1
|
Liu K, Qin B, Hao R, Chen X, Zhou Y, Zhang W, Fu Y, Yu K. Genetic analyses reveal wildfire particulates as environmental pollutants rather than nutrient sources for corals. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136840. [PMID: 39675086 DOI: 10.1016/j.jhazmat.2024.136840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
Heterotrophic nutrients are crucial for coral growth and recovery from bleaching events. Although wildfire emissions are a potential source of these nutrients, their impact on corals was minimally investigated. In this microcosm experiment, Acropora formosa corals exhibited rapid tissue detachment upon exposure to wildfire fine particulate matter (PM2.5). Physiological and genetic analyses revealed mechanisms associated with oxidation-reduction homeostasis and nutrient metabolism. Excessive hydrogen peroxide was generated as corals activated cytochrome P450 enzymes and the respiratory burst in phagocytic cells to metabolize PM2.5, leading to oxidative damage, mitochondrial dysfunction, and cell apoptosis due to reduced superoxide dismutase activity and compromised glutathione antioxidant function. Subsequently, corals upregulated the transcriptions of genes which are related to tyrosine receptor proteins to regulate multicellular development for self-repair, increasing energy consumption. However, Symbiodiniaceae upregulated their metabolism and retained photosynthates, reducing nutrient supply to the coral host. Therefore, the host temporarily utilized lipid reserves via the glyoxylate cycle, but excessive consumption disrupted lipid and carbohydrate metabolism, ultimately weakening cell adhesion and causing coral tissue detachment. Additionally, the downregulation of HSP70 expression, potentially linked to decreased sacsin and mitochondrial apoptosis, accelerated coral heat bleaching. This study elucidates the mechanisms by which wildfire PM2.5 at environmental concentrations poses risks to corals, particularly in a warming climate.
Collapse
Affiliation(s)
- Ke Liu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Bo Qin
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Ruoxing Hao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Xiaoyan Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning 530004, China.
| | - Yu Zhou
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Wenqian Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Yichen Fu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| |
Collapse
|
2
|
Knight B, Mondal R, Han N, Pietra NF, Hall BA, Edgar KJ, Vaissier Welborn V, Madsen LA, De Yoreo JJ, Dove PM. Kinetics of Calcite Nucleation onto Sulfated Chitosan Derivatives and Implications for Water-Polysaccharide Interactions during Crystallization of Sparingly Soluble Salts. CRYSTAL GROWTH & DESIGN 2024; 24:6338-6353. [PMID: 39131446 PMCID: PMC11311137 DOI: 10.1021/acs.cgd.4c00602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 08/13/2024]
Abstract
Anionic macromolecules are found at sites of CaCO3 biomineralization in diverse organisms, but their roles in crystallization are not well-understood. We prepared a series of sulfated chitosan derivatives with varied positions and degrees of sulfation, DS(SO3 -), and measured calcite nucleation rate onto these materials. Fitting the classical nucleation theory model to the kinetic data reveals the interfacial free energy of the calcite-polysaccharide-solution system, γnet, is lowest for nonsulfated controls and increases with DS(SO3 -). The kinetic prefactor also increases with DS(SO3 -). Simulations of Ca2+-H2O-chitosan systems show greater water structuring around sulfate groups compared to uncharged substituents, independent of sulfate location. Ca2+-SO3 - interactions are solvent-separated by distances that are inversely correlated with DS(SO3 -) of the polysaccharide. The simulations also predict SO3 - and NH3 + groups affect the solvation waters and HCO3 - ions associated with Ca2+. Integrating the experimental and computational evidence suggests sulfate groups influence nucleation by increasing the difficulty of displacing near-surface water, thereby increasing γnet. By correlating γnet and net charge per monosaccharide for diverse polysaccharides, we suggest the solvent-separated interactions of functional groups with Ca2+ influence thermodynamic and kinetic components to crystallization by similar solvent-dominated processes. The findings reiterate the importance of establishing water structure and properties at macromolecule-solution interfaces.
Collapse
Affiliation(s)
- Brenna
M. Knight
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department
of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Ronnie Mondal
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Nizhou Han
- Department
of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Nicholas F. Pietra
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Brady A. Hall
- GlycoMIP, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Kevin J. Edgar
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department
of Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Valerie Vaissier Welborn
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Louis A. Madsen
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - James J. De Yoreo
- Physical
Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department
of Materials Science and Engineering, University
of Washington, Seattle, Washington 98195, United States
| | - Patricia M. Dove
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department
of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department
of Materials Science and Engineering, Virginia
Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
3
|
Barbosa M, Schwaner C, Pales Espinosa E, Allam B. A Transcriptomic Analysis of Phenotypic Plasticity in Crassostrea virginica Larvae under Experimental Acidification. Genes (Basel) 2022; 13:1529. [PMID: 36140697 PMCID: PMC9498863 DOI: 10.3390/genes13091529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/15/2022] [Accepted: 08/20/2022] [Indexed: 11/25/2022] Open
Abstract
Ocean acidification (OA) is a major threat to marine calcifiers, and little is known regarding acclimation to OA in bivalves. This study combined physiological assays with next-generation sequencing to assess the potential for recovery from and acclimation to OA in the eastern oyster (Crassostrea virginica) and identify molecular mechanisms associated with resilience. In a reciprocal transplant experiment, larvae transplanted from elevated pCO2 (~1400 ppm) to ambient pCO2 (~350 ppm) demonstrated significantly lower mortality and larger size post-transplant than oysters remaining under elevated pCO2 and had similar mortality compared to those remaining in ambient conditions. The recovery after transplantation to ambient conditions demonstrates the ability for larvae to rebound and suggests phenotypic plasticity and acclimation. Transcriptomic analysis supported this hypothesis as genes were differentially regulated under OA stress. Transcriptomic profiles of transplanted and non-transplanted larvae terminating in the same final pCO2 converged, further supporting the idea that acclimation underlies resilience. The functions of differentially expressed genes included cell differentiation, development, biomineralization, ion exchange, and immunity. Results suggest acclimation as a mode of resilience to OA. In addition, the identification of genes associated with resilience can serve as a valuable resource for the aquaculture industry, as these could enable marker-assisted selection of OA-resilient stocks.
Collapse
Affiliation(s)
| | | | | | - Bassem Allam
- School of Marine and Atmospheric Sciences, Sony Brook University, Stony Brook, NY 11790, USA
| |
Collapse
|
4
|
Kelley ER, Sleith RS, Matz MV, Wright RM. Gene expression associated with disease resistance and long-term growth in a reef-building coral. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210113. [PMID: 33996131 PMCID: PMC8059587 DOI: 10.1098/rsos.210113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Rampant coral disease, exacerbated by climate change and other anthropogenic stressors, threatens reefs worldwide, especially in the Caribbean. Physically isolated yet genetically connected reefs such as Flower Garden Banks National Marine Sanctuary (FGBNMS) may serve as potential refugia for degraded Caribbean reefs. However, little is known about the mechanisms and trade-offs of pathogen resistance in reef-building corals. Here, we measure pathogen resistance in Montastraea cavernosa from FGBNMS. We identified individual colonies that demonstrated resistance or susceptibility to Vibrio spp. in a controlled laboratory environment. Long-term growth patterns suggest no trade-off between disease resistance and calcification. Predictive (pre-exposure) gene expression highlights subtle differences between resistant and susceptible genets, encouraging future coral disease studies to investigate associations between resistance and replicative age and immune cell populations. Predictive gene expression associated with long-term growth underscores the role of transmembrane proteins involved in cell adhesion and cell-cell interactions, contributing to the growing body of knowledge surrounding genes that influence calcification in reef-building corals. Together these results demonstrate that coral genets from isolated sanctuaries such as FGBNMS can withstand pathogen challenges and potentially aid restoration efforts in degraded reefs. Furthermore, gene expression signatures associated with resistance and long-term growth help inform strategic assessment of coral health parameters.
Collapse
Affiliation(s)
- Emma R. Kelley
- Department of Biological Sciences, Smith College, Northampton, MA, USA
| | - Robin S. Sleith
- Department of Biological Sciences, Smith College, Northampton, MA, USA
| | - Mikhail V. Matz
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Rachel M. Wright
- Department of Biological Sciences, Smith College, Northampton, MA, USA
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
5
|
Mummadisetti MP, Drake JL, Falkowski PG. The spatial network of skeletal proteins in a stony coral. J R Soc Interface 2021; 18:20200859. [PMID: 33622149 PMCID: PMC8086859 DOI: 10.1098/rsif.2020.0859] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Coral skeletons are materials composed of inorganic aragonitic fibres and organic molecules including proteins, sugars and lipids that are highly organized to form a solid biomaterial upon which the animals live. The skeleton contains tens of proteins, all of which are encoded in the animal genome and secreted during the biomineralization process. While recent advances are revealing the functions and evolutionary history of some of these proteins, how they are spatially arranged in the skeleton is unknown. Using a combination of chemical cross-linking and high-resolution tandem mass spectrometry, we identify, for the first time, the spatial interactions of the proteins embedded within the skeleton of the stony coral Stylophora pistillata. Our subsequent network analysis revealed that several coral acid-rich proteins are invariably associated with carbonic anhydrase(s), alpha-collagen, cadherins and other calcium-binding proteins. These spatial arrangements clearly show that protein-protein interactions in coral skeletons are highly coordinated and are key to understanding the formation and persistence of coral skeletons through time.
Collapse
Affiliation(s)
- Manjula P Mummadisetti
- Environmental Biophysics and Molecular Biology Program, Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, 71 Dudley Rd, New Brunswick, NJ 08901, USA
| | - Jeana L Drake
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, 595 Charles E. Young Drive East, Los Angeles, CA 90095, USA.,Department of Marine Biology, University of Haifa, 199 Aba Khoushy Avenue, Mount Carmel, Haifa 2498838, Israel
| | - Paul G Falkowski
- Environmental Biophysics and Molecular Biology Program, Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, 71 Dudley Rd, New Brunswick, NJ 08901, USA.,Department of Earth and Planetary Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
6
|
Lang A, Mijowska S, Polishchuk I, Fermani S, Falini G, Katsman A, Marin F, Pokroy B. Acidic Monosaccharides become Incorporated into Calcite Single Crystals*. Chemistry 2020; 26:16860-16868. [PMID: 33405235 DOI: 10.1002/chem.202003344] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/13/2020] [Indexed: 02/06/2023]
Abstract
Carbohydrates, along with proteins and peptides, are known to represent a major class of biomacromolecules involved in calcium carbonate biomineralization. However, in spite of multiple physical and biochemical characterizations, the explicit role of saccharide macromolecules (long chains of carbohydrate molecules) in mineral deposition is not yet understood. In this study, we investigated the influence of two common acidic monosaccharides (MSs), the two simplest forms of acidic carbohydrates, namely glucuronic and galacturonic acids, on the formation of calcite crystals in vitro. We show here that the size, morphology, and microstructure of calcite crystals are altered when they are grown in the presence of these MSs. More importantly, these MSs were found to become incorporated into the calcite crystalline lattice and induce anisotropic lattice distortions, a phenomenon widely studied for other biomolecules related to CaCO3 biomineralization, but never before reported in the case of single MSs. Changes in the calcite lattice induced by MSs incorporation were precisely determined by high-resolution synchrotron powder X-ray diffraction. We believe that the results of this research may deepen our understanding of the interaction of saccharide polymers with an inorganic host and shed light on the implications of carbohydrates for biomineralization processes.
Collapse
Affiliation(s)
- Arad Lang
- Department of Materials Science and Engineering, and the, Russell Berrie Nanotechnology Institute, Technion-Israel Institute of, Technology, Technion City, 320003, Haifa, Israel
| | - Sylwia Mijowska
- Department of Materials Science and Engineering, and the, Russell Berrie Nanotechnology Institute, Technion-Israel Institute of, Technology, Technion City, 320003, Haifa, Israel
| | - Iryna Polishchuk
- Department of Materials Science and Engineering, and the, Russell Berrie Nanotechnology Institute, Technion-Israel Institute of, Technology, Technion City, 320003, Haifa, Israel
| | - Simona Fermani
- Faculty of Chemistry, University of Bologna, 2 Via Selmi, 40126, Bologna BO, Italy
| | - Giuseppe Falini
- Faculty of Chemistry, University of Bologna, 2 Via Selmi, 40126, Bologna BO, Italy
| | - Alexander Katsman
- Department of Materials Science and Engineering, and the, Russell Berrie Nanotechnology Institute, Technion-Israel Institute of, Technology, Technion City, 320003, Haifa, Israel
| | - Frédéric Marin
- UMR CNRS 6282 Biogeosciences, University of Burgundy-Franche-Comté, 6 Boulevard Gabriel, Dijon, 21000, France
| | - Boaz Pokroy
- Department of Materials Science and Engineering, and the, Russell Berrie Nanotechnology Institute, Technion-Israel Institute of, Technology, Technion City, 320003, Haifa, Israel
| |
Collapse
|
7
|
Cerullo AR, Lai TY, Allam B, Baer A, Barnes WJP, Barrientos Z, Deheyn DD, Fudge DS, Gould J, Harrington MJ, Holford M, Hung CS, Jain G, Mayer G, Medina M, Monge-Nájera J, Napolitano T, Espinosa EP, Schmidt S, Thompson EM, Braunschweig AB. Comparative Animal Mucomics: Inspiration for Functional Materials from Ubiquitous and Understudied Biopolymers. ACS Biomater Sci Eng 2020; 6:5377-5398. [DOI: 10.1021/acsbiomaterials.0c00713] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Antonio R. Cerullo
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
| | - Tsoi Ying Lai
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
| | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794-5000, United States
| | - Alexander Baer
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - W. Jon P. Barnes
- Centre for Cell Engineering, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - Zaidett Barrientos
- Laboratorio de Ecología Urbana, Universidad Estatal a Distancia, Mercedes de Montes de Oca, San José 474-2050, Costa Rica
| | - Dimitri D. Deheyn
- Marine Biology Research Division-0202, Scripps Institute of Oceanography, UCSD, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Douglas S. Fudge
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, California 92866, United States
| | - John Gould
- School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, New South Wales 2308, Australia
| | - Matthew J. Harrington
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Mandë Holford
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
- Department of Invertebrate Zoology, The American Museum of Natural History, New York, New York 10024, United States
- The PhD Program in Chemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- The PhD Program in Biology, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Chia-Suei Hung
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Gaurav Jain
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, California 92866, United States
| | - Georg Mayer
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Mónica Medina
- Department of Biology, Pennsylvania State University, 208 Mueller Lab, University Park, Pennsylvania 16802, United States
| | - Julian Monge-Nájera
- Laboratorio de Ecología Urbana, Universidad Estatal a Distancia, Mercedes de Montes de Oca, San José 474-2050, Costa Rica
| | - Tanya Napolitano
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
| | - Emmanuelle Pales Espinosa
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794-5000, United States
| | - Stephan Schmidt
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Eric M. Thompson
- Sars Centre for Marine Molecular Biology, Thormøhlensgt. 55, 5020 Bergen, Norway
- Department of Biological Sciences, University of Bergen, N-5006 Bergen, Norway
| | - Adam B. Braunschweig
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
- The PhD Program in Chemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|
8
|
Drake JL, Mass T, Stolarski J, Von Euw S, van de Schootbrugge B, Falkowski PG. How corals made rocks through the ages. GLOBAL CHANGE BIOLOGY 2020; 26:31-53. [PMID: 31696576 PMCID: PMC6942544 DOI: 10.1111/gcb.14912] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 05/03/2023]
Abstract
Hard, or stony, corals make rocks that can, on geological time scales, lead to the formation of massive reefs in shallow tropical and subtropical seas. In both historical and contemporary oceans, reef-building corals retain information about the marine environment in their skeletons, which is an organic-inorganic composite material. The elemental and isotopic composition of their skeletons is frequently used to reconstruct the environmental history of Earth's oceans over time, including temperature, pH, and salinity. Interpretation of this information requires knowledge of how the organisms formed their skeletons. The basic mechanism of formation of calcium carbonate skeleton in stony corals has been studied for decades. While some researchers consider coral skeletons as mainly passive recorders of ocean conditions, it has become increasingly clear that biological processes play key roles in the biomineralization mechanism. Understanding the role of the animal in living stony coral biomineralization and how it evolved has profound implications for interpreting environmental signatures in fossil corals to understand past ocean conditions. Here we review historical hypotheses and discuss the present understanding of how corals evolved and how their skeletons changed over geological time. We specifically explain how biological processes, particularly those occurring at the subcellular level, critically control the formation of calcium carbonate structures. We examine the different models that address the current debate including the tissue-skeleton interface, skeletal organic matrix, and biomineralization pathways. Finally, we consider how understanding the biological control of coral biomineralization is critical to informing future models of coral vulnerability to inevitable global change, particularly increasing ocean acidification.
Collapse
Affiliation(s)
- Jeana L Drake
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Tali Mass
- Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | | | - Stanislas Von Euw
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | - Paul G Falkowski
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
- Department of Earth and Planetary Sciences, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
9
|
Hilgers L, Hartmann S, Hofreiter M, von Rintelen T. Novel Genes, Ancient Genes, and Gene Co-Option Contributed to the Genetic Basis of the Radula, a Molluscan Innovation. Mol Biol Evol 2019; 35:1638-1652. [PMID: 29672732 PMCID: PMC5995198 DOI: 10.1093/molbev/msy052] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The radula is the central foraging organ and apomorphy of the Mollusca. However, in contrast to other innovations, including the mollusk shell, genetic underpinnings of radula formation remain virtually unknown. Here, we present the first radula formative tissue transcriptome using the viviparous freshwater snail Tylomelania sarasinorum and compare it to foot tissue and the shell-building mantle of the same species. We combine differential expression, functional enrichment, and phylostratigraphic analyses to identify both specific and shared genetic underpinnings of the three tissues as well as their dominant functions and evolutionary origins. Gene expression of radula formative tissue is very distinct, but nevertheless more similar to mantle than to foot. Generally, the genetic bases of both radula and shell formation were shaped by novel orchestration of preexisting genes and continuous evolution of novel genes. A significantly increased proportion of radula-specific genes originated since the origin of stem-mollusks, indicating that novel genes were especially important for radula evolution. Genes with radula-specific expression in our study are frequently also expressed during the formation of other lophotrochozoan hard structures, like chaetae (hes1, arx), spicules (gbx), and shells of mollusks (gbx, heph) and brachiopods (heph), suggesting gene co-option for hard structure formation. Finally, a Lophotrochozoa-specific chitin synthase with a myosin motor domain (CS-MD), which is expressed during mollusk and brachiopod shell formation, had radula-specific expression in our study. CS-MD potentially facilitated the construction of complex chitinous structures and points at the potential of molecular novelties to promote the evolution of different morphological innovations.
Collapse
Affiliation(s)
- Leon Hilgers
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
- Adaptive Evolutionary Genomics Department, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Corresponding author: E-mail:
| | - Stefanie Hartmann
- Adaptive Evolutionary Genomics Department, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Michael Hofreiter
- Adaptive Evolutionary Genomics Department, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Thomas von Rintelen
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| |
Collapse
|
10
|
Abstract
Genomic sequence data for non-model organisms are increasingly available requiring the development of efficient and reproducible workflows. Here, we develop the first genomic resources and reproducible workflows for two threatened members of the reef-building coral genus Acropora We generated genomic sequence data from multiple samples of the Caribbean A. cervicornis (staghorn coral) and A. palmata (elkhorn coral), and predicted millions of nucleotide variants among these two species and the Pacific A. digitifera A subset of predicted nucleotide variants were verified using restriction length polymorphism assays and proved useful in distinguishing the two Caribbean acroporids and the hybrid they form ("A. prolifera"). Nucleotide variants are freely available from the Galaxy server (usegalaxy.org), and can be analyzed there with computational tools and stored workflows that require only an internet browser. We describe these data and some of the analysis tools, concentrating on fixed differences between A. cervicornis and A. palmata In particular, we found that fixed amino acid differences between these two species were enriched in proteins associated with development, cellular stress response, and the host's interactions with associated microbes, for instance in the ABC transporters and superoxide dismutase. Identified candidate genes may underlie functional differences in how these threatened species respond to changing environments. Users can expand the presented analyses easily by adding genomic data from additional species, as they become available.
Collapse
|
11
|
Effect of a lipopeptide biosurfactant on the precipitation of calcium carbonate. Colloids Surf B Biointerfaces 2019; 174:145-152. [DOI: 10.1016/j.colsurfb.2018.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/17/2018] [Accepted: 11/05/2018] [Indexed: 11/19/2022]
|
12
|
Mann K, Cerveau N, Gummich M, Fritz M, Mann M, Jackson DJ. In-depth proteomic analyses of Haliotis laevigata (greenlip abalone) nacre and prismatic organic shell matrix. Proteome Sci 2018; 16:11. [PMID: 29983641 PMCID: PMC6003135 DOI: 10.1186/s12953-018-0139-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/25/2018] [Indexed: 01/12/2023] Open
Abstract
Background The shells of various Haliotis species have served as models of invertebrate biomineralization and physical shell properties for more than 20 years. A focus of this research has been the nacreous inner layer of the shell with its conspicuous arrangement of aragonite platelets, resembling in cross-section a brick-and-mortar wall. In comparison, the outer, less stable, calcitic prismatic layer has received much less attention. One of the first molluscan shell proteins to be characterized at the molecular level was Lustrin A, a component of the nacreous organic matrix of Haliotis rufescens. This was soon followed by the C-type lectin perlucin and the growth factor-binding perlustrin, both isolated from H. laevigata nacre, and the crystal growth-modulating AP7 and AP24, isolated from H. rufescens nacre. Mass spectrometry-based proteomics was subsequently applied to to Haliotis biomineralization research with the analysis of the H. asinina shell matrix and yielded 14 different shell-associated proteins. That study was the most comprehensive for a Haliotis species to date. Methods The shell proteomes of nacre and prismatic layer of the marine gastropod Haliotis laevigata were analyzed combining mass spectrometry-based proteomics and next generation sequencing. Results We identified 297 proteins from the nacreous shell layer and 350 proteins from the prismatic shell layer from the green lip abalone H. laevigata. Considering the overlap between the two sets we identified a total of 448 proteins. Fifty-one nacre proteins and 43 prismatic layer proteins were defined as major proteins based on their abundance at more than 0.2% of the total. The remaining proteins occurred at low abundance and may not play any significant role in shell fabrication. The overlap of major proteins between the two shell layers was 17, amounting to a total of 77 major proteins. Conclusions The H. laevigata shell proteome shares moderate sequence similarity at the protein level with other gastropod, bivalve and more distantly related invertebrate biomineralising proteomes. Features conserved in H. laevigata and other molluscan shell proteomes include short repetitive sequences of low complexity predicted to lack intrinsic three-dimensional structure, and domains such as tyrosinase, chitin-binding, and carbonic anhydrase. This catalogue of H. laevigata shell proteins represents the most comprehensive for a haliotid and should support future efforts to elucidate the molecular mechanisms of shell assembly. Electronic supplementary material The online version of this article (10.1186/s12953-018-0139-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Karlheinz Mann
- 1Abteilung Proteomics und Signaltransduktion, Max-Planck-Institut für Biochemie, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Nicolas Cerveau
- 2Department of Geobiology, Georg-August University of Göttingen, Goldschmidstr. 3, 37077 Göttingen, Germany
| | - Meike Gummich
- 3Universität Bremen, Institut für Biophysik, Otto Hahn Allee NW1, D-28334 Bremen, Germany
| | - Monika Fritz
- 3Universität Bremen, Institut für Biophysik, Otto Hahn Allee NW1, D-28334 Bremen, Germany
| | - Matthias Mann
- 1Abteilung Proteomics und Signaltransduktion, Max-Planck-Institut für Biochemie, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Daniel J Jackson
- 2Department of Geobiology, Georg-August University of Göttingen, Goldschmidstr. 3, 37077 Göttingen, Germany
| |
Collapse
|
13
|
Herlitze I, Marie B, Marin F, Jackson DJ. Molecular modularity and asymmetry of the molluscan mantle revealed by a gene expression atlas. Gigascience 2018; 7:4997018. [PMID: 29788257 PMCID: PMC6007483 DOI: 10.1093/gigascience/giy056] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 05/09/2018] [Indexed: 12/31/2022] Open
Abstract
Background Conchiferan molluscs construct a biocalcified shell that likely supported much of their evolutionary success. However, beyond broad proteomic and transcriptomic surveys of molluscan shells and the shell-forming mantle tissue, little is known of the spatial and ontogenetic regulation of shell fabrication. In addition, most efforts have been focused on species that deposit nacre, which is at odds with the majority of conchiferan species that fabricate shells using a crossed-lamellar microstructure, sensu lato. Results By combining proteomic and transcriptomic sequencing with in situ hybridization we have identified a suite of gene products associated with the production of the crossed-lamellar shell in Lymnaea stagnalis. With this spatial expression data we are able to generate novel hypotheses of how the adult mantle tissue coordinates the deposition of the calcified shell. These hypotheses include functional roles for unusual and otherwise difficult-to-study proteins such as those containing repetitive low-complexity domains. The spatial expression readouts of shell-forming genes also reveal cryptic patterns of asymmetry and modularity in the shell-forming cells of larvae and adult mantle tissue. Conclusions This molecular modularity of the shell-forming mantle tissue hints at intimate associations between structure, function, and evolvability and may provide an elegant explanation for the evolutionary success of the second largest phylum among the Metazoa.
Collapse
Affiliation(s)
- Ines Herlitze
- Department of Geobiology, Georg-August University of Göttingen, Goldschmidtstrasse 3, 37077 Göttingen, Germany
| | - Benjamin Marie
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Micro-organismes, Département Aviv, Sorbonne Universités, Muséum National d'Histoire Naturelle, CP 39, 12 Rue Buffon, 75005 Paris, France
| | - Frédéric Marin
- UMR CNRS 6282 Biogéosciences, Université de Bourgogne - Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Daniel J Jackson
- Department of Geobiology, Georg-August University of Göttingen, Goldschmidtstrasse 3, 37077 Göttingen, Germany
| |
Collapse
|
14
|
Takeuchi T, Plasseraud L, Ziegler-Devin I, Brosse N, Shinzato C, Satoh N, Marin F. Biochemical characterization of the skeletal matrix of the massive coral, Porites australiensis - The saccharide moieties and their localization. J Struct Biol 2018; 203:219-229. [PMID: 29859330 DOI: 10.1016/j.jsb.2018.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 02/01/2023]
Abstract
To construct calcium carbonate skeletons of sophisticated architecture, scleractinian corals secrete an extracellular skeletal organic matrix (SOM) from aboral ectodermal cells. The SOM, which is composed of proteins, saccharides, and lipids, performs functions critical for skeleton formation. Even though polysaccharides constitute the major component of the SOM, its contribution to coral skeleton formation is poorly understood. To this end, we analyzed the SOM of the massive colonial coral, Porites australiensis, the skeleton of which has drawn great research interest because it records environmental conditions throughout the life of the colony. The coral skeleton was extensively cleaned, decalcified with acetic acid, and organic fractions were separated based on solubility. These fractions were analyzed using various techniques, including SDS-PAGE, FT-IR, in vitro crystallization, CHNS analysis, chromatography analysis of monosaccharide and enzyme-linked lectin assay (ELLA). We confirmed the acidic nature of SOM and the presence of sulphate, which is thought to initiate CaCO3 crystallization. In order to analyze glycan structures, we performed ELLA on the soluble SOM for the first time and found that it exhibits strong specificity to Datura stramonium lectin (DSL). Furthermore, using biotinylated DSL with anti-biotin antibody conjugated to nanogold, in situ localization of DSL-binding polysaccharides in the P. australiensis skeleton was performed. Signals were distributed on the surfaces of fiber-like crystals of the skeleton, suggesting that polysaccharides may modulate crystal shape. Our study emphasizes the importance of sugar moieties in biomineralization of scleractinian corals.
Collapse
Affiliation(s)
- Takeshi Takeuchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan.
| | - Laurent Plasseraud
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302, Faculté des Sciences Mirande, Université de Bourgogne - Franche-Comté (UBFC), Dijon, France
| | - Isabelle Ziegler-Devin
- LERMAB, Faculté des Sciences & Technologies -Campus Aiguillettes, Université de Lorraine, Vandœuvre-Lès-Nancy, France
| | - Nicolas Brosse
- LERMAB, Faculté des Sciences & Technologies -Campus Aiguillettes, Université de Lorraine, Vandœuvre-Lès-Nancy, France
| | - Chuya Shinzato
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan; Department of Marine Bioscience Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwanoha, Kashiwa-shi, Chiba 277-8564, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Frédéric Marin
- UMR CNRS 6282 Biogéosciences, Bâtiment des Sciences Gabriel, Université de Bourgogne - Franche-Comté (UBFC), Dijon, France
| |
Collapse
|
15
|
Minerals in the pre-settled coral Stylophora pistillata crystallize via protein and ion changes. Nat Commun 2018; 9:1880. [PMID: 29760444 PMCID: PMC5951882 DOI: 10.1038/s41467-018-04285-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/18/2018] [Indexed: 11/26/2022] Open
Abstract
Aragonite skeletons in corals are key contributors to the storage of atmospheric CO2 worldwide. Hence, understanding coral biomineralization/calcification processes is crucial for evaluating and predicting the effect of environmental factors on this process. While coral biomineralization studies have focused on adult corals, the exact stage at which corals initiate mineralization remains enigmatic. Here, we show that minerals are first precipitated as amorphous calcium carbonate and small aragonite crystallites, in the pre-settled larva, which then evolve into the more mature aragonitic fibers characteristic of the stony coral skeleton. The process is accompanied by modulation of proteins and ions within these minerals. These findings may indicate an underlying bimodal regulation tactic adopted by the animal, with important ramification to its resilience or vulnerability toward a changing environment. Coral biomineralization is an important example of natural mineralization and understanding the process will aid biomineralization research. Here, the authors identify the precipitation of amorphous calcium carbonate and small aragonite crystals in pre-settled larva of Stylophora pistillata.
Collapse
|
16
|
Naggi A, Torri G, Iacomini M, Colombo Castelli G, Reggi M, Fermani S, Dubinsky Z, Goffredo S, Falini G. Structure and Function of Stony Coral Intraskeletal Polysaccharides. ACS OMEGA 2018; 3:2895-2901. [PMID: 30221225 PMCID: PMC6130787 DOI: 10.1021/acsomega.7b02053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 02/14/2018] [Indexed: 05/20/2023]
Abstract
Polysaccharides represent a main weight fraction of the intraskeletal organic matrix of corals, but their structure, as well as their function in the calcification process, has been poorly investigated. This communication shows by a combination of techniques (nuclear magnetic resonance, Fourier transform infrared, and monosaccharide composition) that their key component is a 1→3 β-d glucuronic acid polymer and evidences its influence in vitro in the calcification process.
Collapse
Affiliation(s)
- Annamaria Naggi
- Istituto
di Ricerche Chimiche e Biochimiche “G. Ronzoni” Milano, via Giuseppe Colombo 81, 20133 Milano, Italy
- E-mail: (A.N.)
| | - Giangiacomo Torri
- Istituto
di Ricerche Chimiche e Biochimiche “G. Ronzoni” Milano, via Giuseppe Colombo 81, 20133 Milano, Italy
| | - Marcello Iacomini
- Departamento
de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, CP 19046, CEP 81531-980 Curitiba, Paraná, Brazil
| | - Gabriele Colombo Castelli
- Istituto
di Ricerche Chimiche e Biochimiche “G. Ronzoni” Milano, via Giuseppe Colombo 81, 20133 Milano, Italy
| | - Michela Reggi
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Simona Fermani
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Zvy Dubinsky
- The
Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Stefano Goffredo
- Marine
Science Group, Department of Biological, Geological and Environmental
Sciences, Alma Mater Studiorum—Università
di Bologna, Via Selmi
3, 40126 Bologna, Italy
- E-mail: (S.G.)
| | - Giuseppe Falini
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, via Selmi 2, 40126 Bologna, Italy
- E-mail: (G.F.)
| |
Collapse
|
17
|
Yuan X, Yuan T, Huang H, Jiang L, Zhou W, Liu S. Elevated CO 2 delays the early development of scleractinian coral Acropora gemmifera. Sci Rep 2018; 8:2787. [PMID: 29434364 PMCID: PMC5809585 DOI: 10.1038/s41598-018-21267-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 02/01/2018] [Indexed: 11/09/2022] Open
Abstract
The effects of elevated CO2 on the early life stages of coral were investigated by culturing the pelagic larvae and new recruits of Acropora gemmifera at three concentrations of CO2 (corresponding to pH = 8.1, 7.8 and 7.5, respectively). Acidified seawater resulted in fewer A. gemmifera larvae settling, and led to the production of smaller new recruits by slowing the development of the skeleton. The delayed development of new recruits due to elevated CO2 was consistent with the downregulation of calcification related genes. Several genes related to HCO3- and Ca2+ transporters were downregulated by elevated CO2, with solute carriers (SLC) (membrane transport proteins) possibly playing an important role. The downregulation of these membrane transport proteins might suppress the transport of calcium, bicarbonate and organic matter, resulting in the delayed development of A. gemmifera.
Collapse
Affiliation(s)
- Xiangcheng Yuan
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510000, China.,Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510000, China
| | - Tao Yuan
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510000, China. .,Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510000, China.
| | - Hui Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510000, China. .,Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510000, China. .,Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, China.
| | - Lei Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510000, China.,Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510000, China
| | - Weihua Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510000, China.,Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510000, China.,Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, China
| | - Sheng Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510000, China.,Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510000, China
| |
Collapse
|
18
|
Conlan JA, Humphrey CA, Severati A, Francis DS. Intra-colonial diversity in the scleractinian coral, Acropora millepora: identifying the nutritional gradients underlying physiological integration and compartmentalised functioning. PeerJ 2018; 6:e4239. [PMID: 29404204 PMCID: PMC5793706 DOI: 10.7717/peerj.4239] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/16/2017] [Indexed: 11/30/2022] Open
Abstract
Scleractinian corals are colonial organisms comprising multiple physiologically integrated polyps and branches. Colonialism in corals is highly beneficial, and allows a single colony to undergo several life processes at once through physiological integration and compartmentalised functioning. Elucidating differences in the biochemical composition of intra-colonial branch positions will provide valuable insight into the nutritional reserves underlying different regions in individual coral colonies. This will also ascertain prudent harvesting strategies of wild donor-colonies to generate coral stock with high survival and vigour prospects for reef-rehabilitation efforts and captive husbandry. This study examined the effects of colony branch position on the nutritional profile of two different colony sizes of the common scleractinian, Acropora millepora. For smaller colonies, branches were sampled at three locations: the colony centre (S-centre), 50% of the longitudinal radius length (LRL) (S-50), and the colony edge (S-edge). For larger colonies, four locations were sampled: the colony centre (L-centre), 33.3% of the LRL (L-33), 66.6% of the LRL (L-66), and the edge (L-edge). Results demonstrate significant branch position effects, with the edge regions containing higher protein, likely due to increased tissue synthesis and calcification. Meanwhile, storage lipid and total fatty acid concentrations were lower at the edges, possibly reflecting catabolism of high-energy nutrients to support proliferating cells. Results also showed a significant effect of colony size in the two classes examined. While the major protein and structural lipid sink was exhibited at the edge for both sizes, the major sink for high-energy lipids and fatty acids appeared to be the L-66 position of the larger colonies and the S-centre and S-50 positions for the smaller colonies. These results confirm that the scleractinian coral colony is not nutritionally homogeneous, and while different regions of the coral colony are functionally specialised, so too are their nutritional profiles geared toward meeting specific energetic demands.
Collapse
Affiliation(s)
- Jessica A Conlan
- School of Life and Environmental Sciences, Deakin University, Warrnambool, Victoria, Australia
| | - Craig A Humphrey
- The National Sea Simulator, Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Andrea Severati
- The National Sea Simulator, Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - David S Francis
- School of Life and Environmental Sciences, Deakin University, Warrnambool, Victoria, Australia
| |
Collapse
|
19
|
Conlan JA, Rocker MM, Francis DS. A comparison of two common sample preparation techniques for lipid and fatty acid analysis in three different coral morphotypes reveals quantitative and qualitative differences. PeerJ 2017; 5:e3645. [PMID: 28785524 PMCID: PMC5544933 DOI: 10.7717/peerj.3645] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/13/2017] [Indexed: 01/07/2023] Open
Abstract
Lipids are involved in a host of biochemical and physiological processes in corals. Therefore, changes in lipid composition reflect changes in the ecology, nutrition, and health of corals. As such, accurate lipid extraction, quantification, and identification is critical to obtain comprehensive insight into a coral’s condition. However, discrepancies exist in sample preparation methodology globally, and it is currently unknown whether these techniques generate analogous results. This study compared the two most common sample preparation techniques for lipid analysis in corals: (1) tissue isolation by air-spraying and (2) crushing the coral in toto. Samples derived from each preparation technique were subsequently analysed to quantify lipids and their constituent classes and fatty acids in four common, scleractinian coral species representing three distinct morphotypes (Acropora millepora, Montipora crassotuberculata, Porites cylindrica, and Pocillopora damicornis). Results revealed substantial amounts of organic material, including lipids, retained in the skeletons of all species following air-spraying, causing a marked underestimation of total lipid concentration using this method. Moreover, lipid class and fatty acid compositions between the denuded skeleton and sprayed tissue were substantially different. In particular, the majority of the total triacylglycerol and total fatty acid concentrations were retained in the skeleton (55–69% and 56–64%, respectively). As such, the isolated, sprayed tissue cannot serve as a reliable proxy for lipid quantification or identification in the coral holobiont. The in toto crushing method is therefore recommended for coral sample preparation prior to lipid analysis to capture the lipid profile of the entire holobiont, permitting accurate diagnoses of coral condition.
Collapse
Affiliation(s)
- Jessica A Conlan
- School of Life and Environmental Sciences, Deakin University, Warrnambool, Victoria, Australia.,Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Melissa M Rocker
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - David S Francis
- School of Life and Environmental Sciences, Deakin University, Warrnambool, Victoria, Australia.,Australian Institute of Marine Science, Townsville, Queensland, Australia
| |
Collapse
|
20
|
First proteomic analyses of the dorsal and ventral parts of the Sepia officinalis cuttlebone. J Proteomics 2017; 150:63-73. [DOI: 10.1016/j.jprot.2016.08.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/19/2016] [Accepted: 08/23/2016] [Indexed: 12/12/2022]
|
21
|
Garcia GD, Santos EDO, Sousa GV, Zingali RB, Thompson CC, Thompson FL. Metaproteomics reveals metabolic transitions between healthy and diseased stony coral Mussismilia braziliensis. Mol Ecol 2016; 25:4632-44. [PMID: 27492757 DOI: 10.1111/mec.13775] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 06/28/2016] [Accepted: 07/05/2016] [Indexed: 12/21/2022]
Abstract
Infectious diseases such as white plague syndrome (WPS) and black band disease (BBD) have caused massive coral loss worldwide. We performed a metaproteomic study on the Abrolhos coral Mussismilia braziliensis to define the types of proteins expressed in healthy corals compared to WPS- and BBD-affected corals. A total of 6363 MS/MS spectra were identified as 361 different proteins. Healthy corals had a set of proteins that may be considered markers of holobiont homoeostasis, including tubulin, histone, Rab family, ribosomal, peridinin-chlorophyll a-binding protein, F0F1-type ATP synthase, alpha-iG protein, calmodulin and ADP-ribosylation factor. Cnidaria proteins found in healthy M. braziliensis were associated with Cnidaria-Symbiodinium endosymbiosis and included chaperones (hsp70, hsp90 and calreticulin), structural and membrane modelling proteins (actin) and proteins with functions related to intracellular vesicular traffic (Rab7 and ADP-ribosylation factor 1) and signal transduction (14-3-3 protein and calmodulin). WPS resulted in a clear shift in the predominance of proteins, from those related to aerobic nitrogen-fixing bacteria (i.e. Rhizobiales, Sphingomonadales and Actinomycetales) in healthy corals to those produced by facultative/anaerobic sulphate-reducing bacteria (i.e. Enterobacteriales, Alteromonadales, Clostridiales and Bacteroidetes) in WPS corals. BBD corals developed a diverse community dominated by cyanobacteria and sulphur cycle bacteria. Hsp60, hsp90 and adenosylhomocysteinase proteins were produced mainly by cyanobacteria in BBD corals, which is consistent with elevated oxidative stress in hydrogen sulphide- and cyanotoxin-rich environments. This study demonstrates the usefulness of metaproteomics for gaining better comprehension of coral metabolic status in health and disease, especially in reef systems such as the Abrolhos that are suffering from the increase in global and local threatening events.
Collapse
Affiliation(s)
- Gizele D Garcia
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Fo. SN., Ilha do Fundão, Rio de Janeiro, RJ, CEP 21941-902, Brasil
| | - Eidy de O Santos
- Divisão de Metrologia Aplicada às Ciências da Vida (DIMAV), Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Av. Nossa Senhora das Graças, 50, Xerém Duque de Caxias, Rio de Janeiro, RJ, CEP 25250-020, Brasil.,Unidade de Biologia, Centro Universitário Estadual da Zona Oeste (UEZO), Av. Manoel Caldeira de Alvarenga, 1203, Campo Grande, Rio de Janeiro, RJ, CEP 23070200, Brasil
| | - Gabriele V Sousa
- Divisão de Metrologia Aplicada às Ciências da Vida (DIMAV), Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Av. Nossa Senhora das Graças, 50, Xerém Duque de Caxias, Rio de Janeiro, RJ, CEP 25250-020, Brasil
| | - Russolina B Zingali
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Fo. SN, Ilha do Fundão, Rio de Janeiro, RJ, CEP21941-902, Brasil
| | - Cristiane C Thompson
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Fo. SN., Ilha do Fundão, Rio de Janeiro, RJ, CEP 21941-902, Brasil
| | - Fabiano L Thompson
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Fo. SN., Ilha do Fundão, Rio de Janeiro, RJ, CEP 21941-902, Brasil. .,Laboratório de Sistemas Avançados de Gestão da Produção (SAGE), COPPE, Universidade Federal do Rio de Janeiro (UFRJ), Rua Moniz de Aragão, no.360 - Bloco 2, Ilha do Fundão - Cidade Universitária, Rio de Janeiro, RJ, 21.941-972, Brasil.
| |
Collapse
|
22
|
Coral Carbonic Anhydrases: Regulation by Ocean Acidification. Mar Drugs 2016; 14:md14060109. [PMID: 27271641 PMCID: PMC4926068 DOI: 10.3390/md14060109] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/09/2016] [Accepted: 05/30/2016] [Indexed: 11/17/2022] Open
Abstract
Global change is a major threat to the oceans, as it implies temperature increase and acidification. Ocean acidification (OA) involving decreasing pH and changes in seawater carbonate chemistry challenges the capacity of corals to form their skeletons. Despite the large number of studies that have investigated how rates of calcification respond to ocean acidification scenarios, comparatively few studies tackle how ocean acidification impacts the physiological mechanisms that drive calcification itself. The aim of our paper was to determine how the carbonic anhydrases, which play a major role in calcification, are potentially regulated by ocean acidification. For this we measured the effect of pH on enzyme activity of two carbonic anhydrase isoforms that have been previously characterized in the scleractinian coral Stylophora pistillata. In addition we looked at gene expression of these enzymes in vivo. For both isoforms, our results show (1) a change in gene expression under OA (2) an effect of OA and temperature on carbonic anhydrase activity. We suggest that temperature increase could counterbalance the effect of OA on enzyme activity. Finally we point out that caution must, thus, be taken when interpreting transcriptomic data on carbonic anhydrases in ocean acidification and temperature stress experiments, as the effect of these stressors on the physiological function of CA will depend both on gene expression and enzyme activity.
Collapse
|
23
|
Immel F, Broussard C, Catherinet B, Plasseraud L, Alcaraz G, Bundeleva I, Marin F. The Shell of the Invasive Bivalve Species Dreissena polymorpha: Biochemical, Elemental and Textural Investigations. PLoS One 2016; 11:e0154264. [PMID: 27213644 PMCID: PMC4877012 DOI: 10.1371/journal.pone.0154264] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 04/11/2016] [Indexed: 11/18/2022] Open
Abstract
The zebra mussel Dreissena polymorpha is a well-established invasive model organism. Although extensively used in environmental sciences, virtually nothing is known of the molecular process of its shell calcification. By describing the microstructure, geochemistry and biochemistry/proteomics of the shell, the present study aims at promoting this species as a model organism in biomineralization studies, in order to establish a bridge with ecotoxicology, while sketching evolutionary conclusions. The shell of D. polymorpha exhibits the classical crossed-lamellar/complex crossed lamellar combination found in several heterodont bivalves, in addition to an external thin layer, the characteristics of which differ from what was described in earlier publication. We show that the shell selectively concentrates some heavy metals, in particular uranium, which predisposes D. polymorpha to local bioremediation of this pollutant. We establish the biochemical signature of the shell matrix, demonstrating that it interacts with the in vitro precipitation of calcium carbonate and inhibits calcium carbonate crystal formation, but these two properties are not strongly expressed. This matrix, although overall weakly glycosylated, contains a set of putatively calcium-binding proteins and a set of acidic sulphated proteins. 2D-gels reveal more than fifty proteins, twenty of which we identify by MS-MS analysis. We tentatively link the shell protein profile of D. polymorpha and the peculiar recent evolution of this invasive species of Ponto-Caspian origin, which has spread all across Europe in the last three centuries.
Collapse
Affiliation(s)
- Françoise Immel
- Laboratoire de Biogenèse Membranaire UMR5200, CNRS, Université de Bordeaux, Villenave d'Ornon, France
- Biogéosciences UMR6282, CNRS, Université de Bourgogne Franche-Comté, Dijon, France
- * E-mail: (FI); (FM)
| | - Cédric Broussard
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Descartes, Paris, France
- Plate-forme Protéomique 3P5, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Bastien Catherinet
- Biogéosciences UMR6282, CNRS, Université de Bourgogne Franche-Comté, Dijon, France
| | - Laurent Plasseraud
- ICMUB UMR6302, CNRS, Université de Bourgogne Franche-Comté, Dijon, France
| | - Gérard Alcaraz
- UPSP PROXISS, Département Agronomie Environnement AgroSupDijon, Dijon, France
| | - Irina Bundeleva
- Biogéosciences UMR6282, CNRS, Université de Bourgogne Franche-Comté, Dijon, France
| | - Frédéric Marin
- Biogéosciences UMR6282, CNRS, Université de Bourgogne Franche-Comté, Dijon, France
- * E-mail: (FI); (FM)
| |
Collapse
|
24
|
Falini G, Fermani S, Goffredo S. Coral biomineralization: A focus on intra-skeletal organic matrix and calcification. Semin Cell Dev Biol 2015; 46:17-26. [DOI: 10.1016/j.semcdb.2015.09.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/30/2015] [Accepted: 09/02/2015] [Indexed: 11/30/2022]
|
25
|
Jackson DJ, Mann K, Häussermann V, Schilhabel MB, Lüter C, Griesshaber E, Schmahl W, Wörheide G. The Magellania venosa Biomineralizing Proteome: A Window into Brachiopod Shell Evolution. Genome Biol Evol 2015; 7:1349-62. [PMID: 25912046 PMCID: PMC4453069 DOI: 10.1093/gbe/evv074] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2015] [Indexed: 01/25/2023] Open
Abstract
Brachiopods are a lineage of invertebrates well known for the breadth and depth of their fossil record. Although the quality of this fossil record attracts the attention of paleontologists, geochemists, and paleoclimatologists, modern day brachiopods are also of interest to evolutionary biologists due to their potential to address a variety of questions ranging from developmental biology to biomineralization. The brachiopod shell is a composite material primarily composed of either calcite or calcium phosphate in close association with proteins and polysaccharides which give these composite structures their material properties. The information content of these biomolecules, sequestered within the shell during its construction, has the potential to inform hypotheses focused on describing how brachiopod shell formation evolved. Here, using high throughput proteomic approaches and next generation sequencing, we have surveyed and characterized the first shell-proteome and shell-forming transcriptome of any brachiopod, the South American Magellania venosa (Rhynchonelliformea: Terebratulida). We find that the seven most abundant proteins present in the shell are unique to M. venosa, but that these proteins display biochemical features found in other metazoan biomineralization proteins. We can also detect some M. venosa proteins that display significant sequence similarity to other metazoan biomineralization proteins, suggesting that some elements of the brachiopod shell-forming proteome are deeply evolutionarily conserved. We also employed a variety of preparation methods to isolate shell proteins and find that in comparison to the shells of other spiralian invertebrates (such as mollusks) the shell ultrastructure of M. venosa may explain the effects these preparation strategies have on our results.
Collapse
Affiliation(s)
- Daniel J Jackson
- Department of Geobiology, Georg-August University of Göttingen, Germany
| | - Karlheinz Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Munich, Germany
| | - Vreni Häussermann
- Escuela de Ciencias del Mar, Valparaíso, Facultad de Recursos Naturales, Universidad Católica de Valparaíso, Chile
| | - Markus B Schilhabel
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität Kiel, Germany
| | - Carsten Lüter
- Museum für Naturkunde, Leibniz-Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Erika Griesshaber
- Department of Earth- and Environmental Sciences & GeoBioCenter, Ludwig-Maximilians-Universität München, Germany
| | - Wolfgang Schmahl
- Department of Earth- and Environmental Sciences & GeoBioCenter, Ludwig-Maximilians-Universität München, Germany
| | - Gert Wörheide
- Department of Earth- and Environmental Sciences & GeoBioCenter, Ludwig-Maximilians-Universität München, Germany Bavarian State Collections of Palaeontology & Geology, München, Germany
| |
Collapse
|
26
|
Kanold JM, Guichard N, Immel F, Plasseraud L, Corneillat M, Alcaraz G, Brümmer F, Marin F. Spine and test skeletal matrices of the Mediterranean sea urchin Arbacia lixula--a comparative characterization of their sugar signature. FEBS J 2015; 282:1891-905. [PMID: 25702947 DOI: 10.1111/febs.13242] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/19/2015] [Accepted: 02/17/2015] [Indexed: 11/27/2022]
Abstract
Calcified structures of sea urchins are biocomposite materials that comprise a minor fraction of organic macromolecules, such as proteins, glycoproteins and polysaccharides. These macromolecules are thought to collectively regulate mineral deposition during the process of calcification. When occluded, they modify the properties of the mineral. In the present study, the organic matrices (both soluble and insoluble in acetic acid) of spines and tests from the Mediterranean black sea urchin Arbacia lixula were extracted and characterized, in order to determine whether they exhibit similar biochemical signatures. Bulk characterizations were performed by mono-dimensional SDS/PAGE, FT-IR spectroscopy, and an in vitro crystallization assay. We concentrated our efforts on characterization of the sugar moieties. To this end, we determined the monosaccharide content of the soluble and insoluble organic matrices of A. lixula spines and tests by HPAE-PAD, together with their respective lectin-binding profiles via enzyme-linked lectin assay. Finally, we performed in situ localization of N-acetyl glucosamine-containing saccharides on spines and tests using gold-conjugated wheatgerm agglutinin. Our data show that the test and spine matrices exhibit different biochemical signatures with regard to their saccharidic fraction, suggesting that future studies should analyse the regulation of mineral deposition by the matrix in these two mineralized structures in detail. This study re-emphasizes the importance of non-protein moieties, i.e. sugars, in calcium carbonate systems, and highlights the need to clearly identify their function in the biomineralization process.
Collapse
Affiliation(s)
- Julia M Kanold
- Department of Zoology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Germany
| | - Nathalie Guichard
- UMR CNRS 6282 Biogéosciences, Bâtiment des Sciences Gabriel, Université de Bourgogne, Dijon, France
| | - Françoise Immel
- UMR CNRS 6282 Biogéosciences, Bâtiment des Sciences Gabriel, Université de Bourgogne, Dijon, France
| | - Laurent Plasseraud
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302, Faculté des Sciences Mirande, Université de Bourgogne, Dijon, France
| | - Marion Corneillat
- Unité Propre Soutien de Programme PROXISS, Département Agronomie Environnement AgroSupDijon, Dijon Cedex, France
| | - Gérard Alcaraz
- Unité Propre Soutien de Programme PROXISS, Département Agronomie Environnement AgroSupDijon, Dijon Cedex, France
| | - Franz Brümmer
- Department of Zoology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Germany
| | - Frédéric Marin
- UMR CNRS 6282 Biogéosciences, Bâtiment des Sciences Gabriel, Université de Bourgogne, Dijon, France
| |
Collapse
|
27
|
Kanold JM, Immel F, Broussard C, Guichard N, Plasseraud L, Corneillat M, Alcaraz G, Brümmer F, Marin F. The test skeletal matrix of the black sea urchin Arbacia lixula. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2015; 13:24-34. [DOI: 10.1016/j.cbd.2014.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 12/13/2014] [Accepted: 12/18/2014] [Indexed: 11/26/2022]
|