1
|
Liu X, Song YJ, Chen X, Huang MY, Zhao CX, Zhou X, Zhou X. Asiaticoside Combined With Carbon Ion Implantation to Improve the Biocompatibility of Silicone Rubber and to Reduce the Risk of Capsule Contracture. Front Bioeng Biotechnol 2022; 10:810244. [PMID: 35646845 PMCID: PMC9133697 DOI: 10.3389/fbioe.2022.810244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/25/2022] [Indexed: 11/19/2022] Open
Abstract
Capsular contracture caused by silicone rubber is a critical issue in plastic surgery that urgently needs to be solved. Studies have shown that carbon ion implant in silicone rubber (carbon silicone rubber, C-SR) can significantly improve the capsular structure, but the effect of this improvement only appear 2months or later. In this study, asiaticoside combined with carbon silicone rubber was used to explore the changes in the capsule to provide a reference for the treatment of capsule contracture. Human fibroblasts (HFF-1) were used for in vitro experiments. The combined effect of asiaticoside and carbon silicone rubber on cell proliferation was determined by the CCK8 method, cell migration changes were measured by Transwell assays, cell cycle changes were measured by flow cytometry, and the expression levels of fibroblast transformation markers (vimentin and α-SMA), collagen (Col-1A1) and TGF-β/Smad signaling pathway-related proteins (TGF-β1, TβRI, TβRII and Smad2/3) were detected by immunofluorescence. In vivo experiments were carried out by subcutaneous implantation of the material in SD rats, and asiaticoside was oral administered simultaneously. WB and ELISA were used to detect changes in the expression of TGF-β/Smad signaling pathway-related proteins. TGF-β/Smad signaling pathway proteins were then detected and confirmed by HE, Masson and immunohistochemical staining. The results shown that asiaticoside combined with carbon ion implantation inhibited the viability, proliferation and migration of fibroblasts on silicone rubber. In vitro immunofluorescence showed that the secretion levels of α-SMA and Col-1A1 were significantly decreased, the transformation of fibroblasts into myofibroblasts was weakened, and the TGF-β/Smad signaling pathway was inhibited. In vivo experimental results showed that asiaticoside combined with carbon silicone rubber inhibited TGF-β1 secretion and inhibited the TGF-β/Smad signaling pathway, reducing the thickness of the capsule and collagen deposition. These results imply that carbon silicone rubber combined with asiaticoside can regulate the viability, proliferation and migration of fibroblasts by inhibiting the TGF-β/Smad signaling pathway and reduce capsule thickness and collagen deposition, which greatly reduces the incidence of capsule contracture.
Collapse
Affiliation(s)
- Xing Liu
- Department of Cosmetology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Ya-Jun Song
- Department of Urology, Xinqiao Hospital, The Army Medical University, Chongqing, China
| | - Xing Chen
- Department of Cosmetology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Meng-Ya Huang
- Department of Cosmetology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Chen-Xi Zhao
- Department of Cosmetology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Xun Zhou
- Department of Cosmetology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
- *Correspondence: Xun Zhou, ; Xin Zhou,
| | - Xin Zhou
- Department of Pathology, Bishan Hospital, The Chongqing Medical University, Chongqing, China
- *Correspondence: Xun Zhou, ; Xin Zhou,
| |
Collapse
|
2
|
Shi XH, Zhou X, Lei ZY, Tian Y, Chen Y, Zhang YM, Mao TC, Fan DL, Zhou SW. Novel silicone rubber with carboxyl grafted polyhedral oligomeric silsesquioxane (POSS-COOH) as a potential scaffold for soft tissue filling. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1999951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Xiao-hua Shi
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, The Army Medical University, Chong Qing, China
- Base for Drug Clinical Trial, Xinqiao Hospital, The Army Medical University, Chong Qing, China
| | - Xin Zhou
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, The Army Medical University, Chong Qing, China
| | - Ze-yuan Lei
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, The Army Medical University, Chong Qing, China
| | - Yuan Tian
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, The Army Medical University, Chong Qing, China
| | - Yao Chen
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, The Army Medical University, Chong Qing, China
| | - Yi-ming Zhang
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, The Army Medical University, Chong Qing, China
| | - Tong-chun Mao
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, The Army Medical University, Chong Qing, China
| | - Dong-li Fan
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, The Army Medical University, Chong Qing, China
| | - Shi-wen Zhou
- Base for Drug Clinical Trial, Xinqiao Hospital, The Army Medical University, Chong Qing, China
| |
Collapse
|
3
|
Baltatu MS, Spataru MC, Verestiuc L, Balan V, Solcan C, Sandu AV, Geanta V, Voiculescu I, Vizureanu P. Design, Synthesis, and Preliminary Evaluation for Ti-Mo-Zr-Ta-Si Alloys for Potential Implant Applications. MATERIALS 2021; 14:ma14226806. [PMID: 34832207 PMCID: PMC8621571 DOI: 10.3390/ma14226806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 10/28/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022]
Abstract
Considering the future trends of biomaterials, current studies are focused on the corrosion resistance and the mechanical properties of new materials that need to be considered in the process of strengthening alloys with additive non-toxic elements. Many kinds of titanium alloys with different biocompatible elements (Mo, Si, Zr, etc.,) have been recently developed for their similar properties with human bone. Four new different alloys were obtained and investigated regarding their microstructure, mechanical, chemical, and biological behavior (in vitro and in vivo evaluation), the alloys are as follows: Ti15Mo7Zr15Ta, Ti15Mo7Zr15Ta0.5Si, Ti15Mo7Zr15Ta0.75Si, and Ti15Mo7Zr15Ta1Si. There were changes with the addition of the silicon element such as the hardness and the modulus of elasticity increased. An MTT assay confirmed the in vitro cytocompatibility of the prepared alloys.
Collapse
Affiliation(s)
- Madalina Simona Baltatu
- Department of Technologies and Equipments for Materials Processing, Faculty of Materials Science and Engineering, Gheorghe Asachi Technical University of Iaşi, Blvd. Mangeron, No. 51, 700050 Iasi, Romania;
| | - Mihaela Claudia Spataru
- Public Health Department, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences, 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania;
| | - Liliana Verestiuc
- Biomedical Sciences Department, Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy, 9-13 Kogalniceanu Street, 700454 Iasi, Romania; (L.V.); (V.B.)
| | - Vera Balan
- Biomedical Sciences Department, Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy, 9-13 Kogalniceanu Street, 700454 Iasi, Romania; (L.V.); (V.B.)
| | - Carmen Solcan
- Preclinics Department, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences, 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania;
| | - Andrei Victor Sandu
- Department of Technologies and Equipments for Materials Processing, Faculty of Materials Science and Engineering, Gheorghe Asachi Technical University of Iaşi, Blvd. Mangeron, No. 51, 700050 Iasi, Romania;
- Romanian Inventors Forum, Str. Sf. P. Movila 3, 700089 Iasi, Romania
- Correspondence: (A.V.S.); (P.V.)
| | - Victor Geanta
- Engineering and Management of Metallic Material Processing Department, Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Spl Independentei, 060042 Bucharest, Romania;
| | - Ionelia Voiculescu
- Quality Engineering and Industrial Technologies Department, Faculty of Industrial Engineering and Robotics, University Politehnica of Bucharest, 313 Spl Independentei, 060042 Bucharest, Romania;
| | - Petrica Vizureanu
- Department of Technologies and Equipments for Materials Processing, Faculty of Materials Science and Engineering, Gheorghe Asachi Technical University of Iaşi, Blvd. Mangeron, No. 51, 700050 Iasi, Romania;
- Correspondence: (A.V.S.); (P.V.)
| |
Collapse
|
4
|
Zhou X, Zhou X, Yan R, Shi X, Du Y, Chen Y, Yu Y, Fan D, Zhang Y. Co-effects of C/Ag dual ion implantation on enhancing antibacterial ability and biocompatibility of silicone rubber. ACTA ACUST UNITED AC 2020; 15:065003. [PMID: 32503006 DOI: 10.1088/1748-605x/ab99d3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Although silicone implants are the most popular choice around the world for breast augmentation, reconstruction, and revision, due to the poor antibacterial properties and limited biocompatibility of silicone rubber (SR), one of the major complications, capsule contracture, is a lingering problem. To overcome the two main shortcomings, a dual ion implantation technique was applied to modify the surface of SR with the basic skeleton element of organic matter, carbon (C) and the broad-spectrum bactericide, silver (Ag). We present surface characterization, toxicological effects, and evaluation of the mechanical, antibacterial and biocompatible properties of C and Ag co-implanted SR (C/Ag-SRs). After ion implantation, surface roughness and tensile strength of these new materials increased. Biotoxicity was fully assessed by in vitro experiments on human fibroblasts and in vivo experiments on rats, showing that the low-Ag groups met safety standards. Both the anti-bacterial adhesion and bactericidal abilities of C/Ag-SRs were superior to those of SR, which had few antibacterial activities, especially against Staphylococcus epidermidis. With respect to biocompatibility, the adhesion of fibroblasts was promoted, while their proliferation was moderately inhibited on ion-implanted surfaces. After subcutaneous implantation in rats for 7, 30, 90 and 180 d, the capsular thickness around C/Ag-SRs was significantly lower than that around the SR. Additionally, there was no difference in the inflammatory reaction after 7 d of retention in vivo between C/Ag-SRs and SR. The results demonstrate that C/Ag-SRs are desirable shell materials for breast implants.
Collapse
Affiliation(s)
- Xuan Zhou
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, People's Republic of China. These authors contributed equally to this work
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Park C, Lee SW, Kim J, Song EH, Jung HD, Park JU, Kim HE, Kim S, Jang TS. Reduced fibrous capsule formation at nano-engineered silicone surfaces via tantalum ion implantation. Biomater Sci 2019; 7:2907-2919. [DOI: 10.1039/c9bm00427k] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nano-engineered surface of silicone implant improves the biocompatibility and suppresses the fibrous capsule formation which is the most common side effect of polymeric implants.
Collapse
Affiliation(s)
- Cheonil Park
- Department of Materials Science and Engineering
- Seoul National University
- Seoul
- Korea
| | - Si-Woo Lee
- Department of Plastic and Reconstructive Surgery
- Seoul National University College of Medicine
- Seoul
- Korea
| | - Jinyoung Kim
- Department of Materials Science and Engineering
- Seoul National University
- Seoul
- Korea
| | - Eun-Ho Song
- Department of Materials Science and Engineering
- Seoul National University
- Seoul
- Korea
| | - Hyun-Do Jung
- Research Institute of Advanced Manufacturing Technology
- Korea Institute of Industrial Technology
- Incheon
- Korea
| | - Ji-Ung Park
- Department of Plastic and Reconstructive Surgery
- Seoul National University Boramae Medical Center
- Seoul
- Korea
| | - Hyoun-Ee Kim
- Department of Materials Science and Engineering
- Seoul National University
- Seoul
- Korea
| | - Sukwha Kim
- Department of Plastic and Reconstructive Surgery
- Seoul National University College of Medicine
- Seoul
- Korea
| | - Tae-Sik Jang
- Research Institute of Advanced Manufacturing Technology
- Korea Institute of Industrial Technology
- Incheon
- Korea
| |
Collapse
|
6
|
Hussein HAM, Abdel-Raouf UM, Akula SM. Membrane-Associated Kaposi Sarcoma-Associated Herpesvirus Glycoprotein B Promotes Cell Adhesion and Inhibits Migration of Cells via Upregulating IL-1β and TNF-α. Intervirology 2018; 60:217-226. [PMID: 29597230 DOI: 10.1159/000487596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 02/12/2018] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES Kaposi sarcoma-associated herpesvirus (KSHV) glycoprotein B (gB) is expressed on the viral envelope as well as on the cytoplasmic membrane of infected cells. In the current study, we aimed to decipher the impact of membrane-associated gB on adhesion and migration of cells via modulating the expression of cytokines. METHODS A combination of polymerase chain reaction array, cell adhesion assay, and wound-healing migration assay was conducted to study the influence of the gB-induced cytokines on cell adhesion and migration. RESULTS Membrane-associated gB was demonstrated to significantly upregulate the expression of IL-1β and TNF-α. Elevated levels of these cytokines were observed in conditioned medium (CM) collected from gB-expressing cells (gB-CM) compared to CM collected from untransfected cells or cells transfected with empty vector. KSHV gB-induced IL-1β and TNF-α play a role in the ability of gB-CM to mediate cell adhesion while inhibiting migration. CONCLUSION Our results provide novel evidence that demonstrates full-length gB expressed on cell membrane to mediate adhesion and inhibit migration of cells not only by autocrine mechanism mediated by RGD-based interactions [Hussein et al.: BMC Cancer 2016; 16: 148], but also by paracrine mechanism mediated by gB-induced IL-1β and TNF-α.
Collapse
Affiliation(s)
- Hosni A M Hussein
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, North Carolina, USA
| | | | - Shaw M Akula
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
7
|
Li X, Zhou X, Chen Y, Yu S, Chen X, Xia X, Shi X, Zhang Y, Fan D. Surface changes of nanotopography by carbon ion implantation to enhance the biocompatibility of silicone rubber: an in vitro study of the optimum ion fluence and adsorbed protein. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:167. [PMID: 28916983 DOI: 10.1007/s10856-017-5987-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 09/04/2017] [Indexed: 06/07/2023]
Abstract
Lower cellular adhesion and dense fibrous capsule formation around silicone breast implants caused by lower biocompatibility is a serious clinical problem. Preliminary work has shown that ion implantation enhances cell adhesion. Whether the biocompatibility is further enhanced by higher doses of carbon ion implantation and the mechanism by which ion implantation enhances biocompatibility remain unclear. In this study, five doses of carbon ions, which gradually increase, were implanted on the surface of silicone rubber and then the surface characteristics were surveyed. Then, cell adhesion, proliferation and migration were investigated. Furthermore, the vitronectin (VN) protein was used as a model protein to investigate whether the ion implantation affected the adsorbed protein on the surface. The obtained results indicate that enhanced cytocompatibility is dose dependent when the doses of ion implantation are less than 1 × 1016 ions/cm2. However, when the doses of ion implantation are more than 1 × 1016 ions/cm2, enhanced cytocompatibility is not significant. In addition, surface physicochemical changes by ion implantation induced a conformational change of the adsorbed vitronectin protein that enhanced cytocompatibility. Together, these results suggest that the optimum value of carbon ion implantation in silicone rubber to enhance biocompatibility is 1 × 1016 ions/cm2, and ion implantation regulates conformational changes of adsorbed ECM proteins, such as VN, and mediates the expression of intracellular signals that enhance the biocompatibility of silicone rubber. The results herein provide new insights into the surface modification of implant polymer materials to enhance biocompatibility. It has potentially broad applications in the biomedical field.
Collapse
Affiliation(s)
- Xianhui Li
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
- Department of Burns and Plastic Surgery, Chengdu Military General Hospital, Chengdu, 610083, China
| | - Xin Zhou
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Yao Chen
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Shu Yu
- Department of Outpatient, Chengdu Military General Hospital, Chengdu, 610083, China
| | - Xin Chen
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Xin Xia
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Xiaohua Shi
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Yiming Zhang
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| | - Dongli Fan
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| |
Collapse
|
8
|
Lei ZY, Liu T, Li WJ, Shi XH, Fan DL. Biofunctionalization of silicone rubber with microgroove-patterned surface and carbon-ion implantation to enhance biocompatibility and reduce capsule formation. Int J Nanomedicine 2016; 11:5563-5572. [PMID: 27822035 PMCID: PMC5087779 DOI: 10.2147/ijn.s112902] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose Silicone rubber implants have been widely used to repair soft tissue defects and deformities. However, poor biocompatibility can elicit capsule formation, usually resulting in prosthesis contracture and displacement in long-term usage. To overcome this problem, this study investigated the properties of silicone rubber materials with or without a microgroove-patterned surface and with or without carbon (C)-ion implantation. Materials and methods Atomic force microscopy, X-ray photoelectron spectroscopy, and a water contact angle test were used to characterize surface morphology and physicochemical properties. Cytocompatibility was investigated by a cell adhesion experiment, immunofluorescence staining, a Cell Counting Kit-8 assay, and scanning electron microscopy in vitro. Histocompatibility was evaluated by studying the inflammatory response and fiber capsule formation that developed after subcutaneous implantation in rats for 7 days, 15 days, and 30 days in vivo. Results Parallel microgrooves were found on the surfaces of patterned silicone rubber (P-SR) and patterned C-ion-implanted silicone rubber (PC-SR). Irregular larger peaks and deeper valleys were present on the surface of silicone rubber implanted with C ions (C-SR). The silicone rubber surfaces with microgroove patterns had stable physical and chemical properties and exhibited moderate hydrophobicity. PC-SR exhibited moderately increased dermal fibroblast cell adhesion and growth, and its surface microstructure promoted orderly cell growth. Histocompatibility experiments on animals showed that both the anti-inflammatory and antifibrosis properties of PC-SR were slightly better than those of the other materials, and there was also a lower capsular contracture rate and less collagen deposition around implants made from PC-SR. Conclusion Although the surface chemical properties, dermal fibroblast cell growth, and cell adhesion were not changed by microgroove pattern modification, a more orderly cell arrangement was obtained, leading to enhanced biocompatibility and reduced capsule formation. Thus, this approach to the modification of silicone rubber, in combination with C-ion implantation, should be considered for further investigation and application.
Collapse
Affiliation(s)
- Ze-Yuan Lei
- Department of Plastic and Cosmetic Surgery, XinQiao Hospital, The Third Military Medical University, ChongQing, People's Republic of China
| | - Ting Liu
- Department of Plastic and Cosmetic Surgery, XinQiao Hospital, The Third Military Medical University, ChongQing, People's Republic of China
| | - Wei-Juan Li
- Department of Plastic and Cosmetic Surgery, XinQiao Hospital, The Third Military Medical University, ChongQing, People's Republic of China
| | - Xiao-Hua Shi
- Department of Plastic and Cosmetic Surgery, XinQiao Hospital, The Third Military Medical University, ChongQing, People's Republic of China
| | - Dong-Li Fan
- Department of Plastic and Cosmetic Surgery, XinQiao Hospital, The Third Military Medical University, ChongQing, People's Republic of China
| |
Collapse
|
9
|
Carbon Ion Implantation: A Good Method to Enhance the Biocompatibility of Silicone Rubber. Plast Reconstr Surg 2016; 137:690e-699e. [PMID: 27018697 DOI: 10.1097/prs.0000000000002022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Silicone rubber and silicone rubber-based materials have been used as medical tissue implants in the field of plastic surgery for many years, but there are still some reports of adverse reactions to long-term implants. Earlier studies have shown that ion implantation could enhance the biocompatibility of biomaterials. However, whether ion implantation has a good effect on silicone rubber is unknown. METHODS Three types of carbon ion silicone rubber were obtained by implanting three doses of carbon ions. Then, the antibacterial adhesion properties and the in vivo host responses were evaluated. The antibacterial adhesion properties were examined by plate colony counting, fluorescence staining, and scanning electron microscopic observation. The host responses were evaluated by surveying inflammation and fiber capsule formation that developed after subcutaneous implantation in Sprague-Dawley rats for 7, 30, 90, and 180 days. In addition, the possible mechanism by which ion implantation enhanced the biocompatibility of the biomaterial was investigated and discussed. RESULTS Carbon ion silicone rubber exhibits less bacterial adhesion, less collagen deposition, and thinner and weaker tissue capsules. Immunohistochemical staining results for CD4, tumor necrosis factor-α, α-smooth muscle actin, and elastin showed the possible mechanism enhancing the biocompatibility of silicone rubber. These data indicate that carbon ion silicone rubber exhibits good antibacterial adhesion properties and triggers thinner and weaker tissue capsules. In addition, high surface roughness and high zeta potential may be the main factors that induce the unique biocompatibility of carbon ion silicone rubber. CONCLUSION Ion implantation should be considered for further investigation and application, and carbon ion silicone rubber could be a better biomaterial to decrease silicone rubber-initiated complications.
Collapse
|
10
|
Mei H, Chen G, Zhu Q, Dong P, Zhao D, Ahmed Raza W. Improving properties of silicone rubber composites using macromolecular silane coupling agent (MMSCA). J Appl Polym Sci 2016. [DOI: 10.1002/app.43415] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Honggang Mei
- Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering; Shandong University; No. 27, South Shanda Rd Jinan 250100 China
| | - Guowen Chen
- Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering; Shandong University; No. 27, South Shanda Rd Jinan 250100 China
- School of Materials Science and Engineering; Shandong University; No.73, Jingshi Rd Jinan 250061 China
| | - Qingzeng Zhu
- Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering; Shandong University; No. 27, South Shanda Rd Jinan 250100 China
| | - Peng Dong
- School of Materials Science and Engineering; Shandong University; No.73, Jingshi Rd Jinan 250061 China
| | - Dannan Zhao
- School of Materials Science and Engineering; Shandong University; No.73, Jingshi Rd Jinan 250061 China
| | - Waqas Ahmed Raza
- School of Materials Science and Engineering; Shandong University; No.73, Jingshi Rd Jinan 250061 China
| |
Collapse
|
11
|
Rapamycin increases CCN2 expression of lung fibroblasts via phosphoinositide 3-kinase. J Transl Med 2015; 95:846-59. [PMID: 26192087 DOI: 10.1038/labinvest.2015.68] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 03/27/2015] [Accepted: 04/14/2015] [Indexed: 02/03/2023] Open
Abstract
Excessive production of connective tissue growth factor (CTGF, CCN2) and increased motor ability of the activated fibroblast phenotype contribute to the pathogenesis of idiopathic pulmonary fibrosis (IPF). However, molecules and signal pathways regulating CCN2 expression and migration of lung fibroblasts are still elusive. We hypothesize that rapamycin, via binding and blocking mammalian target of rapamycin (mTOR) complex (mTORC), affects CCN2 expression and migration of lung fibroblasts in vitro. Primary normal and fibrotic human lung fibroblasts were isolated from lung tissues of three patients with primary spontaneous pneumothorax and three with IPF. Cells were incubated with regular medium, or medium containing rapamycin, human recombinant transforming growth factor (TGF)-β1, or both. CCN2 and tissue inhibitor of metalloproteinase (TIMP)-1 expression in cells or supernatant was detected. Wound healing and migration assay was used to measure the migratory potential. TGF-β type I receptor (TβRI)/Smad inhibitor, SB431542 and phosphoinositide 3-kinase (PI3K) inhibitor, LY294002 were used to determine rapamycin's mechanism of action. We demonstrated that rapamycin amplified basal or TGF-β1-induced CCN2 mRNA and protein expression in normal or fibrotic fibroblasts by Smad-independent but PI3K-dependent pathway. Additionally, rapamycin also enhanced TIMP-1 expression as indicated by ELISA. However, wound healing and migrating assay showed rapamycin did not affect the mobility of fibroblasts. Collectively, this study implies a significant fibrogenic induction activity of rapamycin by activating AKT and inducing CCN2 expression in vitro and provides the possible mechanisms for the in vivo findings which previously showed no antifibrotic effect of rapamycin on lung fibrosis.
Collapse
|
12
|
Shi XH, Wang SL, Zhang YM, Wang YC, Yang Z, Zhou X, Lei ZY, Fan DL. Hydroxyapatite-coated sillicone rubber enhanced cell adhesion and it may be through the interaction of EF1β and γ-actin. PLoS One 2014; 9:e111503. [PMID: 25386892 PMCID: PMC4227678 DOI: 10.1371/journal.pone.0111503] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 10/01/2014] [Indexed: 01/09/2023] Open
Abstract
Silicone rubber (SR) is a common soft tissue filler material used in plastic surgery. However, it presents a poor surface for cellular adhesion and suffers from poor biocompatibility. In contrast, hydroxyapatite (HA), a prominent component of animal bone and teeth, can promote improved cell compatibility, but HA is an unsuitable filler material because of the brittleness in mechanism. In this study, using a simple and economical method, two sizes of HA was applied to coat on SR to counteract the poor biocompatibility of SR. Surface and mechanical properties of SR and HA/SRs confirmed that coating with HA changes the surface topology and material properties. Analysis of cell proliferation and adhesion as well as measurement of the expression levels of adhesion related molecules indicated that HA-coated SR significantly increased cell compatibility. Furthermore, mass spectrometry proved that the biocompatibility improvement may be related to elongation factor 1-beta (EF1β)/γ-actin adjusted cytoskeletal rearrangement.
Collapse
Affiliation(s)
- Xiao-hua Shi
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, the Third Military Medical University, Chongqing, 400037, People's Republic of China
| | - Shao-liang Wang
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, the Third Military Medical University, Chongqing, 400037, People's Republic of China
| | - Yi-ming Zhang
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, the Third Military Medical University, Chongqing, 400037, People's Republic of China
| | - Yi-cheng Wang
- Department of Plastic and Cosmetic Surgery, Chongqing Armed Police Corps Hospital, Chongqing, 400061, People's Republic of China
| | - Zhi Yang
- Department of War Trauma care, Hainan branch of PLA General Hospital, Sanya, Hainan, 572013, People's Republic of China
| | - Xin Zhou
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, the Third Military Medical University, Chongqing, 400037, People's Republic of China
| | - Ze-yuan Lei
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, the Third Military Medical University, Chongqing, 400037, People's Republic of China
| | - Dong-li Fan
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, the Third Military Medical University, Chongqing, 400037, People's Republic of China
- * E-mail:
| |
Collapse
|