaSpain
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, ValenciaSpain
- CIBER en Epidemiología y Salud Pública, MadridSpain
| | - Giuseppe D’Auria
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana – Salud Pública, ValenciaSpain
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, ValenciaSpain
- CIBER en Epidemiología y Salud Pública, MadridSpain
| | - Andrés Moya
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana – Salud Pública, ValenciaSpain
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, ValenciaSpain
- CIBER en Epidemiología y Salud Pública, MadridSpain
- *Correspondence: Andrés Moya, Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana – Salud Pública, Avenida de Cataluña 21, 46020 Valencia, Spain,
| |
Collapse
|