1
|
Foo A, Brettell LE, Nichols HL, Medina Muñoz M, Lysne JA, Dhokiya V, Hoque AF, Brackney DE, Caragata EP, Hutchinson ML, Jacobs-Lorena M, Lampe DJ, Martin E, Valiente Moro C, Povelones M, Short SM, Steven B, Xu J, Paustian TD, Rondon MR, Hughes GL, Coon KL, Heinz E. MosAIC: An annotated collection of mosquito-associated bacteria with high-quality genome assemblies. PLoS Biol 2024; 22:e3002897. [PMID: 39546548 PMCID: PMC11633956 DOI: 10.1371/journal.pbio.3002897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/11/2024] [Accepted: 10/11/2024] [Indexed: 11/17/2024] Open
Abstract
Mosquitoes transmit medically important human pathogens, including viruses like dengue virus and parasites such as Plasmodium spp., the causative agent of malaria. Mosquito microbiomes are critically important for the ability of mosquitoes to transmit disease-causing agents. However, while large collections of bacterial isolates and genomic data exist for vertebrate microbiomes, the vast majority of work in mosquitoes to date is based on 16S rRNA gene amplicon data that provides limited taxonomic resolution and no functional information. To address this gap and facilitate future studies using experimental microbiome manipulations, we generated a bacterial Mosquito-Associated Isolate Collection (MosAIC) consisting of 392 bacterial isolates with extensive metadata and high-quality draft genome assemblies that are publicly available, both isolates and sequence data, for use by the scientific community. MosAIC encompasses 142 species spanning 29 bacterial families, with members of the Enterobacteriaceae comprising 40% of the collection. Phylogenomic analysis of 3 genera, Enterobacter, Serratia, and Elizabethkingia, reveal lineages of mosquito-associated bacteria isolated from different mosquito species in multiple laboratories. Investigation into species' pangenomes further reveals clusters of genes specific to these lineages, which are of interest for future work to test for functions connected to mosquito host association. Altogether, we describe the generation of a physical collection of mosquito-associated bacterial isolates, their genomic data, and analyses of selected groups in context of genome data from closely related isolates, providing a unique, highly valuable resource for research on bacterial colonisation and adaptation within mosquito hosts. Future efforts will expand the collection to include broader geographic and host species representation, especially from individuals collected from field populations, as well as other mosquito-associated microbes, including fungi, archaea, and protozoa.
Collapse
Affiliation(s)
- Aidan Foo
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Laura E. Brettell
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- School of Science, Engineering and Environment, University of Salford, Manchester, United Kingdom
| | - Holly L. Nichols
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | | | - Miguel Medina Muñoz
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jessica A. Lysne
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Vishaal Dhokiya
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Ananya F. Hoque
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Doug E. Brackney
- Department of Entomology, Connecticut Agricultural Experiment Station, New Haven, Connecticut, United States of America
- Center for Vector Biology and Zoonotic Diseases, Connecticut Agricultural Experiment Station, New Haven, Connecticut, United States of America
| | - Eric P. Caragata
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, Florida, United States of America
| | - Michael L. Hutchinson
- Division of Vector Management, Pennsylvania Department of Environmental Protection, Harrisburg, Pennsylvania, United States of America
- Division of Plant Health, Pennsylvania Department of Agriculture, Harrisburg, Pennsylvania, United States of America
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - David J. Lampe
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | - Edwige Martin
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Claire Valiente Moro
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Michael Povelones
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sarah M. Short
- Department of Entomology, The Ohio State University, Columbus, Ohio, United States of America
| | - Blaire Steven
- Department of Environmental Science and Forestry, Connecticut Agricultural Experiment Station, New Haven, Connecticut, United States of America
| | - Jiannong Xu
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Timothy D. Paustian
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Michelle R. Rondon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Grant L. Hughes
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Kerri L. Coon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Eva Heinz
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
2
|
Huang C, Kuo S, Lin L. Mortality Risk and Antibiotic Therapy for Patients with Infections Caused by Elizabethkingia Species-A Meta-Analysis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1529. [PMID: 39336571 PMCID: PMC11433677 DOI: 10.3390/medicina60091529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024]
Abstract
Background and Objectives: Patients with infections caused by Elizabethkingia species require prompt identification and effective antibiotic treatment since these spp. are typically resistant to multiple antibiotics and variable susceptibility patterns. Understanding the mortality risk of this disease is difficult because of the relatively low incidence of infections caused by Elizabethkingia spp. and the lack of published systematic evaluations of the risk factors for mortality. The aim of the present study was to investigate risk factors for mortality in patients with infections caused by Elizabethkingia spp. by conducting a meta-analysis of existing studies on these infections. Materials and Methods: Studies comparing patients who died from infections caused by Elizabethkingia spp. with patients who survived were considered for inclusion. Studies that reported one or more risk factors for mortality were considered. Clinical predisposing variables, predisposing comorbidities, and clinical outcomes of antibiotic treatment were among the risk factors for mortality. Results: The meta-analysis included twenty studies with 990 patients, and 298 patients (30.1%) died. The following risk factors for mortality were identified: intensive care unit admission, the need for mechanical ventilation, immunosuppressive or steroid therapy use, pneumonia, comorbid liver disease, and the use of inappropriate antimicrobial therapy. Conclusions: The use of appropriate antimicrobial therapy is critical for the effective management of infections caused by Elizabethkingia spp. Antimicrobial susceptibility testing would be a more reliable means of guiding treatment. The identification of the best antimicrobial drugs is needed to ensure optimal treatment recommendations for treating Elizabethkingia-related infections.
Collapse
Affiliation(s)
- Chienhsiu Huang
- Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 2, Min-Sheng Road, Dalin Town, Chiayi 62247, Taiwan
| | - Sufang Kuo
- Department of Nursing, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 2, Min-Sheng Road, Dalin Town, Chiayi 62247, Taiwan; (S.K.); (L.L.)
| | - Lichen Lin
- Department of Nursing, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 2, Min-Sheng Road, Dalin Town, Chiayi 62247, Taiwan; (S.K.); (L.L.)
| |
Collapse
|
3
|
Chen S, Pham S, Terrapon N, Blom J, Walker ED. Elizabethkingia anophelis MSU001 Isolated from Anopheles stephensi: Molecular Characterization and Comparative Genome Analysis. Microorganisms 2024; 12:1079. [PMID: 38930461 PMCID: PMC11206156 DOI: 10.3390/microorganisms12061079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Elizabethkingia anophelis MSU001, isolated from Anopheles stephensi in the laboratory, was characterized by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-ToF/MS), biochemical testing, and genome sequencing. Average nucleotide identity analysis revealed 99% identity with the type species E. anophelis R26. Phylogenetic placement showed that it formed a clade with other mosquito-associated strains and departed from a clade of clinical isolates. Comparative genome analyses further showed that it shared at least 98.6% of genes with mosquito-associated isolates (except E. anophelis As1), while it shared at most 88.8% of common genes with clinical isolates. Metabolites from MSU001 significantly inhibited growth of E. coli but not the mosquito gut symbionts Serratia marcescens and Asaia sp. W12. Insect-associated E. anophelis carried unique glycoside hydrolase (GH) and auxiliary activities (AAs) encoding genes distinct from those of clinical isolates, indicating their potential role in reshaping chitin structure and other components involved in larval development or formation of the peritrophic matrix. Like other Elizabethkingia, MSU001 also carried abundant genes encoding two-component system proteins (51), transcription factor proteins (188), and DNA-binding proteins (13). E. anophelis MSU001 contains a repertoire of antibiotic resistance genes and several virulence factors. Its potential for opportunistic infections in humans should be further evaluated prior to implementation as a paratransgenesis agent (by transgenesis of a symbiont of the vector).
Collapse
Affiliation(s)
- Shicheng Chen
- Medical Laboratory Sciences Program, College of Health and Human Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | - Steven Pham
- Corewell Health William Beaumont University Hospital, Royal Oak, MI 48073, USA;
| | - Nicolas Terrapon
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR7257 CNRS AMU, USC 1408 INRAE, 13009 Marseille, France;
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig University Giessen, 35392 Giessen, Germany;
| | - Edward D. Walker
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
4
|
Chen CY, Chan WY, Ismail A, Oliver SV. Characterization of the Tissue and Strain-Specific Microbiota of Anopheles funestus Giles (Diptera: Culicidae). Trop Med Infect Dis 2024; 9:84. [PMID: 38668545 PMCID: PMC11053693 DOI: 10.3390/tropicalmed9040084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024] Open
Abstract
The mosquito microbiota is a critical determinant of mosquito life history. It is therefore a target for novel vector control strategies like paratransgenesis. However, the microbiota in Anopheles funestus, a major African malaria vector, is poorly characterized. Thus, the study aimed to investigate the overall bacterial landscape in the salivary glands, ovaries and midguts of three laboratory strains of An. funestus differing in insecticide-resistant phenotype by sequencing the V3-V4 hypervariable region of bacterial 16S rRNA genes. When examining alpha diversity, the salivary glands harbored significantly more bacteria in terms of species richness and evenness compared to ovaries and midguts. On the strain level, the insecticide-susceptible FANG strain had significantly lower bacterial diversity than the insecticide-resistant FUMOZ and FUMOZ-R strains. When looking at beta diversity, the compositions of microbiota between the three tissues as well as between the strains were statistically different. While there were common bacteria across all three tissues and strains of interest, each tissue and strain did exhibit differentially abundant bacterial genera. However, overall, the top five most abundant genera across all tissues and strains were Elizabethkingia, Acinetobacter, Aeromonas, Cedecea and Yersinia. The presence of shared microbiota suggests a core microbiota that could be exploited for paratransgenesis efforts.
Collapse
Affiliation(s)
- Chia-Yu Chen
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa;
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Wai-Yin Chan
- Sequencing Core Facility, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg 2193, South Africa; (W.-Y.C.); (A.I.)
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0028, South Africa
| | - Arshad Ismail
- Sequencing Core Facility, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg 2193, South Africa; (W.-Y.C.); (A.I.)
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4000, South Africa
| | - Shüné V. Oliver
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa;
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg 2193, South Africa
| |
Collapse
|
5
|
Stelmaszyk L, Stange C, Hügler M, Sidhu JP, Horn H, Tiehm A. Quantification of β-lactamase producing bacteria in German surface waters with subsequent MALDI-TOF MS-based identification and β-lactamase activity assay. Heliyon 2024; 10:e27384. [PMID: 38486766 PMCID: PMC10937694 DOI: 10.1016/j.heliyon.2024.e27384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
Environmental oligotrophic bacteria are suspected to be highly relevant carriers of antimicrobial resistance (AMR). However, there is a lack of validated methods for monitoring in the aquatic environment. Since extended-spectrum β-lactamases (ESBLs) play a particularly important role in the clinical sector, a culturing method based on R2A-medium spiked with different combinations of β-lactams was applied to quantify β-lactamase-producing environmental bacteria from surface waters. In German surface water samples (n = 28), oligotrophic bacteria ranging from 4.0 × 103 to 1.7 × 104 CFU per 100 mL were detected on the nutrient-poor medium spiked with 3rd generation cephalosporins and carbapenems. These numbers were 3 log10 higher compared to ESBL-producing Enterobacteriales of clinical relevance from the same water samples. A MALDI-TOF MS identification of the isolates demonstrated, that the method leads to the isolation of environmentally relevant strains with Pseudomonas, Flavobacterium, and Janthinobacterium being predominant β-lactam resistant genera. Subsequent micro-dilution antibiotic susceptibility tests (Micronaut-S test) confirmed the expression of β-lactamases. The qPCR analysis of surface waters DNA extracts showed the presence of β-lactamase genes (blaTEM, blaCMY-2, blaOXA-48, blaVIM-2, blaSHV, and blaNDM-1) at concentrations of 3.7 (±1.2) to 1.0 (±1.9) log10 gene copies per 100 mL. Overall, the results demonstrate a widespread distribution of cephalosporinase and carbapenemase enzymes in oligotrophic environmental bacteria that have to be considered as a reservoir of ARGs and contribute to the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Lara Stelmaszyk
- TZW: DVGW Technologiezentrum Wasser, Department of Water Microbiology, Karlsruher Straße 84, Karlsruhe, Germany
| | - Claudia Stange
- TZW: DVGW Technologiezentrum Wasser, Department of Water Microbiology, Karlsruher Straße 84, Karlsruhe, Germany
| | - Michael Hügler
- TZW: DVGW Technologiezentrum Wasser, Department of Water Microbiology, Karlsruher Straße 84, Karlsruhe, Germany
| | - Jatinder P.S. Sidhu
- CSIRO Oceans and Atmosphere, Ecosciences Precinct, 41 Boggo Road, Brisbane, Australia
| | - Harald Horn
- Karlsruher Institut für Technologie, Engler-Bunte Institute, Wasserchemie und Wassertechnologie, Engler-Bunte-Ring 9a, Karlsruhe, Germany
| | - Andreas Tiehm
- TZW: DVGW Technologiezentrum Wasser, Department of Water Microbiology, Karlsruher Straße 84, Karlsruhe, Germany
| |
Collapse
|
6
|
Mallinckrodt L, Huis In 't Veld R, Rosema S, Voss A, Bathoorn E. Review on infection control strategies to minimize outbreaks of the emerging pathogen Elizabethkingia anophelis. Antimicrob Resist Infect Control 2023; 12:97. [PMID: 37679842 PMCID: PMC10486102 DOI: 10.1186/s13756-023-01304-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Elizabethkingia anophelis is a multi-drug resistant emerging opportunistic pathogen with a high mortality rate, causing healthcare-associated outbreaks worldwide. METHODS We report a case of E. anophelis pleuritis, resulting from transmission through lung transplantation, followed by a literature review of outbreak reports and strategies to minimize E. anophelis transmission in healthcare settings. RESULTS From 1990 to August 2022, 14 confirmed E. anophelis outbreak cohorts and 21 cohorts with suspected E. anophelis outbreaks were reported in literature. A total of 80 scientific reports with recommendations on diagnostics and infection control measures were included and summarized in our study. CONCLUSION Strategies to prevent and reduce spread of E. anophelis include water-free patient rooms, adequate hygiene and disinfection practices, and optimized diagnostic techniques for screening, identification and molecular typing.
Collapse
Affiliation(s)
- Lisa Mallinckrodt
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Medical Microbiology and Infection Prevention, Gelre Hospital, Apeldoorn, The Netherlands
| | - Robert Huis In 't Veld
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sigrid Rosema
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Andreas Voss
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Erik Bathoorn
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
7
|
Mosquera KD, Martínez Villegas LE, Rocha Fernandes G, Rocha David M, Maciel-de-Freitas R, A Moreira L, Lorenzo MG. Egg-laying by female Aedes aegypti shapes the bacterial communities of breeding sites. BMC Biol 2023; 21:97. [PMID: 37101136 PMCID: PMC10134544 DOI: 10.1186/s12915-023-01605-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 04/18/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Aedes aegypti, the main arboviral mosquito vector, is attracted to human dwellings and makes use of human-generated breeding sites. Past research has shown that bacterial communities associated with such sites undergo compositional shifts as larvae develop and that exposure to different bacteria during larval stages can have an impact on mosquito development and life-history traits. Based on these facts, we hypothesized that female Ae. aegypti shape the bacteria communities of breeding sites during oviposition as a form of niche construction to favor offspring fitness. RESULTS To test this hypothesis, we first verified that gravid females can act as mechanical vectors of bacteria. We then elaborated an experimental scheme to test the impact of oviposition on breeding site microbiota. Five different groups of experimental breeding sites were set up with a sterile aqueous solution of larval food, and subsequently exposed to (1) the environment alone, (2) surface-sterilized eggs, (3) unsterilized eggs, (4) a non-egg laying female, or (5) oviposition by a gravid female. The microbiota of these differently treated sites was assessed by amplicon-oriented DNA sequencing once the larvae from the sites with eggs had completed development and formed pupae. Microbial ecology analyses revealed significant differences between the five treatments in terms of diversity. In particular, between-treatment shifts in abundance profiles were detected, showing that females induce a significant decrease in microbial alpha diversity through oviposition. In addition, indicator species analysis pinpointed bacterial taxa with significant predicting values and fidelity coefficients for the samples in which single females laid eggs. Furthermore, we provide evidence regarding how one of these indicator taxa, Elizabethkingia, exerts a positive effect on the development and fitness of mosquito larvae. CONCLUSIONS Ovipositing females impact the composition of the microbial community associated with a breeding site, promoting certain bacterial taxa over those prevailing in the environment. Among these bacteria, we found known mosquito symbionts and showed that they can improve offspring fitness if present in the water where eggs are laid. We deem this oviposition-mediated bacterial community shaping as a form of niche construction initiated by the gravid female.
Collapse
Affiliation(s)
- Katherine D Mosquera
- Vector Behavior and Pathogen Interaction Group, René Rachou Institute-FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Luis Eduardo Martínez Villegas
- Department of Entomology, The Ohio State University, 2001 Fyffe Rd., Room 232 Howlett Hall, Columbus, OH, 43210, USA
- Mosquito Vectors: Endosymbionts and Pathogen-Vector Interactions Group, René Rachou Institute-FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | | | - Mariana Rocha David
- Laboratory of Hematozoa Transmitting Mosquitoes, Oswaldo Cruz Institute-FIOCRUZ, Rio de Janeiro, Brazil
| | - Rafael Maciel-de-Freitas
- Laboratory of Hematozoa Transmitting Mosquitoes, Oswaldo Cruz Institute-FIOCRUZ, Rio de Janeiro, Brazil
| | - Luciano A Moreira
- Mosquito Vectors: Endosymbionts and Pathogen-Vector Interactions Group, René Rachou Institute-FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Marcelo G Lorenzo
- Vector Behavior and Pathogen Interaction Group, René Rachou Institute-FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
8
|
Vinayagam S, Rajendran D, Sekar K, Renu K, Sattu K. The microbiota, the malarial parasite, and the mosquito [MMM] - A three-sided relationship. Mol Biochem Parasitol 2023; 253:111543. [PMID: 36642385 DOI: 10.1016/j.molbiopara.2023.111543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 11/23/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
The mosquito gut microbiota is vital to the proper functioning of the host organism. Mosquitoes may benefit from this microbiota in their guts because it promotes factors including blood digestion, fecundity, metamorphosis, and living habitat and inhibits malarial parasites (Plasmodium) growth or transmission. In this overview, we analyzed how mosquitoes acquire their gut microbiota, characterized those bacteria, and discussed the functions they provide. We also investigated the effects of microbiota on malaria vectors, with a focus on the mosquito species Anopheles, as well as the relationship between microbiota and Plasmodium, the aspects in which microbiota influences Plasmodium via immune response, metabolism, and redox mechanisms, and the strategies in which gut bacteria affect the life cycle of malaria vectors and provide the ability to resist insecticides. This article explores the difficulties in studying triadic interactions, such as the interplay between Mosquitoes, Malarial parasite, and the Microbiota that dwell in the mosquitoes' guts, and need additional research for a better understanding of these multiple connections to implement an exact vector control strategies using Gut microbiota in malaria control.
Collapse
Affiliation(s)
- Sathishkumar Vinayagam
- Department of Biotechnology, Periyar University, Centre for Postgraduate and Research Studies, Dharmapuri, Tamil Nadu 635205, India
| | - Devianjana Rajendran
- Department of Biotechnology, Periyar University, Centre for Postgraduate and Research Studies, Dharmapuri, Tamil Nadu 635205, India
| | - Kathirvel Sekar
- Department of Biotechnology, Periyar University, Centre for Postgraduate and Research Studies, Dharmapuri, Tamil Nadu 635205, India
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 600077, India
| | - Kamaraj Sattu
- Department of Biotechnology, Periyar University, Centre for Postgraduate and Research Studies, Dharmapuri, Tamil Nadu 635205, India.
| |
Collapse
|
9
|
Hashmi AW, Ahmad M, Israr MM, Fajar IE, Adnan F. Multi-Drug-Resistant Elizabethkingia meningoseptica: A Rare Cause of Late-Onset Sepsis in a Preterm Neonate. Cureus 2023; 15:e34361. [PMID: 36874723 PMCID: PMC9977078 DOI: 10.7759/cureus.34361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2023] [Indexed: 01/31/2023] Open
Abstract
Elizabethkingia meningoseptica is a gram-negative bacillus and is a rare cause of opportunistic infections. Literature shows that this gram-negative bacillus may cause early-onset sepsis in neonates and immunocompromised adults; however, it is a rare cause of late-onset sepsis or meningitis in neonates. We hereby delineate a case of a preterm neonate, born at 35 weeks of gestation, presenting to us on the eleventh day after birth, with fever, tachycardia, and delayed reflexes. The neonate was managed in the neonatal intensive care unit (NICU). Initial laboratory tests, blood, and cerebrospinal fluid (CSF) cultures showed evidence of late-onset sepsis due to multi-drug-resistant E. meningoseptica sensitive to vancomycin and ciprofloxacin. The patient completed the antibiotic therapy and was discharged from the hospital. The patient was followed up at one and two months after discharge in the tele-clinic and was thriving well with no complaints.
Collapse
Affiliation(s)
| | | | | | - Ibtesam E Fajar
- Surgery, Al-Nafees Medical College and Hospital, Islamabad, PAK
| | - Farid Adnan
- Pediatrics, Walsall Manor Hospital, The Royal Wolverhampton NHS Trust, Walsall, GBR
| |
Collapse
|
10
|
Muacevic A, Adler JR, Gupta P, Agarwal A. Elizabethkingia anophelis Infections: A Case Series From a Tertiary Care Hospital in Uttar Pradesh. Cureus 2022; 14:e32057. [PMID: 36600834 PMCID: PMC9802642 DOI: 10.7759/cureus.32057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2022] [Indexed: 12/02/2022] Open
Abstract
Elizabethkingia anophelis is a gram-negative, aerobic, non-motile rod belonging to the Flavobacteriaceae family. Elizabethkingia is a genus of bacteria commonly found in the environment worldwide and has been detected in soil, river, water, and reservoirs. Over the period, it has emerged as an opportunistic human pathogen involved in neonatal meningitis and sepsis, as well as nosocomial outbreaks in adults with underlying medical conditions, including malignancies, diabetes, and chronic obstructive pulmonary disease. Here, we present a series of three cases of infection of E. anophelis in different clinical samples. These three cases were referred from different departments of King George's Medical University (KGMU), Lucknow, India to the Critical Care Medicine Department of KGMU, and finally succumbed to the infection.
Collapse
|
11
|
Chiang MH, Chang FJ, Kesavan DK, Vasudevan A, Xu H, Lan KL, Huang SW, Shang HS, Chuang YP, Yang YS, Chen TL. Proteomic Network of Antibiotic-Induced Outer Membrane Vesicles Released by Extensively Drug-Resistant Elizabethkingia anophelis. Microbiol Spectr 2022; 10:e0026222. [PMID: 35852325 PMCID: PMC9431301 DOI: 10.1128/spectrum.00262-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/29/2022] [Indexed: 11/20/2022] Open
Abstract
Elizabethkingia anophelis, a nonfermenting Gram-negative bacterium, causes life-threatening health care-associated infections. E. anophelis harbors multidrug resistance (MDR) genes and is intrinsically resistant to various classes of antibiotics. Outer membrane vesicles (OMVs) are secreted by Gram-negative bacteria and contain materials involved in bacterial survival and pathogenesis. OMVs specialize and tailor their functions by carrying different components to challenging environments and allowing communication with other microorganisms or hosts. In this study, we sought to understand the characteristics of E. anophelis OMVs under different antibiotic stress conditions. An extensively drug-resistant clinical isolate, E. anophelis C08, was exposed to multiple antibiotics in vitro, and its OMVs were characterized using nanoparticle tracking analysis, transmission electron microscopy, and proteomic analysis. Protein functionality analysis showed that the OMVs were predominantly involved in metabolism, survival, defense, and antibiotic resistance processes, such as the Rag/Sus family, the chaperonin GroEL, prenyltransferase, and an HmuY family protein. Additionally, a protein-protein interaction network demonstrated that OMVs from imipenem-treated E. anophelis showed significant enrichments in the outer membrane, adenyl nucleotide binding, serine-type peptidase activity, the glycosyl compound metabolic process, and cation binding proteins. Collectively, the OMV proteome expression profile indicates that the role of OMVs is immunologically relevant and related to bacterial survival in antibiotic stress environments rather than representing a resistance point. IMPORTANCE Elizabethkingia anophelis is a bacterium often associated with nosocomial infection. This study demonstrated that imipenem-induced E. anophelis outer membrane vesicles (OMVs) are immunologically relevant and crucial for bacterial survival under antibiotic stress conditions rather than being a source of antibiotic resistance. Furthermore, this is the first study to discuss the protein-protein interaction network of the OMVs released by E. anophelis, especially under antibiotic stress. Our findings provide important insights into clinical antibiotic stewardship.
Collapse
Affiliation(s)
- Ming-Hsien Chiang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Fang-Ju Chang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Dinesh Kumar Kesavan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Aparna Vasudevan
- International Genomics Research Centre (IGRC), Jiangsu University, Zhenjiang, China
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Huaxi Xu
- International Genomics Research Centre (IGRC), Jiangsu University, Zhenjiang, China
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Kuo-Lun Lan
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shu-Wei Huang
- Department of Orthopedic Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Hung-Sheng Shang
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Ping Chuang
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Ya-Sung Yang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Te-Li Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
12
|
Metabolic interactions between disease-transmitting vectors and their microbiota. Trends Parasitol 2022; 38:697-708. [DOI: 10.1016/j.pt.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022]
|
13
|
Zajmi A, Teo J, Yeo CC. Epidemiology and Characteristics of Elizabethkingia spp. Infections in Southeast Asia. Microorganisms 2022; 10:microorganisms10050882. [PMID: 35630327 PMCID: PMC9144721 DOI: 10.3390/microorganisms10050882] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
Elizabethkingia spp. is a ubiquitous pathogenic bacterium that has been identified as the causal agent for a variety of conditions such as meningitis, pneumonia, necrotizing fasciitis, endophthalmitis, and sepsis and is emerging as a global threat including in Southeast Asia. Elizabethkingia infections tend to be associated with high mortality rates (18.2–41%) and are mostly observed in neonates and immunocompromised patients. Difficulties in precisely identifying Elizabethkingia at the species level by traditional methods have hampered our understanding of this genus in human infections. In Southeast Asian countries, hospital outbreaks have usually been ascribed to E. meningoseptica, whereas in Singapore, E. anophelis was reported as the main Elizabethkingia spp. associated with hospital settings. Misidentification of Elizabethkingia spp. could, however, underestimate the number of cases attributed to the bacterium, as precise identification requires tools such as MALDI-TOF MS, and particularly whole-genome sequencing, which are not available in most hospital laboratories. Elizabethkingia spp. has an unusual antibiotic resistance pattern for a Gram-negative bacterium with a limited number of horizontal gene transfers, which suggests an intrinsic origin for its multidrug resistance. Efforts to prevent and further understand Elizabethkingia spp. infections and limit its spread must rise to this new challenge.
Collapse
Affiliation(s)
- Asdren Zajmi
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Malaysia;
- Faculty of Health and Life Sciences, Management and Science University, Seksyen 13, Shah Alam 40100, Malaysia
| | - Jeanette Teo
- Department of Laboratory Medicine, National University Hospital, Singapore 119074, Singapore;
| | - Chew Chieng Yeo
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Malaysia;
- Correspondence: ; Tel.: +60-9-627-5506
| |
Collapse
|
14
|
The Integrative and Conjugative Element ICE CspPOL2 Contributes to the Outbreak of Multi-Antibiotic-Resistant Bacteria for Chryseobacterium Spp. and Elizabethkingia Spp. Microbiol Spectr 2021; 9:e0200521. [PMID: 34937181 PMCID: PMC8694125 DOI: 10.1128/spectrum.02005-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibiotic resistance genes (ARGs) and horizontal transfer of ARGs among bacterial species in the environment can have serious clinical implications as such transfers can lead to disease outbreaks from multidrug-resistant (MDR) bacteria. Infections due to antibiotic-resistant Chryseobacterium and Elizabethkingia in intensive care units have been increasing in recent years. In this study, the multi-antibiotic-resistant strain Chryseobacterium sp. POL2 was isolated from the wastewater of a livestock farm. Whole-genome sequencing and annotation revealed that the POL2 genome encodes dozens of ARGs. The integrative and conjugative element (ICE) ICECspPOL2, which encodes ARGs associated with four types of antibiotics, including carbapenem, was identified in the POL2 genome, and phylogenetic affiliation analysis suggested that ICECspPOL2 evolved from related ICEEas of Elizabethkingia spp. Conjugation assays verified that ICECspPOL2 can horizontally transfer to Elizabethkingia species, suggesting that ICECspPOL2 contributes to the dissemination of multiple ARGs among Chryseobacterium spp. and Elizabethkingia spp. Because Elizabethkingia spp. is associated with clinically significant infections and high mortality, there would be challenges to clinical treatment if these bacteria acquire ICECspPOL2 with its multiple ARGs, especially the carbapenem resistance gene. Therefore, the results of this study support the need for monitoring the dissemination of this type of ICE in Chryseobacterium and Elizabethkingia strains to prevent further outbreaks of MDR bacteria. IMPORTANCE Infections with multiple antibiotic-resistant Chryseobacterium and Elizabethkingia in intensive care units have been increasing in recent years. In this study, the mobile integrative and conjugative element ICECspPOL2, which was associated with the transmission of a carbapenem resistance gene, was identified in the genome of the multi-antibiotic-resistant strain Chryseobacterium sp. POL2. ICECspPOL2 is closely related to the ICEEas from Elizabethkingia species, and ICECspPOL2 can horizontally transfer to Elizabethkingia species with the tRNA-Glu-TTC gene as the insertion site. Because Elizabethkingia species are associated with clinically significant infections and high mortality, the ability of ICECspPOL2 to transfer carbapenem resistance from environmental strains of Chryseobacterium to Elizabethkingia is of clinical concern.
Collapse
|
15
|
Onyango MG, Lange R, Bialosuknia S, Payne A, Mathias N, Kuo L, Vigneron A, Nag D, Kramer LD, Ciota AT. Zika virus and temperature modulate Elizabethkingia anophelis in Aedes albopictus. Parasit Vectors 2021; 14:573. [PMID: 34772442 PMCID: PMC8588690 DOI: 10.1186/s13071-021-05069-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/15/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Vector-borne pathogens must survive and replicate in the hostile environment of an insect's midgut before successful dissemination. Midgut microbiota interfere with pathogen infection by activating the basal immunity of the mosquito and by synthesizing pathogen-inhibitory metabolites. METHODS The goal of this study was to assess the influence of Zika virus (ZIKV) infection and increased temperature on Aedes albopictus midgut microbiota. Aedes albopictus were reared at diurnal temperatures of day 28 °C/night 24 °C (L) or day 30 °C/night 26 °C (M). The mosquitoes were given infectious blood meals with 2.0 × 108 PFU/ml ZIKV, and 16S rRNA sequencing was performed on midguts at 7 days post-infectious blood meal exposure. RESULTS Our findings demonstrate that Elizabethkingia anophelis albopictus was associated with Ae. albopictus midguts exposed to ZIKV infectious blood meal. We observed a negative correlation between ZIKV and E. anophelis albopictus in the midguts of Ae. albopictus. Supplemental feeding of Ae. albopictus with E. anophelis aegypti and ZIKV resulted in reduced ZIKV infection rates. Reduced viral loads were detected in Vero cells that were sequentially infected with E. anophelis aegypti and ZIKV, dengue virus (DENV), or chikungunya virus (CHIKV). CONCLUSIONS Our findings demonstrate the influence of ZIKV infection and temperature on the Ae. albopictus microbiome along with a negative correlation between ZIKV and E. anophelis albopictus. Our results have important implications for controlling vector-borne pathogens.
Collapse
Affiliation(s)
- Maria G. Onyango
- Department of Biological Sciences, College of Arts and Sciences, Texas Tech University, 2901 Main St, Lubbock, TX 79409 USA
| | - Rachel Lange
- Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY 12159 USA
- Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, 1400 Washington Avenue, Rensselaer, NY 12144 USA
| | - Sean Bialosuknia
- Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY 12159 USA
- Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, 1400 Washington Avenue, Rensselaer, NY 12144 USA
| | - Anne Payne
- Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY 12159 USA
| | - Nicholas Mathias
- Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY 12159 USA
| | - Lili Kuo
- Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY 12159 USA
| | - Aurelien Vigneron
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Dilip Nag
- Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY 12159 USA
| | - Laura D. Kramer
- Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY 12159 USA
- Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, 1400 Washington Avenue, Rensselaer, NY 12144 USA
| | - Alexander T. Ciota
- Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY 12159 USA
- Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, 1400 Washington Avenue, Rensselaer, NY 12144 USA
| |
Collapse
|
16
|
Steven B, Hyde J, LaReau JC, Brackney DE. The Axenic and Gnotobiotic Mosquito: Emerging Models for Microbiome Host Interactions. Front Microbiol 2021; 12:714222. [PMID: 34322111 PMCID: PMC8312643 DOI: 10.3389/fmicb.2021.714222] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/15/2021] [Indexed: 01/14/2023] Open
Abstract
The increasing availability of modern research tools has enabled a revolution in studies of non-model organisms. Yet, one aspect that remains difficult or impossible to control in many model and most non-model organisms is the presence and composition of the host-associated microbiota or the microbiome. In this review, we explore the development of axenic (microbe-free) mosquito models and what these systems reveal about the role of the microbiome in mosquito biology. Additionally, the axenic host is a blank template on which a microbiome of known composition can be introduced, also known as a gnotobiotic organism. Finally, we identify a "most wanted" list of common mosquito microbiome members that show the greatest potential to influence host phenotypes. We propose that these are high-value targets to be employed in future gnotobiotic studies. The use of axenic and gnotobiotic organisms will transition the microbiome into another experimental variable that can be manipulated and controlled. Through these efforts, the mosquito will be a true model for examining host microbiome interactions.
Collapse
Affiliation(s)
- Blaire Steven
- Department of Environmental Sciences, Connecticut Agricultural Experiment Station, New Haven, CT, United States
| | - Josephine Hyde
- Department of Environmental Sciences, Connecticut Agricultural Experiment Station, New Haven, CT, United States
| | - Jacquelyn C. LaReau
- Department of Environmental Sciences, Connecticut Agricultural Experiment Station, New Haven, CT, United States
| | - Doug E. Brackney
- Department of Environmental Sciences, Connecticut Agricultural Experiment Station, New Haven, CT, United States
- Center for Vector Biology and Zoonotic Diseases, Connecticut Agricultural Experiment Station, New Haven, CT, United States
| |
Collapse
|
17
|
Zhang D, Chen S, Abd-Alla AMM, Bourtzis K. The Effect of Radiation on the Gut Bacteriome of Aedes albopictus. Front Microbiol 2021; 12:671699. [PMID: 34305838 PMCID: PMC8299835 DOI: 10.3389/fmicb.2021.671699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/14/2021] [Indexed: 11/17/2022] Open
Abstract
The sterile insect technique (SIT) has been developed as a component of area-wide integrated pest management approaches to control the populations of Aedes albopictus, a mosquito vector capable of transmission of dengue, Zika and chikungunya viruses. One of the key factors for the success of SIT is the requirement of high biological quality sterile males, which upon their release would be able to compete with wild males for matings with wild females in the field. In insects, gut bacteriome have played a catalytic role during evolution significantly affecting several aspects of their biology and ecology. Given the importance of gut-associated bacterial species for the overall ecological fitness and biological quality of their hosts, it is of interest to understand the effects of radiation on the gut-associated bacteriome of Ae. albopictus. In this study, the effect of radiation on the composition and density levels of the gut-associated bacterial species at the pupal stage as well as at 1- and 4-day-old males and females was studied using 16S rRNA gene-based next generation sequencing (NGS) and quantitative PCR (qPCR) approaches. Age, diet, sex, and radiation were shown to affect the gut-associated bacterial communities, with age having the highest impact triggering significant changes on bacterial diversity and clustering among pupae, 1- and 4-day-old adult samples. qPCR analysis revealed that the relative density levels of Aeromonas are higher in male samples compared to all other samples and that the irradiation triggers an increase in the density levels of both Aeromonas and Elizabethkingia in the mosquito gut at specific stages. Our results suggest that Aeromonas could potentially be used as probiotics to enhance protandry and sex separation in support of SIT applications against Ae. albopictus, while the functional role of Elizabethkingia in respect to oxidative stress and damage in irradiated mosquitoes needs further investigation.
Collapse
Affiliation(s)
- Dongjing Zhang
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Vienna, Austria.,Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University-Michigan State University Joint Center of Vector Control for Tropical Diseases, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Sun Yat-sen University, Guangzhou, China
| | - Shi Chen
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Vienna, Austria.,Institute of Biological Control, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| |
Collapse
|
18
|
E Silva B, Matsena Zingoni Z, Koekemoer LL, Dahan-Moss YL. Microbiota identified from preserved Anopheles. Malar J 2021; 20:230. [PMID: 34022891 PMCID: PMC8141131 DOI: 10.1186/s12936-021-03754-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 05/08/2021] [Indexed: 11/23/2022] Open
Abstract
Background Mosquito species from the Anopheles gambiae complex and the Anopheles funestus group are dominant African malaria vectors. Mosquito microbiota play vital roles in physiology and vector competence. Recent research has focused on investigating the mosquito microbiota, especially in wild populations. Wild mosquitoes are preserved and transported to a laboratory for analyses. Thus far, microbial characterization post-preservation has been investigated in only Aedes vexans and Culex pipiens. Investigating the efficacy of cost-effective preservatives has also been limited to AllProtect reagent, ethanol and nucleic acid preservation buffer. This study characterized the microbiota of African Anopheles vectors: Anopheles arabiensis (member of the An. gambiae complex) and An. funestus (member of the An. funestus group), preserved on silica desiccant and RNAlater® solution. Methods Microbial composition and diversity were characterized using culture-dependent (midgut dissections, culturomics, MALDI-TOF MS) and culture-independent techniques (abdominal dissections, DNA extraction, next-generation sequencing) from laboratory (colonized) and field-collected mosquitoes. Colonized mosquitoes were either fresh (non-preserved) or preserved for 4 and 12 weeks on silica or in RNAlater®. Microbiota were also characterized from field-collected An. arabiensis preserved on silica for 8, 12 and 16 weeks. Results Elizabethkingia anophelis and Serratia oryzae were common between both vector species, while Enterobacter cloacae and Staphylococcus epidermidis were specific to females and males, respectively. Microbial diversity was not influenced by sex, condition (fresh or preserved), preservative, or preservation time-period; however, the type of bacterial identification technique affected all microbial diversity indices. Conclusions This study broadly characterized the microbiota of An. arabiensis and An. funestus. Silica- and RNAlater®-preservation were appropriate when paired with culture-dependent and culture-independent techniques, respectively. These results broaden the selection of cost-effective methods available for handling vector samples for downstream microbial analyses. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03754-7.
Collapse
Affiliation(s)
- Bianca E Silva
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Zvifadzo Matsena Zingoni
- Division of Epidemiology and Biostatistics, School of Public Health, University of the Witwatersrand, Parktown, South Africa
| | - Lizette L Koekemoer
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Yael L Dahan-Moss
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa. .,Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa.
| |
Collapse
|
19
|
Ghafoori SM, Robles AM, Arada AM, Shirmast P, Dranow DM, Mayclin SJ, Lorimer DD, Myler PJ, Edwards TE, Kuhn ML, Forwood JK. Structural characterization of a Type B chloramphenicol acetyltransferase from the emerging pathogen Elizabethkingia anophelis NUHP1. Sci Rep 2021; 11:9453. [PMID: 33947893 PMCID: PMC8096840 DOI: 10.1038/s41598-021-88672-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/24/2021] [Indexed: 02/02/2023] Open
Abstract
Elizabethkingia anophelis is an emerging multidrug resistant pathogen that has caused several global outbreaks. E. anophelis belongs to the large family of Flavobacteriaceae, which contains many bacteria that are plant, bird, fish, and human pathogens. Several antibiotic resistance genes are found within the E. anophelis genome, including a chloramphenicol acetyltransferase (CAT). CATs play important roles in antibiotic resistance and can be transferred in genetic mobile elements. They catalyse the acetylation of the antibiotic chloramphenicol, thereby reducing its effectiveness as a viable drug for therapy. Here, we determined the high-resolution crystal structure of a CAT protein from the E. anophelis NUHP1 strain that caused a Singaporean outbreak. Its structure does not resemble that of the classical Type A CATs but rather exhibits significant similarity to other previously characterized Type B (CatB) proteins from Pseudomonas aeruginosa, Vibrio cholerae and Vibrio vulnificus, which adopt a hexapeptide repeat fold. Moreover, the CAT protein from E. anophelis displayed high sequence similarity to other clinically validated chloramphenicol resistance genes, indicating it may also play a role in resistance to this antibiotic. Our work expands the very limited structural and functional coverage of proteins from Flavobacteriaceae pathogens which are becoming increasingly more problematic.
Collapse
Affiliation(s)
| | - Alyssa M Robles
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA, USA
| | - Angelika M Arada
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA, USA
| | - Paniz Shirmast
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - David M Dranow
- Seattle Structural Genomics Center for Infectious Disease, Seattle, WA, USA
- UCB Pharma, Bainbridge Island, WA, USA
| | - Stephen J Mayclin
- Seattle Structural Genomics Center for Infectious Disease, Seattle, WA, USA
- UCB Pharma, Bainbridge Island, WA, USA
| | - Donald D Lorimer
- Seattle Structural Genomics Center for Infectious Disease, Seattle, WA, USA
- UCB Pharma, Bainbridge Island, WA, USA
| | - Peter J Myler
- Seattle Structural Genomics Center for Infectious Disease, Seattle, WA, USA
- Seattle Children's Research Institute, University of Washington, Seattle, WA, USA
| | - Thomas E Edwards
- Seattle Structural Genomics Center for Infectious Disease, Seattle, WA, USA
- UCB Pharma, Bainbridge Island, WA, USA
| | - Misty L Kuhn
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA, USA
| | - Jade K Forwood
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia.
| |
Collapse
|
20
|
Larkin PMK, Mortimer L, Malenfant JH, Gaynor P, Contreras DA, Garner OB, Yang S, Allyn P. Investigation of Phylogeny and Drug Resistance Mechanisms of Elizabethkingia anophelis Isolated from Blood and Lower Respiratory Tract. Microb Drug Resist 2021; 27:1259-1264. [PMID: 33656389 DOI: 10.1089/mdr.2020.0263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Elizabethkingia species are environmental bacteria associated with opportunistic infections in vulnerable populations. Traditionally, Elizabethkingia meningoseptica was considered the predominant pathogenic species. However, commercial identification systems have routinely misidentified Elizabethkingia anophelis as E. meningoseptica, leading to a mischaracterization of clinical strains and an underestimation of the role of E. anophelis in human disease. Elizabethkingia spp. harbor multidrug resistance (MDR) genes that pose challenges for treatment. Differentiation between Elizabethkingia spp. is particularly important due to differences in antimicrobial resistance (AMR) and epidemiological investigation. In this study, we describe a case of MDR E. anophelis isolated from the blood and lower respiratory tract of a patient who was successfully treated with minocycline. These isolates were initially misidentified by matrix assisted laser desorption ionization-time of flight as E. meningoseptica, whereas whole genome sequencing (WGS) confirmed the isolates as E. anophelis with the closest related strain being E. anophelis NUHP1, which was implicated in a 2012 outbreak in Singapore. Several AMR genes (blaBlaB, blaBlaGOB, blaCME, Sul2, erm(F), and catB) were identified by WGS, confirming the mechanisms for MDR. This case emphasizes the utility of WGS for correct speciation, elucidation of resistance genes, and relatedness to other outbreak strains. As E. anophelis is associated with a high mortality and has been found in hospital system sinks, WGS is critically important for determining strain relatedness and tracking outbreaks in the hospital setting.
Collapse
Affiliation(s)
- Paige M K Larkin
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Leanne Mortimer
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Jason H Malenfant
- Division of Infectious Diseases, UCLA Medical Center, University of California, Los Angeles, Los Angeles, California, USA.,Department of Medicine, UCLA Medical Center, University of California, Los Angeles, Los Angeles, California, USA
| | - Pryce Gaynor
- Division of Infectious Diseases, UCLA Medical Center, University of California, Los Angeles, Los Angeles, California, USA
| | - Deisy A Contreras
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Omai B Garner
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Shangxin Yang
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Paul Allyn
- Division of Infectious Diseases, UCLA Medical Center, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
21
|
Chang Y, Zhang D, Niu S, Chen Q, Lin Q, Zhang X. MBLs, Rather Than Efflux Pumps, Led to Carbapenem Resistance in Fosfomycin and Aztreonam/Avibactam Resistant Elizabethkingia anophelis. Infect Drug Resist 2021; 14:315-327. [PMID: 33551643 PMCID: PMC7856348 DOI: 10.2147/idr.s294149] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/14/2021] [Indexed: 01/23/2023] Open
Abstract
Objective To assess the risk factors associated with infections and in-hospital mortality, antimicrobial susceptibility patterns and carbapenem resistance mechanisms in E. anophelis. Methods This retrospective case-control study was conducted to reveal the risk factors associated with Elizabethkingia anophelis (E. anophelis) infection and in-hospital mortality in a university tertiary hospital in southwest China, using multivariable logistic-regression analyses. Complete 16S rRNA gene sequencing was used to reconfirm the identity of all isolates. We employed the broth microdilution method to investigate the antimicrobial susceptibility profiles. The presence of resistance genes was confirmed by polymerase chain reaction and DNA sequencing. Full-length resistance genes were cloned into the pET-28a vector for further functional studies. Results Our multivariate analysis indicated that coronary artery disease, chronic obstructive pulmonary disease, surgery in the past 6 months, anemia and systemic steroid use were independent risk factors for the acquisition of E. anophelis. Additionally, anemia was the only independent risk factor associated with in-hospital mortality in patients with E. anophelis infections. E. anophelis isolates showed high in-vitro susceptibility towards minocycline (100%) and piperacillin/tazobactam (71.8%), but were resistant to colistin, fosfomycin, ceftazidime/avibactam and aztreonam/avibactam. The PCR revealed the presence of blaGOB and blaBlaB in 37 isolates, and blaCME β-lactamase genes in 36 isolates out of 39 E. anophelis isolates. Additionally, we showed that two metallo-β-lactamases (MBLs) BlaB and GOB, were responsible for carbapenem resistance and the serine-β-lactamase, CME, was functionally involved in resistance to cephalosporins and monobactams. Interestingly, the various putative efflux pumps in E. anophelis were not responsible for resistance. Conclusion Our findings will help clinicians to identify high-risk patients and suggests that minocycline should be considered as a therapeutic option for E. anophelis infections. Additionally, carbapenem resistance in E. anophelis is mainly associated with the MBLs, BlaB and GOB, rather than various putative efflux pumps.
Collapse
Affiliation(s)
- Yanbin Chang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Daiqin Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Siqiang Niu
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Qian Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Qiuxia Lin
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Xiaobing Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
22
|
Structural characterization of a GNAT family acetyltransferase from Elizabethkingia anophelis bound to acetyl-CoA reveals a new dimeric interface. Sci Rep 2021; 11:1274. [PMID: 33446675 PMCID: PMC7809356 DOI: 10.1038/s41598-020-79649-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/26/2020] [Indexed: 01/13/2023] Open
Abstract
General control non-repressible 5 (GCN5)-related N-acetyltransferases (GNATs) catalyse the acetylation of a diverse range of substrates, thereby orchestrating a variety of biological processes within prokaryotes and eukaryotes. GNAT enzymes can catalyze the transfer of an acetyl group from acetyl coenzyme A to substrates such as aminoglycoside antibiotics, amino acids, polyamines, peptides, vitamins, catecholamines, and large macromolecules including proteins. Although GNATs generally exhibit low to moderate sequence identity, they share a conserved catalytic fold and conserved structural motifs. In this current study we characterize the high-resolution X-ray crystallographic structure of a GNAT enzyme bound with acetyl-CoA from Elizabethkingia anophelis, an important multi-drug resistant bacterium. The tertiary structure is comprised of six α-helices and nine β-strands, and is similar with other GNATs. We identify a new and uncharacterized GNAT dimer interface, which is conserved in at least two other unpublished GNAT structures. This suggests that GNAT enzymes can form at least five different types of dimers, in addition to a range of other oligomers including trimer, tetramer, hexamer, and dodecamer assemblies. The high-resolution structure presented in this study is suitable for future in-silico docking and structure–activity relationship studies.
Collapse
|
23
|
Onyango GM, Bialosuknia MS, Payne FA, Mathias N, Ciota TA, Kramer DL. Increase in temperature enriches heat tolerant taxa in Aedes aegypti midguts. Sci Rep 2020; 10:19135. [PMID: 33154438 PMCID: PMC7644690 DOI: 10.1038/s41598-020-76188-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 06/15/2020] [Indexed: 02/06/2023] Open
Abstract
Insect midgut microbial symbionts have been considered as an integral component in thermal adaptation due to their differential thermal sensitivity. Altered midgut microbial communities can influence both insect physiology and competence for important vector-borne pathogens. This study sought to gain insights into how Aedes aegypti midgut microbes and life history traits are affected by increase in baseline diurnal temperature. Increase in temperature resulted in the enrichment of specific taxa with Bacillus being the most enriched. Bacillus is known to be heat tolerant. It also resulted in a dissimilar microbial assemblage (Bray-Curtis Index, PERMANOVA, F = 2.2063; R2 = 0.16706; P = 0.002) and reduced survivorship (Log-rank [Mantel-Cox] test, Chi-square = 35.66 df = 5, P < 0.0001). Blood meal intake resulted in proliferation of pathogenic bacteria such as Elizabethkingia in the midgut of the mosquitoes. These results suggest that alteration of temperature within realistic parameters such as 2 °C for Ae. aegypti in nature may impact the midgut microbiome favoring specific taxa that could alter mosquito fitness, adaptation and vector-pathogen interactions.
Collapse
Affiliation(s)
- Gorreti Maria Onyango
- Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY, 12159, USA
| | - M Sean Bialosuknia
- Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY, 12159, USA
- School of Public Health, State University of New York Albany, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - F Anne Payne
- Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY, 12159, USA
| | - Nicholas Mathias
- Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY, 12159, USA
| | - T Alexander Ciota
- Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY, 12159, USA
- School of Public Health, State University of New York Albany, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - D Laura Kramer
- Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY, 12159, USA.
- School of Public Health, State University of New York Albany, 1400 Washington Avenue, Albany, NY, 12222, USA.
| |
Collapse
|
24
|
Chen S, Johnson BK, Yu T, Nelson BN, Walker ED. Elizabethkingia anophelis: Physiologic and Transcriptomic Responses to Iron Stress. Front Microbiol 2020; 11:804. [PMID: 32457715 PMCID: PMC7221216 DOI: 10.3389/fmicb.2020.00804] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/03/2020] [Indexed: 12/12/2022] Open
Abstract
In this study, we investigated the global gene expression responses of Elizabethkingia anophelis to iron fluxes in the midgut of female Anopheles stephensi mosquitoes fed sucrose or blood, and in iron-poor or iron-rich culture conditions. Of 3,686 transcripts revealed by RNAseq technology, 218 were upregulated while 112 were down-regulated under iron-poor conditions. Hemolysin gene expression was significantly repressed when cells were grown under iron-rich or high temperature (37°C) conditions. Furthermore, hemolysin gene expression was down-regulated after a blood meal, indicating that E. anophelis cells responded to excess iron and its associated physiological stress by limiting iron loading. By contrast, genes encoding respiratory chain proteins were up-regulated under iron-rich conditions, allowing these iron-containing proteins to chelate intracellular free iron. In vivo studies showed that growth of E. anophelis cells increased 3-fold in blood-fed mosquitoes over those in sucrose-fed ones. Deletion of siderophore synthesis genes led to impaired cell growth in both iron-rich and iron-poor media. Mutants showed more susceptibility to H2O2 toxicity and less biofilm formation than did wild-type cells. Mosquitoes with E. anophelis experimentally colonized in their guts produced more eggs than did those treated with erythromycin or left unmanipulated, as controls. Results reveal that E. anophelis bacteria respond to varying iron concentration in the mosquito gut, harvest iron while fending off iron-associated stress, contribute to lysis of red blood cells, and positively influence mosquito host fecundity.
Collapse
Affiliation(s)
- Shicheng Chen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Benjamin K. Johnson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Ting Yu
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Brooke N. Nelson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Edward D. Walker
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
- Department of Entomology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
25
|
Comparative genomic analyses reveal diverse virulence factors and antimicrobial resistance mechanisms in clinical Elizabethkingia meningoseptica strains. PLoS One 2019; 14:e0222648. [PMID: 31600234 PMCID: PMC6786605 DOI: 10.1371/journal.pone.0222648] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/03/2019] [Indexed: 12/31/2022] Open
Abstract
Three human clinical isolates of bacteria (designated strains Em1, Em2 and Em3) had high average nucleotide identity (ANI) to Elizabethkingia meningoseptica. Their genome sizes (3.89, 4.04 and 4.04 Mb) were comparable to those of other Elizabethkingia species and strains, and exhibited open pan-genome characteristics, with two strains being nearly identical and the third divergent. These strains were susceptible only to trimethoprim/sulfamethoxazole and ciprofloxacin amongst 16 antibiotics in minimum inhibitory tests. The resistome exhibited a high diversity of resistance genes, including 5 different lactamase- and 18 efflux protein- encoding genes. Forty-four genes encoding virulence factors were conserved among the strains. Sialic acid transporters and curli synthesis genes were well conserved in E. meningoseptica but absent in E. anophelis and E. miricola. E. meningoseptica carried several genes contributing to biofilm formation. 58 glycoside hydrolases (GH) and 25 putative polysaccharide utilization loci (PULs) were found. The strains carried numerous genes encoding two-component system proteins (56), transcription factor proteins (187~191), and DNA-binding proteins (6~7). Several prophages and CRISPR/Cas elements were uniquely present in the genomes.
Collapse
|
26
|
Souza RS, Virginio F, Riback TIS, Suesdek L, Barufi JB, Genta FA. Microorganism-Based Larval Diets Affect Mosquito Development, Size and Nutritional Reserves in the Yellow Fever Mosquito Aedes aegypti (Diptera: Culicidae). Front Physiol 2019; 10:152. [PMID: 31024326 PMCID: PMC6465640 DOI: 10.3389/fphys.2019.00152] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/08/2019] [Indexed: 12/11/2022] Open
Abstract
Background Mosquito larvae feed on organic detritus from the environment, particularly microorganisms comprising bacteria, protozoa, and algae as well as crustaceans, plant debris, and insect exuviae. Little attention has been paid to nutritional studies in Aedes aegypti larvae. Objectives We investigated the effects of yeast, bacteria and microalgae diets on larval development, pupation time, adult size, emergence, survivorship, lifespan, and wing morphology. Materials and Methods Microorganisms (or Tetramin® as control) were offered as the only source of food to recently hatched first instar larvae and their development was followed until the adult stage. Protein, carbohydrate, glycogen, and lipid were analyzed in single larvae to correlate energetic reserve accumulation by larva with the developmental rates and nutritional content observed. FITC-labeled microorganisms were offered to fourth instar larvae, and its ingestion was recorded by fluorescence microscopy and quantitation. Results and Discussion Immature stages developed in all diets, however, larvae fed with bacteria and microalgae showed a severe delay in development rates, pupation time, adult emergence and low survivorship. Adult males emerged earlier as expected and had longer survival than females. Diets with better nutritional quality resulted in adults with bigger wings. Asaia sp. and Escherichia coli resulted in better nutrition and developmental parameters and seemed to be the best bacterial candidates to future studies using symbiont-based control. The diet quality was measured and presented different protein and carbohydrate amounts. Bacteria had the lowest protein and carbohydrate rates, yeasts had the highest carbohydrate amount and microalgae showed the highest protein content. Larvae fed with microalgae seem not to be able to process and store these diets properly. Larvae were shown to be able to process yeast cells and store their energetic components efficiently. Conclusion Together, our results point that Ae. aegypti larvae show high plasticity to feed, being able to develop under different microorganism-based diets. The important role of Ae. aegypti in the spread of infectious diseases requires further biological studies in order to understand the vector physiology and thus to manage the larval natural breeding sites aiming a better mosquito control.
Collapse
Affiliation(s)
- Raquel Santos Souza
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Flavia Virginio
- Laboratório Especial de Coleções Zoológicas, Instituto Butantan, São Paulo, Brazil
| | | | - Lincoln Suesdek
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, Brazil
- Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, Brazil
| | - José Bonomi Barufi
- Laboratório de Ficologia, Departamento de Botânica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Fernando Ariel Genta
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
- *Correspondence: Fernando Ariel Genta, ;
| |
Collapse
|
27
|
In Silico Identification of Three Types of Integrative and Conjugative Elements in Elizabethkingia anophelis Strains Isolated from around the World. mSphere 2019; 4:4/2/e00040-19. [PMID: 30944210 PMCID: PMC6449604 DOI: 10.1128/msphere.00040-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Elizabethkingia anophelis is an opportunistic human pathogen, and the genetic diversity between strains from around the world becomes apparent as more genomes are sequenced. Genome comparison identified three types of putative ICEs in 31 of 36 strains. The diversity of ICEs suggests that they had different origins. One of the ICEs was discovered previously from a large E. anophelis outbreak in Wisconsin in the United States; this ICE has integrated into the mutY gene of the outbreak strain, creating a mutator phenotype. Similar to ICEs found in many bacterial species, ICEs in E. anophelis carry various cargo genes that enable recipients to resist antibiotics and adapt to various ecological niches. The adaptive immune CRISPR-Cas system is present in nine of 36 strains. An ICE-derived spacer was found in the CRISPR locus in a strain that has no ICE, suggesting a past encounter and effective defense against ICE. Elizabethkingia anophelis is an emerging global multidrug-resistant opportunistic pathogen. We assessed the diversity among 13 complete genomes and 23 draft genomes of E. anophelis strains derived from various environmental settings and human infections from different geographic regions around the world from 1950s to the present. Putative integrative and conjugative elements (ICEs) were identified in 31/36 (86.1%) strains in the study. A total of 52 putative ICEs (including eight degenerated elements lacking integrases) were identified and categorized into three types based on the architecture of the conjugation module and the phylogeny of the relaxase, coupling protein, TraG, and TraJ protein sequences. The type II and III ICEs were found to integrate adjacent to tRNA genes, while type I ICEs integrate into intergenic regions or into a gene. The ICEs carry various cargo genes, including transcription regulator genes and genes conferring antibiotic resistance. The adaptive immune CRISPR-Cas system was found in nine strains, including five strains in which CRISPR-Cas machinery and ICEs coexist at different locations on the same chromosome. One ICE-derived spacer was present in the CRISPR locus in one strain. ICE distribution in the strains showed no geographic or temporal patterns. The ICEs in E. anophelis differ in architecture and sequence from CTnDOT, a well-studied ICE prevalent in Bacteroides spp. The categorization of ICEs will facilitate further investigations of the impact of ICE on virulence, genome epidemiology, and adaptive genomics of E. anophelis. IMPORTANCEElizabethkingia anophelis is an opportunistic human pathogen, and the genetic diversity between strains from around the world becomes apparent as more genomes are sequenced. Genome comparison identified three types of putative ICEs in 31 of 36 strains. The diversity of ICEs suggests that they had different origins. One of the ICEs was discovered previously from a large E. anophelis outbreak in Wisconsin in the United States; this ICE has integrated into the mutY gene of the outbreak strain, creating a mutator phenotype. Similar to ICEs found in many bacterial species, ICEs in E. anophelis carry various cargo genes that enable recipients to resist antibiotics and adapt to various ecological niches. The adaptive immune CRISPR-Cas system is present in nine of 36 strains. An ICE-derived spacer was found in the CRISPR locus in a strain that has no ICE, suggesting a past encounter and effective defense against ICE.
Collapse
|
28
|
Telang A, Skinner J. Effects of host blood meal source on reproductive output, nutrient reserves and gut microbiome of West Nile virus vector Culex quinquefasciatus. JOURNAL OF INSECT PHYSIOLOGY 2019; 114:15-22. [PMID: 30735684 DOI: 10.1016/j.jinsphys.2019.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
Female mosquitoes feed on blood from vertebrates, including humans, as a protein source to provision eggs. Through blood feeding, mosquitoes may transmit pathogens to humans and other animals. In diseases like malaria and dengue, humans are the main hosts and mosquitoes that preferentially feed on humans transmit the pathogens. We know relatively less about mosquitoes that switch between different vertebrate hosts and their underlying physiologic to utilize blood from different vertebrate hosts. Our study focuses on the Southern house mosquito Culex quinquefasciatus Say (Diptera: Culicidae), a vector that opportunistically feeds on birds and mammals when available, increasing the probability of transmitting bird pathogens to humans. Key factors examined encompassed gut physiology and reproductive fitness associated with switching host blood source. Our results indicate that the gut microbiome of Cx. quinquefasciatus is dynamic in response to switching between food sources and that blood meal source affects her macronutrient stores and reproductive output. This research will help advance our understanding of the effects of host blood source on important life history parameters for this mosquito vector to add to our understanding of the interaction between mosquito vectors and vertebrate hosts.
Collapse
Affiliation(s)
- Aparna Telang
- Biology Program, University of South Florida Sarasota-Manatee, Sarasota, FL 34243, USA.
| | - Jessica Skinner
- Biology Program, University of South Florida Sarasota-Manatee, Sarasota, FL 34243, USA
| |
Collapse
|
29
|
Jian MJ, Cheng YH, Chung HY, Cheng YH, Yang HY, Hsu CS, Perng CL, Shang HS. Fluoroquinolone resistance in carbapenem-resistant Elizabethkingia anophelis: phenotypic and genotypic characteristics of clinical isolates with topoisomerase mutations and comparative genomic analysis. J Antimicrob Chemother 2019; 74:1503-1510. [DOI: 10.1093/jac/dkz045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/15/2018] [Accepted: 01/11/2019] [Indexed: 11/14/2022] Open
Abstract
Abstract
Background
MDR Elizabethkingia anophelis strains are implicated in an increasing number of healthcare-associated infections worldwide, including a recent cluster of E. anophelis infections in the Midwestern USA associated with significant morbidity and mortality. However, there is minimal information on the antimicrobial susceptibilities of E. anophelis strains or their antimicrobial resistance to carbapenems and fluoroquinolones.
Objectives
Our aim was to examine the susceptibilities and genetic profiles of clinical isolates of E. anophelis from our hospital, characterize their carbapenemase genes and production of MBLs, and determine the mechanism of fluoroquinolone resistance.
Methods
A total of 115 non-duplicated isolates of E. anophelis were examined. MICs of antimicrobial agents were determined using the Sensititre 96-well broth microdilution panel method. QRDR mutations and MBL genes were identified using PCR. MBL production was screened for using a combined disc test.
Results
All E. anophelis isolates harboured the blaGOB and blaB genes with resistance to carbapenems. Antibiotic susceptibility testing indicated different resistance patterns to ciprofloxacin and levofloxacin in most isolates. Sequencing analysis confirmed that a concurrent GyrA amino acid substitution (Ser83Ile or Ser83Arg) in the hotspots of respective QRDRs was primarily responsible for high-level ciprofloxacin/levofloxacin resistance. Only one isolate had no mutation but a high fluoroquinolone MIC.
Conclusions
Our study identified a strong correlation between antibiotic susceptibility profiles and mechanisms of fluoroquinolone resistance among carbapenem-resistant E. anophelis isolates, providing an important foundation for continued surveillance and epidemiological analyses of emerging E. anophelis opportunistic infections. Minocycline or ciprofloxacin has the potential for treatment of severe E. anophelis infections.
Collapse
Affiliation(s)
- Ming-Jr Jian
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yun-Hsiang Cheng
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsing-Yi Chung
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Hsuan Cheng
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hung-Yi Yang
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Sin Hsu
- Center for Precision Medicine and Genomics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Cherng-Lih Perng
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hung-Sheng Shang
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
30
|
Kingan SB, Heaton H, Cudini J, Lambert CC, Baybayan P, Galvin BD, Durbin R, Korlach J, Lawniczak MKN. A High-Quality De novo Genome Assembly from a Single Mosquito Using PacBio Sequencing. Genes (Basel) 2019; 10:E62. [PMID: 30669388 PMCID: PMC6357164 DOI: 10.3390/genes10010062] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 12/15/2022] Open
Abstract
A high-quality reference genome is a fundamental resource for functional genetics, comparative genomics, and population genomics, and is increasingly important for conservation biology. PacBio Single Molecule, Real-Time (SMRT) sequencing generates long reads with uniform coverage and high consensus accuracy, making it a powerful technology for de novo genome assembly. Improvements in throughput and concomitant reductions in cost have made PacBio an attractive core technology for many large genome initiatives, however, relatively high DNA input requirements (~5 µg for standard library protocol) have placed PacBio out of reach for many projects on small organisms that have lower DNA content, or on projects with limited input DNA for other reasons. Here we present a high-quality de novo genome assembly from a single Anopheles coluzzii mosquito. A modified SMRTbell library construction protocol without DNA shearing and size selection was used to generate a SMRTbell library from just 100 ng of starting genomic DNA. The sample was run on the Sequel System with chemistry 3.0 and software v6.0, generating, on average, 25 Gb of sequence per SMRT Cell with 20 h movies, followed by diploid de novo genome assembly with FALCON-Unzip. The resulting curated assembly had high contiguity (contig N50 3.5 Mb) and completeness (more than 98% of conserved genes were present and full-length). In addition, this single-insect assembly now places 667 (>90%) of formerly unplaced genes into their appropriate chromosomal contexts in the AgamP4 PEST reference. We were also able to resolve maternal and paternal haplotypes for over 1/3 of the genome. By sequencing and assembling material from a single diploid individual, only two haplotypes were present, simplifying the assembly process compared to samples from multiple pooled individuals. The method presented here can be applied to samples with starting DNA amounts as low as 100 ng per 1 Gb genome size. This new low-input approach puts PacBio-based assemblies in reach for small highly heterozygous organisms that comprise much of the diversity of life.
Collapse
Affiliation(s)
- Sarah B Kingan
- Pacific Biosciences, 1305 O'Brien Drive, Menlo Park, CA 94025, USA.
| | - Haynes Heaton
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK.
| | - Juliana Cudini
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK.
| | | | - Primo Baybayan
- Pacific Biosciences, 1305 O'Brien Drive, Menlo Park, CA 94025, USA.
| | - Brendan D Galvin
- Pacific Biosciences, 1305 O'Brien Drive, Menlo Park, CA 94025, USA.
| | - Richard Durbin
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK.
| | - Jonas Korlach
- Pacific Biosciences, 1305 O'Brien Drive, Menlo Park, CA 94025, USA.
| | - Mara K N Lawniczak
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK.
| |
Collapse
|
31
|
Romoli O, Gendrin M. The tripartite interactions between the mosquito, its microbiota and Plasmodium. Parasit Vectors 2018; 11:200. [PMID: 29558973 PMCID: PMC5861617 DOI: 10.1186/s13071-018-2784-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/06/2018] [Indexed: 11/24/2022] Open
Abstract
The microbiota of Anopheles mosquitoes interferes with mosquito infection by Plasmodium and influences mosquito fitness, therefore affecting vectorial capacity. This natural barrier to malaria transmission has been regarded with growing interest in the last 20 years, as it may be a source of new transmission-blocking strategies. The last decade has seen tremendous progress in the functional characterisation of the tripartite interactions between the mosquito, its microbiota and Plasmodium parasites. In this review, we provide insights into the effects of the mosquito microbiota on Plasmodium infection and on mosquito physiology, and on how these aspects together influence vectorial capacity. We also discuss three current challenges in the field, namely the need for a more relevant microbiota composition in experimental mosquitoes involved in vector biology studies, for a better characterisation of the non-bacterial microbiota, and for further functional studies of the microbiota present outside the gut.
Collapse
Affiliation(s)
- Ottavia Romoli
- Microbiota of Insect Vectors Group, Institut Pasteur de la Guyane, Cayenne, French Guiana, France
| | - Mathilde Gendrin
- Microbiota of Insect Vectors Group, Institut Pasteur de la Guyane, Cayenne, French Guiana, France. .,Parasites and Insect Vectors Department, Institut Pasteur, Paris, France.
| |
Collapse
|
32
|
Evolutionary dynamics and genomic features of the Elizabethkingia anophelis 2015 to 2016 Wisconsin outbreak strain. Nat Commun 2017; 8:15483. [PMID: 28537263 PMCID: PMC5458099 DOI: 10.1038/ncomms15483] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/30/2017] [Indexed: 11/26/2022] Open
Abstract
An atypically large outbreak of Elizabethkingia anophelis infections occurred in Wisconsin. Here we show that it was caused by a single strain with thirteen characteristic genomic regions. Strikingly, the outbreak isolates show an accelerated evolutionary rate and an atypical mutational spectrum. Six phylogenetic sub-clusters with distinctive temporal and geographic dynamics are revealed, and their last common ancestor existed approximately one year before the first recognized human infection. Unlike other E. anophelis, the outbreak strain had a disrupted DNA repair mutY gene caused by insertion of an integrative and conjugative element. This genomic change probably contributed to the high evolutionary rate of the outbreak strain and may have increased its adaptability, as many mutations in protein-coding genes occurred during the outbreak. This unique discovery of an outbreak caused by a naturally occurring mutator bacterial pathogen provides a dramatic example of the potential impact of pathogen evolutionary dynamics on infectious disease epidemiology. Elizabethkingia anophelis is an emerging pathogen of high antimicrobial resistance. Perrin and colleagues sequenced isolates of a 2015/2016 E. anophelis outbreak in Wisconsin and found substantial genetic diversity, accelerated evolutionary rate and a disruptive mutation in the DNA repair gene mutY.
Collapse
|
33
|
Hu S, Jiang T, Zhang X, Zhou Y, Yi Z, Wang Y, Zhao S, Wang M, Ming D, Chen S. Elizabethkingia anophelis Isolated from Patients with Multiple Organ Dysfunction Syndrome and Lower Respiratory Tract Infection: Report of Two Cases and Literature Review. Front Microbiol 2017; 8:382. [PMID: 28337189 PMCID: PMC5340744 DOI: 10.3389/fmicb.2017.00382] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 02/23/2017] [Indexed: 11/16/2022] Open
Abstract
Elizabethkingia anophelis, originally discovered from Anopheles mosquito gut, is an emerging pathogen, especially in immunocompromised patients. We isolated two strains of E. anophelis from two separate patients with multiple organ dysfunction syndrome and lower respiratory tract infection. In this paper, we reviewed the status of E. anophelis infection and its antibiotics resistance from reported cases.
Collapse
Affiliation(s)
- Shaohua Hu
- Yun Leung Laboratory for Molecular Diagnostics, School of Biomedical Sciences, Huaqiao University Xiamen, China
| | - Tao Jiang
- Yun Leung Laboratory for Molecular Diagnostics, School of Biomedical Sciences, Huaqiao University Xiamen, China
| | - Xia Zhang
- Department of Medical Laboratory, Institute of Nanomedicine Technology, Weifang Medical University Weifang, China
| | - Yajun Zhou
- Yun Leung Laboratory for Molecular Diagnostics, School of Biomedical Sciences, Huaqiao University Xiamen, China
| | - Zhengjun Yi
- Department of Medical Laboratory, Institute of Nanomedicine Technology, Weifang Medical University Weifang, China
| | - Youxi Wang
- Department of Information, Quanzhou First Hospital Affiliated to Fujian Medical University Fujian, China
| | - Sishou Zhao
- Department of Information, Quanzhou First Hospital Affiliated to Fujian Medical University Fujian, China
| | - Mingxi Wang
- Yun Leung Laboratory for Molecular Diagnostics, School of Biomedical Sciences, Huaqiao UniversityXiamen, China; Department of Medical Laboratory, Institute of Nanomedicine Technology, Weifang Medical UniversityWeifang, China
| | - Desong Ming
- Department of Clinical Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University Fujian, China
| | - Shicheng Chen
- Department of Microbiology and Molecular Genetics, Michigan State University East Lansing, MI, USA
| |
Collapse
|
34
|
Saldaña MA, Hegde S, Hughes GL. Microbial control of arthropod-borne disease. Mem Inst Oswaldo Cruz 2017; 112:81-93. [PMID: 28177042 PMCID: PMC5293117 DOI: 10.1590/0074-02760160373] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/16/2016] [Indexed: 01/03/2023] Open
Abstract
Arthropods harbor a diverse array of microbes that profoundly influence many aspects of host biology, including vector competence. Additionally, symbionts can be engineered to produce molecules that inhibit pathogens. Due to their intimate association with the host, microbes have developed strategies that facilitate their transmission, either horizontally or vertically, to conspecifics. These attributes make microbes attractive agents for applied strategies to control arthropod-borne disease. Here we discuss the recent advances in microbial control approaches to reduce the burden of pathogens such as Zika, Dengue and Chikungunya viruses, and Trypanosome and Plasmodium parasites. We also highlight where further investigation is warranted.
Collapse
Affiliation(s)
- Miguel A Saldaña
- University of Texas Medical Branch, Department of Microbiology and Immunology, Galveston, TX, USA
| | - Shivanand Hegde
- University of Texas Medical Branch, Department of Pathology, Galveston, TX, USA
| | - Grant L Hughes
- University of Texas Medical Branch, Department of Pathology, Galveston, TX, USA
- University of Texas Medical Branch, Institute for Human Infections and Immunity, Galveston, TX, USA
- University of Texas Medical Branch, Center for Biodefense and Emerging Infectious Disease, Galveston, TX, USA
- University of Texas Medical Branch, Center for Tropical Diseases, Galveston, TX, USA
| |
Collapse
|
35
|
Larval diet affects mosquito development and permissiveness to Plasmodium infection. Sci Rep 2016; 6:38230. [PMID: 27910908 PMCID: PMC5133635 DOI: 10.1038/srep38230] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 11/07/2016] [Indexed: 11/26/2022] Open
Abstract
The larval stages of malaria vector mosquitoes develop in water pools, feeding mostly on microorganisms and environmental detritus. Richness in the nutrient supply to larvae influences the development and metabolism of larvae and adults. Here, we investigated the effects of larval diet on the development, microbiota content and permissiveness to Plasmodium of Anopheles coluzzii. We tested three fish diets often used to rear mosquitoes in the laboratory, including two pelleted diets, Dr. Clarke’s Pool Pellets and Nishikoi Fish Pellets, and one flaked diet, Tetramin Fish-Flakes. Larvae grow and develop faster and produce bigger adults when feeding on both types of pellets compared with flakes. This correlates with a higher microbiota load in pellet-fed larvae, in agreement with the known positive effect of the microbiota on mosquito development. Larval diet also significantly influences the prevalence and intensity of Plasmodium berghei infection in adults, whereby Nishikoi Fish Pellets-fed larvae develop into adults that are highly permissive to parasites and survive longer after infection. This correlates with a lower amount of Enterobacteriaceae in the midgut microbiota. Together, our results shed light on the influence of larval feeding on mosquito development, microbiota and vector competence; they also provide useful data for mosquito rearing.
Collapse
|
36
|
Chen S, Zhao J, Joshi D, Xi Z, Norman B, Walker ED. Persistent Infection by Wolbachia wAlbB Has No Effect on Composition of the Gut Microbiota in Adult Female Anopheles stephensi. Front Microbiol 2016; 7:1485. [PMID: 27708633 PMCID: PMC5030273 DOI: 10.3389/fmicb.2016.01485] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/07/2016] [Indexed: 11/13/2022] Open
Abstract
The bacteria in the midgut of Anopheles stephensi adult females from laboratory colonies were studied by sequencing the V4 region of 16S rRNA genes, with respect to three experimental factors: stable or cured Wolbachia infection; sugar or blood diet; and age. Proteobacteria and Bacteroidetes dominated the community [>90% of operational taxonomic units (OTUs)]; most taxa were in the classes Flavobacteriia, Gammaproteobacteria, and Alphaproteobacteria, and were assigned to Elizabethkingia (46.9%), Asaia (6.4%) and Pseudomonas (6.0%), or unclassified Enterobacteriaceae (37.2%). Bacterial communities were similar between Wolbachia-cured and Wolbachia-infected mosquito lines, indicating that the gut microbiota were not dysregulated in the presence of Wolbachia. The proportion of Enterobacteriaceae was higher in mosquitoes fed a blood meal compared to those provided a sugar meal. Collectively, the bacterial community had a similar structure in older Wolbachia-infected mosquitoes 8 days after the blood meal, as in younger Wolbachia-infected mosquitoes before a blood meal, except that older mosquitoes had a higher proportion of Enterobacteriaceae and lower proportion of Elizabethkingia. Consistent presence of certain predominant bacteria (Elizabethkingia, Asaia, Pseudomonas, and Enterobacteriaceae) suggests they would be useful for paratransgenesis to control malaria infection, particularly when coupled to a Wolbachia-based intervention strategy.
Collapse
Affiliation(s)
- Shicheng Chen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing MI, USA
| | - Jiangchao Zhao
- Department of Animal Science, University of Arkansas, Fayetteville AR, USA
| | - Deepak Joshi
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing MI, USA
| | - Zhiyong Xi
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing MI, USA
| | - Beth Norman
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing MI, USA
| | - Edward D Walker
- Department of Microbiology and Molecular Genetics, Michigan State University, East LansingMI, USA; Department of Entomology, Michigan State University, East LansingMI, USA
| |
Collapse
|
37
|
Genomic epidemiology and global diversity of the emerging bacterial pathogen Elizabethkingia anophelis. Sci Rep 2016; 6:30379. [PMID: 27461509 PMCID: PMC4961963 DOI: 10.1038/srep30379] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/04/2016] [Indexed: 02/01/2023] Open
Abstract
Elizabethkingia anophelis is an emerging pathogen involved in human infections and outbreaks in distinct world regions. We investigated the phylogenetic relationships and pathogenesis-associated genomic features of two neonatal meningitis isolates isolated 5 years apart from one hospital in Central African Republic and compared them with Elizabethkingia from other regions and sources. Average nucleotide identity firmly confirmed that E. anophelis, E. meningoseptica and E. miricola represent demarcated genomic species. A core genome multilocus sequence typing scheme, broadly applicable to Elizabethkingia species, was developed and made publicly available (http://bigsdb.pasteur.fr/elizabethkingia). Phylogenetic analysis revealed distinct E. anophelis sublineages and demonstrated high genetic relatedness between the African isolates, compatible with persistence of the strain in the hospital environment. CRISPR spacer variation between the African isolates was mirrored by the presence of a large mobile genetic element. The pan-genome of E. anophelis comprised 6,880 gene families, underlining genomic heterogeneity of this species. African isolates carried unique resistance genes acquired by horizontal transfer. We demonstrated the presence of extensive variation of the capsular polysaccharide synthesis gene cluster in E. anophelis. Our results demonstrate the dynamic evolution of this emerging pathogen and the power of genomic approaches for Elizabethkingia identification, population biology and epidemiology.
Collapse
|
38
|
Mancini MV, Spaccapelo R, Damiani C, Accoti A, Tallarita M, Petraglia E, Rossi P, Cappelli A, Capone A, Peruzzi G, Valzano M, Picciolini M, Diabaté A, Facchinelli L, Ricci I, Favia G. Paratransgenesis to control malaria vectors: a semi-field pilot study. Parasit Vectors 2016; 9:140. [PMID: 26965746 PMCID: PMC4787196 DOI: 10.1186/s13071-016-1427-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/05/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria still remains a serious health burden in developing countries, causing more than 1 million deaths annually. Given the lack of an effective vaccine against its major etiological agent, Plasmodium falciparum, and the growing resistance of this parasite to the currently available drugs repertoire and of Anopheles mosquitoes to insecticides, the development of innovative control measures is an imperative to reduce malaria transmission. Paratransgenesis, the modification of symbiotic organisms to deliver anti-pathogen effector molecules, represents a novel strategy against Plasmodium development in mosquito vectors, showing the potential to reduce parasite development. However, the field application of laboratory-based evidence of paratransgenesis imposes the use of more realistic confined semi-field environments. METHODS Large cages were used to evaluate the ability of bacteria of the genus Asaia expressing green fluorescent protein (Asaia (gfp)), to diffuse in Anopheles stephensi and Anopheles gambiae target mosquito populations. Asaia (gfp) was introduced in large cages through the release of paratransgenic males or by sugar feeding stations. Recombinant bacteria transmission was directly detected by fluorescent microscopy, and further assessed by molecular analysis. RESULTS Here we show the first known trial in semi-field condition on paratransgenic anophelines. Modified bacteria were able to spread at high rate in different populations of An. stephensi and An. gambiae, dominant malaria vectors, exploring horizontal ways and successfully colonising mosquito midguts. Moreover, in An. gambiae, vertical and trans-stadial diffusion mechanisms were demonstrated. CONCLUSIONS Our results demonstrate the considerable ability of modified Asaia to colonise different populations of malaria vectors, including pecies where its association is not primary, in large environments. The data support the potential to employ transgenic Asaia as a tool for malaria control, disclosing promising perspective for its field application with suitable effector molecules.
Collapse
Affiliation(s)
| | - Roberta Spaccapelo
- Department of Experimental Medicine, Centro di Genomica Funzionale, University of Perugia, Perugia, Italy
| | - Claudia Damiani
- Scuola di Bioscienze e Medicina Veterinaria, Università di Camerino, Camerino, Italy
| | - Anastasia Accoti
- Scuola di Bioscienze e Medicina Veterinaria, Università di Camerino, Camerino, Italy
| | - Mario Tallarita
- Department of Experimental Medicine, Centro di Genomica Funzionale, University of Perugia, Perugia, Italy
| | - Elisabetta Petraglia
- Scuola di Bioscienze e Medicina Veterinaria, Università di Camerino, Camerino, Italy
| | - Paolo Rossi
- Scuola di Bioscienze e Medicina Veterinaria, Università di Camerino, Camerino, Italy
| | - Alessia Cappelli
- Scuola di Bioscienze e Medicina Veterinaria, Università di Camerino, Camerino, Italy
| | - Aida Capone
- Scuola di Bioscienze e Medicina Veterinaria, Università di Camerino, Camerino, Italy
| | - Giulia Peruzzi
- Department of Experimental Medicine, Centro di Genomica Funzionale, University of Perugia, Perugia, Italy
| | - Matteo Valzano
- Scuola di Bioscienze e Medicina Veterinaria, Università di Camerino, Camerino, Italy
| | - Matteo Picciolini
- Department of Experimental Medicine, Centro di Genomica Funzionale, University of Perugia, Perugia, Italy
| | - Abdoulaye Diabaté
- Institut de Recherche en Sciences de la Sante (IRSS), Direction Regionale de l'Ouest (DRO), BP 390, Bobo Dioulasso, Burkina Faso
| | - Luca Facchinelli
- Department of Experimental Medicine, Centro di Genomica Funzionale, University of Perugia, Perugia, Italy
| | - Irene Ricci
- Scuola di Bioscienze e Medicina Veterinaria, Università di Camerino, Camerino, Italy
| | - Guido Favia
- Scuola di Bioscienze e Medicina Veterinaria, Università di Camerino, Camerino, Italy.
| |
Collapse
|
39
|
Genome Sequence of Elizabethkingia anophelis Strain EaAs1, Isolated from the Asian Malaria Mosquito Anopheles stephensi. GENOME ANNOUNCEMENTS 2016; 4:4/2/e00084-16. [PMID: 26966196 PMCID: PMC4786652 DOI: 10.1128/genomea.00084-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We sequenced the genome of a strain of the Gram-negative bacterial species Elizabethkingia anophelis, which is an important component of the Anopheles mosquito microbiome. This genome sequence will add to the list of resources used to examine host-microbe interactions in mosquitoes.
Collapse
|
40
|
Li Y, Liu Y, Chew SC, Tay M, Salido MMS, Teo J, Lauro FM, Givskov M, Yang L. Complete Genome Sequence and Transcriptomic Analysis of the Novel Pathogen Elizabethkingia anophelis in Response to Oxidative Stress. Genome Biol Evol 2015; 7:1676-85. [PMID: 26019164 PMCID: PMC4494045 DOI: 10.1093/gbe/evv101] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Elizabethkingia anophelis is an emerging pathogen that can cause life-threatening infections in neonates, severely immunocompromised and postoperative patients. The lack of genomic information on E. anophelis hinders our understanding of its mechanisms of pathogenesis. Here, we report the first complete genome sequence of E. anophelis NUHP1 and assess its response to oxidative stress. Elizabethkingia anophelis NUHP1 has a circular genome of 4,369,828 base pairs and 4,141 predicted coding sequences. Sequence analysis indicates that E. anophelis has well-developed systems for scavenging iron and stress response. Many putative virulence factors and antibiotic resistance genes were identified, underscoring potential host–pathogen interactions and antibiotic resistance. RNA-sequencing-based transcriptome profiling indicates that expressions of genes involved in synthesis of an yersiniabactin-like iron siderophore and heme utilization are highly induced as a protective mechanism toward oxidative stress caused by hydrogen peroxide treatment. Chrome azurol sulfonate assay verified that siderophore production of E. anophelis is increased in the presence of oxidative stress. We further showed that hemoglobin facilitates the growth, hydrogen peroxide tolerance, cell attachment, and biofilm formation of E. anophelis NUHP1. Our study suggests that siderophore production and heme uptake pathways might play essential roles in stress response and virulence of the emerging pathogen E. anophelis.
Collapse
Affiliation(s)
- Yingying Li
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Yang Liu
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore
| | - Su Chuen Chew
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore Interdisciplinary Graduate School, Nanyang Technological University, Singapore
| | - Martin Tay
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore
| | | | - Jeanette Teo
- Microbiology Unit, Department of Laboratory Medicine, National University Hospital, Singapore
| | - Federico M Lauro
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Michael Givskov
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore Costerton Biofilm Center, Department of International Health, Immunology and Microbiology, University of Copenhagen, Denmark
| | - Liang Yang
- School of Biological Sciences, Nanyang Technological University, Singapore Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore
| |
Collapse
|
41
|
Correction: Insights from the genome annotation of Elizabethkingia anophelis from the malaria vector Anopheles gambiae. PLoS One 2015; 10:e0122154. [PMID: 25785730 PMCID: PMC4364717 DOI: 10.1371/journal.pone.0122154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
42
|
Draft Genome Sequences of Two Strains of Serratia spp. from the Midgut of the Malaria Mosquito Anopheles gambiae. GENOME ANNOUNCEMENTS 2015; 3:3/2/e00090-15. [PMID: 25767231 PMCID: PMC4357753 DOI: 10.1128/genomea.00090-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Here, we report the annotated draft genome sequences of two strains of Serratia spp., Ag1 and Ag2, isolated from the midgut of two different strains of Anopheles gambiae. The genomes of these two strains are almost identical.
Collapse
|
43
|
Elizabethkingia anophelis: molecular manipulation and interactions with mosquito hosts. Appl Environ Microbiol 2015; 81:2233-43. [PMID: 25595771 DOI: 10.1128/aem.03733-14] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Flavobacteria (members of the family Flavobacteriaceae) dominate the bacterial community in the Anopheles mosquito midgut. One such commensal, Elizabethkingia anophelis, is closely associated with Anopheles mosquitoes through transstadial persistence (i.e., from one life stage to the next); these and other properties favor its development for paratransgenic applications in control of malaria parasite transmission. However, the physiological requirements of E. anophelis have not been investigated, nor has its capacity to perpetuate despite digestion pressure in the gut been quantified. To this end, we first developed techniques for genetic manipulation of E. anophelis, including selectable markers, reporter systems (green fluorescent protein [GFP] and NanoLuc), and transposons that function in E. anophelis. A flavobacterial expression system based on the promoter PompA was integrated into the E. anophelis chromosome and showed strong promoter activity to drive GFP and NanoLuc reporter production. Introduced, GFP-tagged E. anophelis associated with mosquitoes at successive developmental stages and propagated in Anopheles gambiae and Anopheles stephensi but not in Aedes triseriatus mosquitoes. Feeding NanoLuc-tagged cells to A. gambiae and A. stephensi in the larval stage led to infection rates of 71% and 82%, respectively. In contrast, a very low infection rate (3%) was detected in Aedes triseriatus mosquitoes under the same conditions. Of the initial E. anophelis cells provided to larvae, 23%, 71%, and 85% were digested in A. stephensi, A. gambiae, and Aedes triseriatus, respectively, demonstrating that E. anophelis adapted to various mosquito midgut environments differently. Bacterial cell growth increased up to 3-fold when arginine was supplemented in the defined medium. Furthermore, the number of NanoLuc-tagged cells in A. stephensi significantly increased when arginine was added to a sugar diet, showing it to be an important amino acid for E. anophelis. Animal erythrocytes promoted E. anophelis growth in vivo and in vitro, indicating that this bacterium could obtain nutrients by participating in erythrocyte lysis in the mosquito midgut.
Collapse
|