1
|
Li X, Cao D, Sun S, Wang Y. Anticancer therapeutic effect of ginsenosides through mediating reactive oxygen species. Front Pharmacol 2023; 14:1215020. [PMID: 37564184 PMCID: PMC10411515 DOI: 10.3389/fphar.2023.1215020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
Dysregulation of reactive oxygen species (ROS) production and ROS-regulated pathways in cancer cells leads to abnormal accumulation of reactive oxygen species, displaying a double-edged role in cancer progression, either supporting transformation/proliferation and stimulating tumorigenesis or inducing cell death. Cancer cells can accommodate reactive oxygen species by regulating them at levels that allow the activation of pro-cancer signaling pathways without inducing cell death via modulation of the antioxidant defense system. Therefore, targeting reactive oxygen species is a promising approach for cancer treatment. Ginsenosides, their derivatives, and related drug carriers are well-positioned to modulate multiple signaling pathways by regulating oxidative stress-mediated cellular and molecular targets to induce apoptosis; regulate cell cycle arrest and autophagy, invasion, and metastasis; and enhance the sensitivity of drug-resistant cells to chemotherapeutic agents of different cancers depending on the type, level, and source of reactive oxygen species, and the type and stage of the cancer. Our review focuses on the pro- and anticancer effects of reactive oxygen species, and summarizes the mechanisms and recent advances in different ginsenosides that bring about anticancer effects by targeting reactive oxygen species, providing new ideas for designing further anticancer studies or conducting more preclinical and clinical studies.
Collapse
Affiliation(s)
- Xiaonan Li
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, China
| | - Donghui Cao
- Department of Clinical Research, The First Hospital of Jilin University, Changchun, China
| | - Siming Sun
- Department of Clinical Research, The First Hospital of Jilin University, Changchun, China
| | - Yuehui Wang
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Serrano E, Barrantes FJ, Valdivieso ÁG. Apolipoprotein E4 heterologous expression, purification under non-denaturing conditions, and effects on neuronal clonal cell lines. Protein Expr Purif 2023:106312. [PMID: 37236517 DOI: 10.1016/j.pep.2023.106312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
The ε4 allele of the apolipoprotein E gene (APOE4) constitutes the main genetic risk factor for late-onset Alzheimer disease (AD). High amounts of pure apolipoprotein E4 (ApoE4), in a rapid and reproducible fashion, could be of value for studying its pathophysiological roles in AD. The aim of the present work was to optimize a preparative method to obtain highly purified recombinant ApoE4 (rApoE4) with full biological activity. rApoE4 was expressed in the E. Coli BL21(D3) strain and a soluble form of the protein was purified by a combination of affinity and size-exclusion chromatography that precluded a denaturation step. The structural integrity and the biochemical activity of the purified rApoE4 were confirmed by circular dichroism and a lipid-binding assay. Several biological parameters affected by rApoE4, such as mitochondrial morphology, mitochondrial membrane potential and reactive oxygen species production were studied in CNh cells, a neuronal cell line, and neurodifferentiation and dendritogenesis were analyzed in the SH-SY5Y neuroblastoma cell line. The improved rApoE4 purification technique reported here enables the production of highly purified protein that retain the structural properties and functional activity of the native protein, as confirmed by tests in two different neuronal cell lines in culture.
Collapse
Affiliation(s)
| | | | - Ángel G Valdivieso
- Laboratory of Cellular and Molecular Biology, Faculty of Medical Sciences, Pontifical Catholic University of Argentina (UCA), National Research and Technological Council of Argentina (CONICET), Av. Alicia Moreau de Justo 1600, 1107, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Song QX, Sun Y, Deng K, Mei JY, Chermansky CJ, Damaser MS. Potential role of oxidative stress in the pathogenesis of diabetic bladder dysfunction. Nat Rev Urol 2022; 19:581-596. [PMID: 35974244 DOI: 10.1038/s41585-022-00621-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2022] [Indexed: 11/09/2022]
Abstract
Diabetes mellitus is a chronic metabolic disease, posing a considerable threat to global public health. Treating systemic comorbidities has been one of the greatest clinical challenges in the management of diabetes. Diabetic bladder dysfunction, characterized by detrusor overactivity during the early stage of the disease and detrusor underactivity during the late stage, is a common urological complication of diabetes. Oxidative stress is thought to trigger hyperglycaemia-dependent tissue damage in multiple organs; thus, a growing body of literature has suggested a possible link between functional changes in urothelium, muscle and the corresponding innervations. Improved understanding of the mechanisms of oxidative stress could lead to the development of novel therapeutics to restore the redox equilibrium and scavenge excessive free radicals to normalize bladder function in patients with diabetes.
Collapse
Affiliation(s)
- Qi-Xiang Song
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Sun
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Kangli Deng
- Department of Urology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin-Yi Mei
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | | | - Margot S Damaser
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA. .,Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA. .,Glickman Urology and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
4
|
Clauzure M, Táquez Delgado MA, Phillip JM, Revuelta MV, Cerchietti L, Medina VA. Histamine H4 Receptor Agonism Induces Antitumor Effects in Human T-Cell Lymphoma. Int J Mol Sci 2022; 23:ijms23031378. [PMID: 35163302 PMCID: PMC8836034 DOI: 10.3390/ijms23031378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/09/2021] [Accepted: 01/16/2022] [Indexed: 02/01/2023] Open
Abstract
The discovery of the human histamine H4 receptor (H4R) has contributed to our understanding of the role of histamine in numerous physiological and pathological conditions, including tumor development and progression. The lymph nodes of patients with malignant lymphomas have shown to contain high levels of histamine, however, less is known regarding the expression and function of the H4R in T-cell lymphoma (TCL). In this work we demonstrate the expression of H4R isoforms (mRNA and protein) in three human aggressive TCL (OCI-Ly12, Karpas 299, and HuT78). Histamine and specific H4R agonists (VUF8430 and JNJ28610244) significantly reduced cell viability in a dose-dependent manner (p < 0.05). The combined treatment with the H4R antagonist (JNJ7777120, 10 µM) reversed the effects of the H4R ligands. Importantly, we screened a drug repurposing library of 433 FDA-approved compounds (1 μM) in combination with histamine (10 μM) in Hut78 cells. Histamine produced a favorable antitumor effect with 18 of these compounds, including the histone deacetylase inhibitor panobinostat. Apoptosis, proliferation, and oxidative stress studies confirmed the antitumoral effects of the combination. We conclude that the H4R is expressed in TCL, and it is involved in histamine-mediated responses.
Collapse
Affiliation(s)
- Mariángeles Clauzure
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), National Scientific and Technical Research Council (CONICET), Buenos Aires 1107, Argentina; (M.C.); (M.A.T.D.)
- Faculty of Veterinary Science, National University of La Pampa (UNLPam), General Pico 6360, Argentina
| | - Mónica A. Táquez Delgado
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), National Scientific and Technical Research Council (CONICET), Buenos Aires 1107, Argentina; (M.C.); (M.A.T.D.)
| | - Jude M. Phillip
- Hematology and Oncology Division, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA; (J.M.P.); (M.V.R.); (L.C.)
| | - Maria V. Revuelta
- Hematology and Oncology Division, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA; (J.M.P.); (M.V.R.); (L.C.)
| | - Leandro Cerchietti
- Hematology and Oncology Division, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA; (J.M.P.); (M.V.R.); (L.C.)
| | - Vanina A. Medina
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), National Scientific and Technical Research Council (CONICET), Buenos Aires 1107, Argentina; (M.C.); (M.A.T.D.)
- Correspondence: ; Tel.: +54-11-4349-0200 (ext. 6091)
| |
Collapse
|
5
|
Clauzure M, Valdivieso ÁG, Dugour AV, Mori C, Massip‐Copiz MM, Aguilar MÁ, Sotomayor V, Asensio CJA, Figueroa JM, Santa‐Coloma TA. NLR family pyrin domain containing 3 (NLRP3) and caspase 1 (CASP1) modulation by intracellular Cl - concentration. Immunology 2021; 163:493-511. [PMID: 33835494 PMCID: PMC8274155 DOI: 10.1111/imm.13336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/04/2021] [Accepted: 03/31/2021] [Indexed: 12/13/2022] Open
Abstract
The impairment of the cystic fibrosis transmembrane conductance regulator (CFTR) activity induces intracellular chloride (Cl- ) accumulation. The anion Cl- , acting as a second messenger, stimulates the secretion of interleukin-1β (IL-1β), which starts an autocrine positive feedback loop. Here, we show that NLR family pyrin domain containing 3 (NLRP3) and caspase 1 (CASP1) are indirectly modulated by the intracellular Cl- concentration, showing maximal expression and activity at 75 mM Cl- , in the presence of the ionophores nigericin and tributyltin. The expression of PYD and CARD domain containing (PYCARD/ASC) remained constant from 0 to 125 mM Cl- . The CASP1 inhibitor VX-765 and the NLRP3 inflammasome inhibitor MCC950 completely blocked the Cl- -stimulated IL-1β mRNA expression and partially the IL-1β secretion. DCF fluorescence (cellular reactive oxygen species, cROS) and MitoSOX fluorescence (mitochondrial ROS, mtROS) also showed maximal ROS levels at 75 mM Cl- , a response strongly inhibited by the ROS scavenger N-acetyl-L-cysteine (NAC) or the NADPH oxidase (NOX) inhibitor GKT137831. These inhibitors also affected CASP1 and NLRP3 mRNA and protein expression. More importantly, the serum/glucocorticoid regulated kinase 1 (SGK1) inhibitor GSK650394, or its shRNAs, completely abrogated the IL-1β mRNA response to Cl- and the IL-1β secretion, interrupting the autocrine IL-1β loop. The results suggest that Cl- effects are mediated by SGK1, in which under Cl- modulation stimulates the secretion of mature IL-1β, in turn, responsible for the upregulation of ROS, CASP1, NLRP3 and IL-1β itself, through autocrine signalling.
Collapse
Affiliation(s)
- Mariángeles Clauzure
- Institute for Biomedical Research (BIOMED)Laboratory of Cellular and Molecular Biology, National Scientific and Technical Research Council (CONICET) and School of Medical SciencesPontifical Catholic University of Argentina (UCA)Buenos AiresArgentina
- Faculty of Veterinary ScienceNational University of La Pampa (UNLPam)General PicoArgentina
| | - Ángel G. Valdivieso
- Institute for Biomedical Research (BIOMED)Laboratory of Cellular and Molecular Biology, National Scientific and Technical Research Council (CONICET) and School of Medical SciencesPontifical Catholic University of Argentina (UCA)Buenos AiresArgentina
| | | | - Consuelo Mori
- Institute for Biomedical Research (BIOMED)Laboratory of Cellular and Molecular Biology, National Scientific and Technical Research Council (CONICET) and School of Medical SciencesPontifical Catholic University of Argentina (UCA)Buenos AiresArgentina
| | - María M. Massip‐Copiz
- Institute for Biomedical Research (BIOMED)Laboratory of Cellular and Molecular Biology, National Scientific and Technical Research Council (CONICET) and School of Medical SciencesPontifical Catholic University of Argentina (UCA)Buenos AiresArgentina
| | - María Á. Aguilar
- Institute for Biomedical Research (BIOMED)Laboratory of Cellular and Molecular Biology, National Scientific and Technical Research Council (CONICET) and School of Medical SciencesPontifical Catholic University of Argentina (UCA)Buenos AiresArgentina
| | - Verónica Sotomayor
- Institute for Biomedical Research (BIOMED)Laboratory of Cellular and Molecular Biology, National Scientific and Technical Research Council (CONICET) and School of Medical SciencesPontifical Catholic University of Argentina (UCA)Buenos AiresArgentina
| | - Cristian J. A. Asensio
- Institute for Biomedical Research (BIOMED)Laboratory of Cellular and Molecular Biology, National Scientific and Technical Research Council (CONICET) and School of Medical SciencesPontifical Catholic University of Argentina (UCA)Buenos AiresArgentina
| | | | - Tomás A. Santa‐Coloma
- Institute for Biomedical Research (BIOMED)Laboratory of Cellular and Molecular Biology, National Scientific and Technical Research Council (CONICET) and School of Medical SciencesPontifical Catholic University of Argentina (UCA)Buenos AiresArgentina
| |
Collapse
|
6
|
Cho DY, Zhang S, Lazrak A, Skinner D, Thompson HM, Grayson J, Guroji P, Aggarwal S, Bebok Z, Rowe SM, Matalon S, Sorscher EJ, Woodworth BA. LPS decreases CFTR open probability and mucociliary transport through generation of reactive oxygen species. Redox Biol 2021; 43:101998. [PMID: 33971543 PMCID: PMC8129928 DOI: 10.1016/j.redox.2021.101998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/26/2022] Open
Abstract
Lipopolysaccharide (LPS) serves as the interface between gram-negative bacteria (GNB) and the innate immune response in respiratory epithelial cells (REC). Herein, we describe a novel biological role of LPS that permits GNB to persist in the respiratory tract through inducing CFTR and mucociliary dysfunction. LPS reduced cystic fibrosis transmembrane conductance regulater (CFTR)-mediated short-circuit current in mammalian REC in Ussing chambers and nearly abrogated CFTR single channel activity (defined as forskolin-activated Cl- currents) in patch clamp studies, effects of which were blocked with toll-like receptor (TLR)-4 inhibitor. Unitary conductance and single-channel amplitude of CFTR were unaffected, but open probability and number of active channels were markedly decreased. LPS increased cytoplasmic and mitochondrial reactive oxygen species resulting in CFTR carbonylation. All effects of exposure were eliminated when reduced glutathione was added in the medium along with LPS. Functional microanatomy parameters, including mucociliary transport, in human sinonasal epithelial cells in vitro were also decreased, but restored with co-incubation with glutathione or TLR-4 inhibitor. In vivo measurements, following application of LPS in the nasal cavities showed significant decreases in transepithelial Cl- secretion as measured by nasal potential difference (NPD) – an effect that was nullified with glutathione and TLR-4 inhibitor. These data provide definitive evidence that LPS-generated reactive intermediates downregulate CFTR function in vitro and in vivo which results in cystic fibrosis-type disease. Findings have implications for therapeutic approaches intent on stimulating Cl- secretion and/or reducing oxidative stress to decrease the sequelae of GNB airway colonization and infection.
Collapse
Affiliation(s)
- Do Yeon Cho
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, AL, USA; Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA; Division of Otolaryngology, Department of Surgery, Veterans Affairs, Birmingham, AL, USA
| | - Shaoyan Zhang
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, AL, USA; Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ahmed Lazrak
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Daniel Skinner
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, AL, USA; Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Harrison M Thompson
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jessica Grayson
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Purushotham Guroji
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Saurabh Aggarwal
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zsuzsanna Bebok
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven M Rowe
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sadis Matalon
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eric J Sorscher
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Bradford A Woodworth
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, AL, USA; Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
7
|
Slezak J, Kura B, LeBaron TW, Singal PK, Buday J, Barancik M. Oxidative Stress and Pathways of Molecular Hydrogen Effects in Medicine. Curr Pharm Des 2021; 27:610-625. [PMID: 32954996 DOI: 10.2174/1381612826666200821114016] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/02/2020] [Indexed: 11/22/2022]
Abstract
There are many situations of excessive production of reactive oxygen species (ROS) such as radiation, ischemia/reperfusion (I/R), and inflammation. ROS contribute to and arises from numerous cellular pathologies, diseases, and aging. ROS can cause direct deleterious effects by damaging proteins, lipids, and nucleic acids as well as exert detrimental effects on several cell signaling pathways. However, ROS are important in many cellular functions. The injurious effect of excessive ROS can hypothetically be mitigated by exogenous antioxidants, but clinically this intervention is often not favorable. In contrast, molecular hydrogen provides a variety of advantages for mitigating oxidative stress due to its unique physical and chemical properties. H2 may be superior to conventional antioxidants, since it can selectively reduce ●OH radicals while preserving important ROS that are otherwise used for normal cellular signaling. Additionally, H2 exerts many biological effects, including antioxidation, anti-inflammation, anti-apoptosis, and anti-shock. H2 accomplishes these effects by indirectly regulating signal transduction and gene expression, each of which involves multiple signaling pathways and crosstalk. The Keap1-Nrf2-ARE signaling pathway, which can be activated by H2, plays a critical role in regulating cellular redox balance, metabolism, and inducing adaptive responses against cellular stress. H2 also influences the crosstalk among the regulatory mechanisms of autophagy and apoptosis, which involve MAPKs, p53, Nrf2, NF-κB, p38 MAPK, mTOR, etc. The pleiotropic effects of molecular hydrogen on various proteins, molecules and signaling pathways can at least partly explain its almost universal pluripotent therapeutic potential.
Collapse
Affiliation(s)
- Jan Slezak
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Branislav Kura
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Tyler W LeBaron
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Pawan K Singal
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Jozef Buday
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, 121 08 Prague 2, Czech Republic
| | - Miroslav Barancik
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| |
Collapse
|
8
|
García R, Falduti C, Clauzure M, Jara R, Massip-Copiz MM, de Los Ángeles Aguilar M, Santa-Coloma TA, Valdivieso ÁG. CFTR chloride channel activity modulates the mitochondrial morphology in cultured epithelial cells. Int J Biochem Cell Biol 2021; 135:105976. [PMID: 33845203 DOI: 10.1016/j.biocel.2021.105976] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 01/10/2023]
Abstract
The impairment of the CFTR channel activity, a cAMP-activated chloride (Cl-) channel responsible for cystic fibrosis (CF), has been associated with a variety of mitochondrial alterations such as modified gene expression, impairment in oxidative phosphorylation, increased reactive oxygen species (ROS), and a disbalance in calcium homeostasis. The mechanisms by which these processes occur in CF are not fully understood. Previously, we demonstrated a reduced MTND4 expression and a failure in the mitochondrial complex I (mCx-I) activity in CF cells. Here we hypothesized that the activity of CFTR might modulate the mitochondrial fission/fusion balance, explaining the decreased mCx-I. The mitochondrial morphology and the levels of mitochondrial dynamic proteins MFN1 and DRP1 were analysed in IB3-1 CF cells, and S9 (IB3-1 expressing wt-CFTR), and C38 (IB3-1 expressing a truncated functional CFTR) cells. The mitochondrial morphology of IB3-1 cells compared to S9 and C38 cells showed that the impaired CFTR activity induced a fragmented mitochondrial network with increased rounded mitochondria and shorter branches. Similar results were obtained by using the CFTR pharmacological inhibitors CFTR(inh)-172 and GlyH101 on C38 cells. These morphological changes were accompanied by modifications in the levels of the mitochondrial dynamic proteins MFN1, DRP1, and p(616)-DRP1. IB3-1 CF cells treated with Mdivi-1, an inhibitor of mitochondrial fission, restored the mCx-I activity to values similar to those seen in S9 and C38 cells. These results suggest that the mitochondrial fission/fusion balance is regulated by the CFTR activity and might be a potential target to treat the impaired mCx-I activity in CF.
Collapse
Affiliation(s)
- Rocío García
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), the National Scientific and Technical Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Camila Falduti
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), the National Scientific and Technical Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Mariángeles Clauzure
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), the National Scientific and Technical Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Raquel Jara
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), the National Scientific and Technical Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - María M Massip-Copiz
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), the National Scientific and Technical Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - María de Los Ángeles Aguilar
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), the National Scientific and Technical Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Tomás A Santa-Coloma
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), the National Scientific and Technical Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Ángel G Valdivieso
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), the National Scientific and Technical Research Council of Argentina (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
9
|
Meftahi GH, Bahari Z, Jangravi Z, Iman M. A vicious circle between oxidative stress and cytokine storm in acute respiratory distress syndrome pathogenesis at COVID-19 infection. UKRAINIAN BIOCHEMICAL JOURNAL 2021. [DOI: 10.15407/ubj93.01.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In early December 2019, the pandemic of coronavirus disease 2019 (COVID-19) began in Wuhan City, Hubei Province, China. Since then, it has propagated rapidly and turned into a major global crisis due to the high virus spreading. Acute respiratory distress syndrome (ARDS) is considered as a defining cause of the death cases. Cytokine storm and oxidative stress are the main players of ARDS development during respiratory virus infections. In this review, we discussed molecular mechanisms of a fatal vicious circle between oxidative stress and cytokine storm during COVID-19 infection. We also described how aging can inflame the vicious circle. Keywords: acute respiratory distress syndrome (ARDS), COVID-19, cytokine storm, oxidative stress
Collapse
|
10
|
Massip-Copiz MM, Valdivieso ÁG, Clauzure M, Mori C, Asensio CJA, Aguilar MÁ, Santa-Coloma TA. Epidermal growth factor receptor activity upregulates lactate dehydrogenase A expression, lactate dehydrogenase activity, and lactate secretion in cultured IB3-1 cystic fibrosis lung epithelial cells. Biochem Cell Biol 2021; 99:476-487. [PMID: 33481676 DOI: 10.1139/bcb-2020-0522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. It has been postulated that reduced HCO3- transport through CFTR may lead to a decreased airway surface liquid pH. In contrast, others have reported no changes in the extracellular pH (pHe). We have recently reported that in carcinoma Caco-2/pRS26 cells (transfected with short hairpin RNA for CFTR) or CF lung epithelial IB3-1 cells, the mutation in CFTR decreased mitochondrial complex I activity and increased lactic acid production, owing to an autocrine IL-1β loop. The secreted lactate accounted for the reduced pHe, because oxamate fully restored the pHe. These effects were attributed to the IL-1β autocrine loop and the downstream signaling kinases c-Src and JNK. Here we show that the pHe of IB3-1 cells can be restored to normal values (∼7.4) by incubation with the epidermal growth factor receptor (EGFR, HER1, ErbB1) inhibitors AG1478 and PD168393. PD168393 fully restored the pHe values of IB3-1 cells, suggesting that the reduced pHe is mainly due to increased EGFR activity and lactate. Also, in IB3-1 cells, lactate dehydrogenase A mRNA, protein expression, and activity are downregulated when EGFR is inhibited. Thus, a constitutive EGFR activation seems to be responsible for the reduced pHe in IB3-1 cells.
Collapse
Affiliation(s)
- María Macarena Massip-Copiz
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina.,Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina
| | - Ángel G Valdivieso
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina.,Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina
| | - Mariángeles Clauzure
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina.,Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina
| | - Consuelo Mori
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina.,Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina
| | - Cristian J A Asensio
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina.,Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina
| | - María Á Aguilar
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina.,Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina
| | - Tomás A Santa-Coloma
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina.,Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina, and the Pontifical Catholic University of Argentina, Buenos Aires, Argentina
| |
Collapse
|
11
|
Hamilton K, Krause K, Badr A, Daily K, Estfanous S, Eltobgy M, Khweek AA, Anne MNK, Carafice C, Baetzhold D, Tonniges JR, Zhang X, Gavrilin MA, Parinandi NL, Amer AO. Defective immunometabolism pathways in cystic fibrosis macrophages. J Cyst Fibros 2020; 20:664-672. [PMID: 33208300 DOI: 10.1016/j.jcf.2020.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Mitochondria play a key role in immune defense pathways, particularly for macrophages. We and others have previously demonstrated that cystic fibrosis (CF) macrophages exhibit weak autophagy activity and exacerbated inflammatory responses. Previous studies have revealed that mitochondria are defective in CF epithelial cells, but to date, the connection between defective mitochondrial function and CF macrophage immune dysregulation has not been fully elucidated. Here, we present a characterization of mitochondrial dysfunction in CF macrophages. METHODS Mitochondrial function in wild-type (WT) and CF F508del/F508del murine macrophages was measured using the Seahorse Extracellular Flux analyzer. Mitochondrial morphology was investigated using transmission electron and confocal microscopy. Mitochondrial membrane potential (MMP) as well as mitochondrial reactive oxygen species (mROS) were measured using TMRM and MitoSOX Red fluorescent dyes, respectively. All assays were performed at baseline and following infection by Burkholderia cenocepacia, a multi-drug resistant bacterium that causes detrimental infections in CF patients. RESULTS We have identified impaired oxygen consumption in CF macrophages without and with B. cenocepacia infection. We also observed increased mitochondrial fragmentation in CF macrophages following infection. Lastly, we observed increased MMP and impaired mROS production in CF macrophages following infection with B. cenocepacia. CONCLUSIONS The mitochondrial defects identified are key components of the macrophage response to infection. Their presence suggests that mitochondrial dysfunction contributes to impaired bacterial killing in CF macrophages. Our current study will enhance our understanding of the pathobiology of CF and lead to the identification of novel mitochondrial therapeutic targets for CF.
Collapse
Affiliation(s)
- Kaitlin Hamilton
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Kathrin Krause
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Asmaa Badr
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Kylene Daily
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Shady Estfanous
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Mostafa Eltobgy
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Arwa Abu Khweek
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Department of Biology and Biochemistry, Birzeit University, Birzeit, West Bank, Palestine
| | - Midhun N K Anne
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Cierra Carafice
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel Baetzhold
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Jeffrey R Tonniges
- Campus Microscopy and Imaging Facility, The Ohio State University, Columbus, OH 43210, USA
| | - Xiaoli Zhang
- Center for Biostatistics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Mikhail A Gavrilin
- Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Narasimham L Parinandi
- Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Amal O Amer
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
12
|
Yu W, Wang X, Zhao J, Liu R, Liu J, Wang Z, Peng J, Wu H, Zhang X, Long Z, Kong D, Li W, Hai C. Stat2-Drp1 mediated mitochondrial mass increase is necessary for pro-inflammatory differentiation of macrophages. Redox Biol 2020; 37:101761. [PMID: 33080440 PMCID: PMC7575803 DOI: 10.1016/j.redox.2020.101761] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/14/2020] [Accepted: 10/11/2020] [Indexed: 12/21/2022] Open
Abstract
Macrophage recruitment and pro-inflammatory differentiation are hallmarks of various diseases, including infection and sepsis. Although studies suggest that mitochondria may regulate macrophage immune responses, it remains unclear whether mitochondrial mass affects macrophage pro-inflammatory differentiation. Here, we found that lipopolysaccharide (LPS)-activated macrophages possess higher mitochondrial mass than resting cells. Therefore, this study aimed to explore the functional role and molecular mechanisms of increased mitochondrial mass in pro-inflammatory differentiated macrophages. Results show that an increase in the mitochondrial mass of macrophages positively correlates with inflammatory cytokine generation in response to LPS. RNA-seq analysis revealed that LPS promotes signal transducers and activators of transcription 2 (Stat2) and dynamin-related protein 1 (Drp1) expression, which are enriched in positive mitochondrial fission regulation. Meanwhile, knockdown or pharmacological inhibition of Drp1 blunts LPS-induced mitochondrial mass increase and pro-inflammatory differentiation. Moreover, Stat2 boosts Drp1 phosphorylation at serine 616, required for Drp1-mediated mitochondrial fission. LPS also causes Stat2-and Drp1-dependent biogenesis, which contributes to the generation of additional mitochondria. However, these mitochondria are profoundly remodeled, displaying fragmented morphology, loose cristae, reduced Δψm, and metabolic programming. Furthermore, these remodeled mitochondria shift their function from ATP synthesis to reactive oxygen species (ROS) production, which drives NFκB-dependent inflammatory cytokine transcription. Interestingly, an increase in mitochondrial mass with constitutively active phosphomimetic mutant of Drp1 (Drp1S616E) boosted pro-inflammatory response in macrophages without LPS stimulation. In vivo, we also demonstrated that Mdivi-1 administration inhibits LPS-induced macrophage pro-inflammatory differentiation. Importantly, we observed Stat2 phosphorylation and Drp1-dependent mitochondrial mass increase in macrophages isolated from LPS-challenged mice. In conclusion, we comprehensively demonstrate that a Stat2-Drp1 dependent mitochondrial mass increase is necessary for pro-inflammatory differentiation of macrophages. Therefore, targeting the Stat2-Drp1 axis may provide novel therapeutic approaches for treating infection and inflammatory diseases.
Collapse
Affiliation(s)
- Weihua Yu
- Department of Toxicology, Shanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Xin Wang
- Department of Toxicology, Shanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Jiuzhou Zhao
- Student Brigade of Basic Medicine School, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Rui Liu
- Department of Toxicology, Shanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Jiangzheng Liu
- Department of Toxicology, Shanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Zhao Wang
- Department of Toxicology, Shanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Jie Peng
- Department of Toxicology, Shanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Hao Wu
- Department of Toxicology, Shanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Xiaodi Zhang
- Department of Toxicology, Shanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Zi Long
- Department of Toxicology, Shanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Deqin Kong
- Department of Toxicology, Shanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Wenli Li
- Department of Toxicology, Shanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, PR China.
| | - Chunxu Hai
- Department of Toxicology, Shanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, PR China.
| |
Collapse
|
13
|
Mori C, Valdivieso ÁG, Clauzure M, Massip-Copiz MM, Aguilar MÁ, Cafferata EGA, Santa Coloma TA. Identification and characterization of human PEIG-1/GPRC5A as a 12-O-tetradecanoyl phorbol-13-acetate (TPA) and PKC-induced gene. Arch Biochem Biophys 2020; 687:108375. [PMID: 32339486 DOI: 10.1016/j.abb.2020.108375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/01/2020] [Accepted: 04/15/2020] [Indexed: 11/28/2022]
Abstract
Homo sapiens orphan G protein-coupling receptor PEIG-1 was first cloned and characterized by applying differential display to T84 colonic carcinoma cells incubated in the presence of phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) (GenBank AF506289.1). Later, Lotan's laboratory found the same gene product in response to retinoic acid analogues, naming it with the symbol RAIG1. Now the official HGNC symbol is GPRC5A. Here, we report the extension of its original cDNA fragment towards the 5' and 3' end. In addition, we show that TPA (100 ng/ml, 162 nM) strongly stimulated GPRC5A mRNA in T84 colonic carcinoma cells, with maximal expression at 4 h and 100 ng/ml (162 nM). Western blots showed several bands between 35 and 50 kDa, responding to TPA stimulation. Confocal microscopy confirmed its TPA upregulation and the location in the plasma membrane. The PKC inhibitor Gö 6983 (10 μM), and the Ca2+ chelator BAPTA-AM (150 μM), strongly inhibited its TPA induced upregulation. The PKA inhibitor H-89 (10 μM), and the MEK1/2 inhibitor U0126 (10 μM), also produced a significant reduction in the TPA response (~50%). The SGK1 inhibitor GSK650394 stimulated GPRC5A basal levels at low doses and inhibit its TPA-induced expression at concentrations ≥10 μM. The IL-1β autocrine loop and downstream signalling did not affect its expression. In conclusion, RAIG1/RAI3/GPRC5A corresponds to the originally reported PEIG-1/TIG1; the inhibition observed in the presence of Gö 6983, BAPTA and U0126, suggests that its TPA-induced upregulation is mediated through a PKC/Ca2+ →MEK1/2 signalling axis. PKA and SGK1 kinases are also involved in its TPA-induced upregulation.
Collapse
Affiliation(s)
- Consuelo Mori
- Institute for Biomedical Research (BIOMED), Laboratory of Cellular and Molecular Biology, National Scientific and Technical Research Council (CONICET) and School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), Buenos Aires, Argentina
| | - Ángel G Valdivieso
- Institute for Biomedical Research (BIOMED), Laboratory of Cellular and Molecular Biology, National Scientific and Technical Research Council (CONICET) and School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), Buenos Aires, Argentina
| | - Mariángeles Clauzure
- Institute for Biomedical Research (BIOMED), Laboratory of Cellular and Molecular Biology, National Scientific and Technical Research Council (CONICET) and School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), Buenos Aires, Argentina
| | - María M Massip-Copiz
- Institute for Biomedical Research (BIOMED), Laboratory of Cellular and Molecular Biology, National Scientific and Technical Research Council (CONICET) and School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), Buenos Aires, Argentina
| | - María Á Aguilar
- Institute for Biomedical Research (BIOMED), Laboratory of Cellular and Molecular Biology, National Scientific and Technical Research Council (CONICET) and School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), Buenos Aires, Argentina
| | - Eduardo G A Cafferata
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), National Scientific and Technical Research Council of Argentina (CONICET), Fundación Instituto Leloir, Argentina
| | - Tomás A Santa Coloma
- Institute for Biomedical Research (BIOMED), Laboratory of Cellular and Molecular Biology, National Scientific and Technical Research Council (CONICET) and School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), Buenos Aires, Argentina.
| |
Collapse
|
14
|
Huang W, Tan M, Wang Y, Liu L, Pan Y, Li J, Ouyang M, Long C, Qu X, Liu H, Liu C, Wang J, Deng L, Xiang Y, Qin X. Increased intracellular Cl - concentration improves airway epithelial migration by activating the RhoA/ROCK Pathway. Theranostics 2020; 10:8528-8540. [PMID: 32754261 PMCID: PMC7392015 DOI: 10.7150/thno.46002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/24/2020] [Indexed: 12/19/2022] Open
Abstract
In the airway, Cl- is the most abundant anion and is critically involved in transepithelial transport. The correlation of the abnormal expression and activation of chloride channels (CLCs), such as cystic fibrosis transmembrane conductance regulators (CFTRs), anoctamin-1, and CLC-2, with cell migration capability suggests a relationship between defective Cl- transport and epithelial wound repair. However, whether a correlation exists between intracellular Cl- and airway wound repair capability has not been explored thus far, and the underlying mechanisms involved in this relationship are not fully defined. Methods: In this work, the alteration of intracellular chloride concentration ([Cl-]i) was measured by using a chloride-sensitive fluorescent probe (N-[ethoxycarbonylmethyl]-6-methoxyquinolium bromide). Results: We found that clamping with high [Cl-]i and 1 h of treatment with the CLC inhibitor CFTR blocker CFTRinh-172 and chloride intracellular channel inhibitor IAA94 increased intracellular Cl- concentration ([Cl-]i) in airway epithelial cells. This effect improved epithelial cell migration. In addition, increased [Cl-]i in cells promoted F-actin reorganization, decreased cell stiffness, and improved RhoA activation and LIMK1/2 phosphorylation. Treatment with the ROCK inhibitor of Y-27632 and ROCK1 siRNA significantly attenuated the effects of increased [Cl-]i on LIMK1/2 activation and cell migration. In addition, intracellular Ca2+ concentration was unaffected by [Cl-]i clamping buffers and CFTRinh-172 and IAA94. Conclusion: Taken together, these results suggested that Cl- accumulation in airway epithelial cells could activate the RhoA/ROCK/LIMK cascade to induce F-actin reorganization, down-regulate cell stiffness, and improve epithelial migration.
Collapse
Affiliation(s)
- Wenjie Huang
- School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
- Affiliated Liutie Central Hospital of Guangxi medical university, Liuzhou, Guangxi 545007, China
| | - Meiling Tan
- School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Yue Wang
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou, Jiangsu 213164, China
- School of Nursing, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Lei Liu
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou, Jiangsu 213164, China
| | - Yan Pan
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou, Jiangsu 213164, China
| | - Jingjing Li
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou, Jiangsu 213164, China
| | - Mingxing Ouyang
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou, Jiangsu 213164, China
| | - Chunjiao Long
- School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Xiangping Qu
- School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Huijun Liu
- School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Chi Liu
- School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Jia Wang
- School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Linhong Deng
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou, Jiangsu 213164, China
| | - Yang Xiang
- School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Xiaoqun Qin
- School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| |
Collapse
|
15
|
Xie W, Huang X, Chen R, Chen R, Li T, Wu W, Huang Z. Esomeprazole alleviates the damage to stress ulcer in rats through not only its antisecretory effect but its antioxidant effect by inactivating the p38 MAPK and NF-κB signaling pathways. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:2969-2984. [PMID: 31686780 PMCID: PMC6709796 DOI: 10.2147/dddt.s193641] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 05/16/2019] [Indexed: 12/14/2022]
Abstract
Background Stress ulcer is a severe complication in critically ill patients and causes a high mortality. The proton pump inhibitor esomeprazole is widely applied in the treatment of stress ulcers because of its powerful acid suppression ability. However, the mechanism of stress ulcer and the precise gastroprotective effect of esomeprazole in stress ulcer remain unclear. Purpose In the present study, the rats with water-immersed and restraint (WIR)-induced stress ulcer were used to further elucidate the anti-ulcerogenic capacity of esomeprazole in stress ulcer in addition to its anti-acid secreting ability. Methods and results The rats were randomly divided into 5 groups: control group (NS), water-immersed and restraint group (WIR), high-dose application of esomeprazole plus stress ulcer-induced group (HE+WIR), low-dose application of esomeprazole plus stress ulcer-induced group (LE+WIR), and high-dose application of esomeprazole without stress ulcer-induced group (HE). Our study showed that the pretreatment of esomeprazole alleviated gastric tissue damage in both macroscopic and histopathological manifestations. Pretreatment of esomeprazole elevated the decline in PEG2 level affected by WIR; and it inhibited the secretion of gastric acid, gastrin and pepsin. Moreover, esomeprazole exerted its antioxidant effects by reducing malondialdehyde levels, enhancing the expressions of antioxidant factors like glutathione and superoxide dismutase (SOD) and reducing the compensatory transcriptional elevation of SOD1 gene. Esomeprazole also reduced the levels of MPO (myeloperoxidase), tumor necrosis factor (TNF)-α and interleukin (IL)-1β according to its anti-inflammatory effects. We further explored the possible mechanism of esomeprazole pretreatment on stress ulcer and demonstrated that esomeprazole attenuated the high phosphorylation levels of nuclear factor kappa B (NF-κB) p65 and p38 MAPK, and decreased the NF-κB p65 nuclear translocation induced by WIR related stress ulcer. Conclusion Our study provides some evidence that the esomeprazole pretreatment exerts gastroprotective effects in WIR-induced stress ulcer through not only its antisecretory effect but also its antioxidant effect by inactivating the p38 MAPK and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Wei Xie
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xielin Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Renpin Chen
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Ruru Chen
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Tang Li
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Wei Wu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Zhiming Huang
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
16
|
Valdivieso ÁG, Santa‐Coloma TA. The chloride anion as a signalling effector. Biol Rev Camb Philos Soc 2019; 94:1839-1856. [DOI: 10.1111/brv.12536] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 05/20/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Ángel G. Valdivieso
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical SciencesPontifical Catholic University of Argentina Buenos Aires 1107 Argentina
- The National Scientific and Technical Research Council of Argentina (CONICET) Buenos Aires 1107 Argentina
| | - Tomás A. Santa‐Coloma
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical SciencesPontifical Catholic University of Argentina Buenos Aires 1107 Argentina
- The National Scientific and Technical Research Council of Argentina (CONICET) Buenos Aires 1107 Argentina
| |
Collapse
|
17
|
Antognelli C, Moretti S, Frosini R, Puxeddu E, Sidoni A, Talesa VN. Methylglyoxal Acts as a Tumor-Promoting Factor in Anaplastic Thyroid Cancer. Cells 2019; 8:cells8060547. [PMID: 31174324 PMCID: PMC6627963 DOI: 10.3390/cells8060547] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023] Open
Abstract
Methylglyoxal (MG) is a potent inducer of advanced glycation end products (AGEs). MG, long considered a highly cytotoxic molecule with potential anticancer value, is now being re-evaluated to a protumorigenic agent in some malignancies. Anaplastic thyroid cancer (ATC) is an extremely aggressive and highly lethal cancer for which conventional therapies have proved ineffective. Successful therapeutic intervention in ATC is undermined by our poor understanding of its molecular etiology. In the attempt to understand the role of MG in ATC aggressiveness, we used immunohistochemistry to examine the level of MG protein adducts in ATC and slow-growing papillary thyroid cancer (PTC). We detected a high level of MG adducts in ATC compared to PTC ones, suggesting a protumor role for MG-mediated dicarbonyl stress in ATC. Accordingly, MG adduct accumulation in ATC cells in vitro was associated with a marked mesenchymal phenotype and increased migration/invasion, which were both reversed by aminoguanidine (AG)—a scavenger of MG—and resveratrol—an activator of Glyoxalase 1 (Glo1), the key metabolizing enzyme of MG. Our study represents the first demonstration that MG, via AGEs, acts as a tumor-promoting factor in ATC and suggests that MG scavengers and/or Glo1 activators merit investigations as potential therapeutic strategies for this malignancy.
Collapse
Affiliation(s)
- Cinzia Antognelli
- Department of Experimental Medicine, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| | - Sonia Moretti
- Department of Medicine, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| | - Roberta Frosini
- Department of Experimental Medicine, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| | - Efisio Puxeddu
- Department of Medicine, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| | - Angelo Sidoni
- Department of Experimental Medicine, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| | - Vincenzo N Talesa
- Department of Experimental Medicine, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| |
Collapse
|
18
|
Valdivieso ÁG, Clauzure M, Massip-Copiz MM, Cancio CE, Asensio CJA, Mori C, Santa-Coloma TA. Impairment of CFTR activity in cultured epithelial cells upregulates the expression and activity of LDH resulting in lactic acid hypersecretion. Cell Mol Life Sci 2019; 76:1579-1593. [PMID: 30599064 PMCID: PMC11105536 DOI: 10.1007/s00018-018-3001-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/23/2018] [Accepted: 12/17/2018] [Indexed: 12/31/2022]
Abstract
Mutations in the gene encoding the CFTR chloride channel produce cystic fibrosis (CF). CF patients are more susceptible to bacterial infections in lungs. The most accepted hypothesis sustains that a reduction in the airway surface liquid (ASL) volume favor infections. Alternatively, it was postulated that a reduced HCO3- transport through CFTR leads to a decreased ASL pH, favoring bacterial colonization. The issue is controversial, since recent data from cultured primary cells and CF children showed normal pH values in the ASL. We have reported previously a decreased mitochondrial Complex I (mCx-I) activity in cultured cells with impaired CFTR activity. Thus, we hypothesized that the reduced mCx-I activity could lead to increased lactic acid production (Warburg-like effect) and reduced extracellular pH (pHe). In agreement with this idea, we report here that cells with impaired CFTR function (intestinal Caco-2/pRS26, transfected with an shRNA-CFTR, and lung IB3-1 CF cells) have a decreased pHe. These cells showed increased lactate dehydrogenase (LDH) activity, LDH-A expression, and lactate secretion. Similar effects were reproduced in control cells stimulated with recombinant IL-1β. The c-Src and JNK inhibitors PP2 and SP600125 were able to increase the pHe, although the differences between control and CFTR-impaired cells were not fully compensated. Noteworthy, the LDH inhibitor oxamate completely restored the pHe of the intestinal Caco-2/pRS26 cells and have a significant effect in lung IB3-1 cells; therefore, an increased lactic acid secretion seems to be the key factor that determine a reduced pHe in these epithelial cells.
Collapse
Affiliation(s)
- Ángel G Valdivieso
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and The National Scientific and Technical Research Council of Argentina (CONICET), Alicia Moreau de Justo 1600, 1107, Buenos Aires, Argentina.
| | - Mariángeles Clauzure
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and The National Scientific and Technical Research Council of Argentina (CONICET), Alicia Moreau de Justo 1600, 1107, Buenos Aires, Argentina
| | - María M Massip-Copiz
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and The National Scientific and Technical Research Council of Argentina (CONICET), Alicia Moreau de Justo 1600, 1107, Buenos Aires, Argentina
| | - Carla E Cancio
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and The National Scientific and Technical Research Council of Argentina (CONICET), Alicia Moreau de Justo 1600, 1107, Buenos Aires, Argentina
| | - Cristian J A Asensio
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and The National Scientific and Technical Research Council of Argentina (CONICET), Alicia Moreau de Justo 1600, 1107, Buenos Aires, Argentina
| | - Consuelo Mori
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and The National Scientific and Technical Research Council of Argentina (CONICET), Alicia Moreau de Justo 1600, 1107, Buenos Aires, Argentina
| | - Tomás A Santa-Coloma
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and The National Scientific and Technical Research Council of Argentina (CONICET), Alicia Moreau de Justo 1600, 1107, Buenos Aires, Argentina.
| |
Collapse
|
19
|
Bezzerri V, Piacenza F, Caporelli N, Malavolta M, Provinciali M, Cipolli M. Is cellular senescence involved in cystic fibrosis? Respir Res 2019; 20:32. [PMID: 30764828 PMCID: PMC6376730 DOI: 10.1186/s12931-019-0993-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/31/2019] [Indexed: 02/06/2023] Open
Abstract
Pulmonary disease is the main cause of the morbidity and mortality of patients affected by cystic fibrosis (CF). The lung pathology is dominated by excessive recruitment of neutrophils followed by an exaggerated inflammatory process that has also been reported to occur in the absence of apparent pathogenic infections. Airway surface dehydration and mucus accumulation are the driving forces of this process. The continuous release of reactive oxygen species and proteases by neutrophils contributes to tissue damage, which eventually leads to respiratory insufficiency. CF has been considered a paediatric problem for several decades. Nevertheless, during the last 40 years, therapeutic options for CF have been greatly improved, turning CF into a chronic disease and extending the life expectancy of patients. Unfortunately, chronic inflammatory processes, which are characterized by a substantial release of cytokines and chemokines, along with ROS and proteases, can accelerate cellular senescence, leading to further complications in adulthood. The alterations and mechanisms downstream of CFTR functional defects that can stimulate cellular senescence remain unclear. However, while there are correlative data suggesting that cellular senescence may be implicated in CF, a causal or consequential relationship between cellular senescence and CF is still far from being established. Senescence can be both beneficial and detrimental. Senescence may suppress bacterial infections and cooperate with tissue repair. Additionally, it may act as an effective anticancer mechanism. However, it may also promote a pro-inflammatory environment, thereby damaging tissues and leading to chronic age-related diseases. In this review, we present the most current knowledge on cellular senescence and contextualize its possible involvement in CF.
Collapse
Affiliation(s)
- Valentino Bezzerri
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Ospedali Riuniti, 60121, Ancona, Italy
| | - Francesco Piacenza
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, 60121, Ancona, Italy
| | - Nicole Caporelli
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Ospedali Riuniti, 60121, Ancona, Italy
| | - Marco Malavolta
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, 60121, Ancona, Italy
| | - Mauro Provinciali
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, 60121, Ancona, Italy
| | - Marco Cipolli
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Ospedali Riuniti, 60121, Ancona, Italy.
| |
Collapse
|
20
|
Zhang YL, Chen PX, Guan WJ, Guo HM, Qiu ZE, Xu JW, Luo YL, Lan CF, Xu JB, Hao Y, Tan YX, Ye KN, Lun ZR, Zhao L, Zhu YX, Huang J, Ko WH, Zhong WD, Zhou WL, Zhong NS. Increased intracellular Cl - concentration promotes ongoing inflammation in airway epithelium. Mucosal Immunol 2018; 11:1149-1157. [PMID: 29545647 DOI: 10.1038/s41385-018-0013-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 01/19/2018] [Accepted: 01/21/2018] [Indexed: 02/07/2023]
Abstract
Airway epithelial cells harbor the capacity of active Cl- transepithelial transport and play critical roles in modulating innate immunity. However, whether intracellular Cl- accumulation contributes to relentless airway inflammation remains largely unclear. This study showed that, in airway epithelial cells, intracellular Cl- concentration ([Cl-]i) was increased after Pseudomonas aeruginosa lipopolysaccharide (LPS) stimulation via nuclear factor-κB (NF-κB)-phosphodiesterase 4D (PDE4D)-cAMP signaling pathways. Clamping [Cl-]i at high levels or prolonged treatment with LPS augmented serum- and glucocorticoid-inducible protein kinase 1 (SGK1) phosphorylation and subsequently triggered NF-κB activation in airway epithelial cells, whereas inhibition of SGK1 abrogated airway inflammation in vitro and in vivo. Furthermore, Cl--SGK1 signaling pathway was pronouncedly activated in patients with bronchiectasis, a chronic airway inflammatory disease. Conversely, hydrogen sulfide (H2S), a sulfhydryl-containing gasotransmitter, confers anti-inflammatory effects through decreasing [Cl-]i via activation of cystic fibrosis transmembrane conductance regulator (CFTR). Our study confirms that intracellular Cl- is a crucial mediator of sustained airway inflammation. Medications that abrogate excessively increased intracellular Cl- may offer novel targets for the management of airway inflammatory diseases.
Collapse
Affiliation(s)
- Yi-Lin Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Peng-Xiao Chen
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wei-Jie Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.,Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Hong-Mei Guo
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Biology and Food Engineering Institute, Guangdong University of Education, Guangzhou, China
| | - Zhuo-Er Qiu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jia-Wen Xu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yu-Li Luo
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chong-Feng Lan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jian-Bang Xu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuan Hao
- School of Biomedical Sciences, The Chinese University of Hong Kong, N. T., China, China
| | - Ya-Xia Tan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Ke-Nan Ye
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhao-Rong Lun
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lei Zhao
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Yun-Xin Zhu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiehong Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wing-Hung Ko
- School of Biomedical Sciences, The Chinese University of Hong Kong, N. T., China, China
| | - Wei-De Zhong
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wen-Liang Zhou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Nan-Shan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
21
|
Massip-Copiz MM, Santa-Coloma TA. Extracellular pH and lung infections in cystic fibrosis. Eur J Cell Biol 2018; 97:402-410. [PMID: 29933921 DOI: 10.1016/j.ejcb.2018.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/01/2018] [Accepted: 06/12/2018] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease caused by CFTR mutations. It is characterized by high NaCl concentration in sweat and the production of a thick and sticky mucus, occluding secretory ducts, intestine and airways, accompanied by chronic inflammation and infections of the lungs. This causes a progressive and lethal decline in lung function. Therefore, finding the mechanisms driving the high susceptibility to lung infections has been a key issue. For decades the prevalent hypothesis was that a reduced airway surface liquid (ASL) volume and composition, and the consequent increased mucus concentration (dehydration), create an environment favoring infections. However, a few years ago, in a pig model of CF, the Na+/K+ concentrations and the ASL volume were found intact. Immediately a different hypothesis arose, postulating a reduced ASL pH as the cause for the increased susceptibility to infections, due to a diminished bicarbonate secretion through CFTR. Noteworthy, a recent report found normal ASL pH values in CF children and in cultured primary airway cells, challenging the ASL pH hypothesis. On the other hand, recent evidences revitalized the hypothesis of a reduced ASL secretion. Thus, the role of the ASL pH in the CF is still a controversial matter. In this review we discuss the basis that sustain the role of CFTR in modulating the extracellular pH, and the recent results sustaining the different points of view. Finding the mechanisms of CFTR signaling that determine the susceptibility to infections is crucial to understand the pathophysiology of CF and related lung diseases.
Collapse
Affiliation(s)
- María Macarena Massip-Copiz
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED UCA-CONICET), The National Scientific and Technical Research Council (CONICET), and School of Medical Sciences, The Pontifical Catholic University of Argentina (UCA), Buenos Aires, Argentina
| | - Tomás Antonio Santa-Coloma
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED UCA-CONICET), The National Scientific and Technical Research Council (CONICET), and School of Medical Sciences, The Pontifical Catholic University of Argentina (UCA), Buenos Aires, Argentina.
| |
Collapse
|
22
|
Valdivieso ÁG, Dugour AV, Sotomayor V, Clauzure M, Figueroa JM, Santa-Coloma TA. N-acetyl cysteine reverts the proinflammatory state induced by cigarette smoke extract in lung Calu-3 cells. Redox Biol 2018; 16:294-302. [PMID: 29573703 PMCID: PMC5953002 DOI: 10.1016/j.redox.2018.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 01/02/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF) are lethal pulmonary diseases. Cigarette consumption is the main cause for development of COPD, while CF is produced by mutations in the CFTR gene. Although these diseases have a different etiology, both share a CFTR activity impairment and proinflammatory state even under sterile conditions. The aim of this work was to study the extent of the protective effect of the antioxidant N-acetylcysteine (NAC) over the proinflammatory state (IL-6 and IL-8), oxidative stress (reactive oxygen species, ROS), and CFTR levels, caused by Cigarette Smoke Extract (CSE) in Calu-3 airway epithelial cells. CSE treatment (100 µg/ml during 24 h) decreased CFTR mRNA expression and activity, and increased the release of IL-6 and IL-8. The effect on these cytokines was inhibited by N-acetyl cysteine (NAC, 5 mM) or the NF-kB inhibitor, IKK-2 (10 µM). CSE treatment also increased cellular and mitochondrial ROS levels. The cellular ROS levels were normalized to control values by NAC treatment, although significant effects on mitochondrial ROS levels were observed only at short times (5´) and effects on CFTR levels were not observed. In addition, CSE reduced the mitochondrial NADH-cytochrome c oxidoreductase (mCx I-III) activity, an effect that was not reverted by NAC. The reduced CFTR expression and the mitochondrial damage induced by CSE could not be normalized by NAC treatment, evidencing the need for a more specific reagent. In conclusion, CSE causes a sterile proinflammatory state and mitochondrial damage in Calu-3 cells that was partially recovered by NAC treatment.
Collapse
Affiliation(s)
- Ángel G Valdivieso
- Institute for Biomedical Research (BIOMED, UCA-CONICET), Laboratory of Cellular and Molecular Biology, School of Medical Sciences, Pontifical Catholic University of Argentina (UCA) and The National Scientific and Technical Research Council of Argentina (CONICET), Alicia Moreau de Justo 1600, Buenos Aires C1107AFF, Argentina.
| | | | - Verónica Sotomayor
- Institute for Biomedical Research (BIOMED, UCA-CONICET), Laboratory of Cellular and Molecular Biology, School of Medical Sciences, Pontifical Catholic University of Argentina (UCA) and The National Scientific and Technical Research Council of Argentina (CONICET), Alicia Moreau de Justo 1600, Buenos Aires C1107AFF, Argentina
| | - Mariángeles Clauzure
- Institute for Biomedical Research (BIOMED, UCA-CONICET), Laboratory of Cellular and Molecular Biology, School of Medical Sciences, Pontifical Catholic University of Argentina (UCA) and The National Scientific and Technical Research Council of Argentina (CONICET), Alicia Moreau de Justo 1600, Buenos Aires C1107AFF, Argentina
| | | | - Tomás A Santa-Coloma
- Institute for Biomedical Research (BIOMED, UCA-CONICET), Laboratory of Cellular and Molecular Biology, School of Medical Sciences, Pontifical Catholic University of Argentina (UCA) and The National Scientific and Technical Research Council of Argentina (CONICET), Alicia Moreau de Justo 1600, Buenos Aires C1107AFF, Argentina.
| |
Collapse
|
23
|
Massip‐Copiz M, Clauzure M, Valdivieso ÁG, Santa‐Coloma TA. Epiregulin (EREG) is upregulated through an IL‐1β autocrine loop in Caco‐2 epithelial cells with reduced CFTR function. J Cell Biochem 2017; 119:2911-2922. [DOI: 10.1002/jcb.26483] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 10/31/2017] [Indexed: 01/10/2023]
Affiliation(s)
- Macarena Massip‐Copiz
- The Laboratory of Cellular and Molecular BiologyInstitute for Biomedical Research (BIOMED)School of Medical SciencesPontifical Catholic University of Argentina (UCA)The National Scientific and Technical Research Council (CONICET)Buenos AiresArgentina
| | - Mariángeles Clauzure
- The Laboratory of Cellular and Molecular BiologyInstitute for Biomedical Research (BIOMED)School of Medical SciencesPontifical Catholic University of Argentina (UCA)The National Scientific and Technical Research Council (CONICET)Buenos AiresArgentina
| | - Ángel G. Valdivieso
- The Laboratory of Cellular and Molecular BiologyInstitute for Biomedical Research (BIOMED)School of Medical SciencesPontifical Catholic University of Argentina (UCA)The National Scientific and Technical Research Council (CONICET)Buenos AiresArgentina
| | - Tomás A. Santa‐Coloma
- The Laboratory of Cellular and Molecular BiologyInstitute for Biomedical Research (BIOMED)School of Medical SciencesPontifical Catholic University of Argentina (UCA)The National Scientific and Technical Research Council (CONICET)Buenos AiresArgentina
| |
Collapse
|
24
|
Valdivieso ÁG, Mori C, Clauzure M, Massip-Copiz M, Santa-Coloma TA. CFTR modulates RPS27 gene expression using chloride anion as signaling effector. Arch Biochem Biophys 2017; 633:103-109. [DOI: 10.1016/j.abb.2017.09.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 09/13/2017] [Accepted: 09/20/2017] [Indexed: 12/13/2022]
|
25
|
Hua X, Chi W, Su L, Li J, Zhang Z, Yuan X. ROS-induced Oxidative Injury involved in Pathogenesis of Fungal Keratitis via p38 MAPK Activation. Sci Rep 2017; 7:10421. [PMID: 28874754 PMCID: PMC5585305 DOI: 10.1038/s41598-017-09636-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/25/2017] [Indexed: 12/17/2022] Open
Abstract
This study was to explore the mechanism by which reactive oxygen species (ROS)-induced oxidative stress involved in the pathogenesis of fungal keratitis using an in vivo experimental keratitis mouse model and an in vitro culture model of human corneal epithelial cells (HCECs). Compared to normal control mice and HCECs, ROS production was markedly increased in fungal corneas and HCECs exposed to Candida albicans, accompanied by p38 mitogen-activated protein kinases (MAPK) activation. Increased products of oxidative markers, malondialdehyde (MDA), 4–hydroxynonenal (HNE), mitochondria DNA 8-OHdG and aconitase-2 were observed in fungal infected corneas and HCECs. Fungal infection also increased the mRNA expression and protein production of heme oxygenase-1 (HMOX1) and cyclooxygenase-2 (COX2), with suppressed levels of antioxidant enzymes, superoxide dismutase-1 (SOD1), glutathione peroxidase-1 (GPx1) and peroxiredoxin-4 (PRDX4). Interestingly, the levels of ROS, oxidative markers and oxygenases were significantly reduced by co-cultured p38 inhibitor SB203580. Furthermore, SB203580 restored the levels of antioxidant enzymes suppressed by fungus. Our findings demonstrated for the first time that ROS-induced oxidative injury is involved in pathogenesis of fungal keratitis via p38 MAPK pathway, suggesting the novel therapeutic targets for the potential treatment of fungal keratitis.
Collapse
Affiliation(s)
- Xia Hua
- Department of Ophthalmology, Tianjin Orbit Research Institute, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Wei Chi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
| | - Long Su
- Department of Ophthalmology, Tianjin Orbit Research Institute, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jin Li
- Zhejiang Eye Hospital, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Zongduan Zhang
- Zhejiang Eye Hospital, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Xiaoyong Yuan
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
26
|
Clauzure M, Valdivieso ÁG, Massip-Copiz MM, Mori C, Dugour AV, Figueroa JM, Santa-Coloma TA. Intracellular Chloride Concentration Changes Modulate IL-1β Expression and Secretion in Human Bronchial Epithelial Cultured Cells. J Cell Biochem 2017; 118:2131-2140. [DOI: 10.1002/jcb.25850] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 12/19/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Mariángeles Clauzure
- Laboratory of Cellular and Molecular Biology, National Scientific and Technical Research Council (CONICET) and School of Medical Sciences, Institute for Biomedical Research (BIOMED); Pontifical Catholic University of Argentina (UCA); Buenos Aires Argentina
| | - Ángel G. Valdivieso
- Laboratory of Cellular and Molecular Biology, National Scientific and Technical Research Council (CONICET) and School of Medical Sciences, Institute for Biomedical Research (BIOMED); Pontifical Catholic University of Argentina (UCA); Buenos Aires Argentina
| | - María M. Massip-Copiz
- Laboratory of Cellular and Molecular Biology, National Scientific and Technical Research Council (CONICET) and School of Medical Sciences, Institute for Biomedical Research (BIOMED); Pontifical Catholic University of Argentina (UCA); Buenos Aires Argentina
| | - Consuelo Mori
- Laboratory of Cellular and Molecular Biology, National Scientific and Technical Research Council (CONICET) and School of Medical Sciences, Institute for Biomedical Research (BIOMED); Pontifical Catholic University of Argentina (UCA); Buenos Aires Argentina
| | | | | | - Tomás A. Santa-Coloma
- Laboratory of Cellular and Molecular Biology, National Scientific and Technical Research Council (CONICET) and School of Medical Sciences, Institute for Biomedical Research (BIOMED); Pontifical Catholic University of Argentina (UCA); Buenos Aires Argentina
| |
Collapse
|
27
|
Massip-Copiz MM, Clauzure M, Valdivieso ÁG, Santa-Coloma TA. CFTR impairment upregulates c-Src activity through IL-1β autocrine signaling. Arch Biochem Biophys 2017; 616:1-12. [PMID: 28088327 DOI: 10.1016/j.abb.2017.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 12/24/2022]
Abstract
Cystic Fibrosis (CF) is a disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Previously, we found several genes showing a differential expression in CFDE cells (epithelial cells derived from a CF patient). One corresponded to c-Src; its expression and activity was found increased in CFDE cells, acting as a signaling molecule between the CFTR activity and MUC1 overexpression. Here we report that bronchial IB3-1 cells (CF cells) also showed increased c-Src activity compared to 'CFTR-corrected' S9 cells. In addition, three different Caco-2 cell lines, each stably transfected with a different CFTR-specific shRNAs, displayed increased c-Src activity. The IL-1β receptor antagonist IL1RN reduced the c-Src activity of Caco-2/pRS26 cells (expressing a CFTR-specific shRNA). In addition, increased mitochondrial and cellular ROS levels were detected in Caco-2/pRS26 cells. ROS levels were partially reduced by incubation with PP2 (c-Src inhibitor) or IL1RN, and further reduced by using the NOX1/4 inhibitor GKT137831. Thus, IL-1β→c-Src and IL-1β→NOX signaling pathways appear to be responsible for the production of cellular and mitochondrial ROS in CFTR-KD cells. In conclusion, IL-1β constitutes a new step in the CFTR signaling pathway, located upstream of c-Src, which is stimulated in cells with impaired CFTR activity.
Collapse
Affiliation(s)
- María Macarena Massip-Copiz
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Mariángeles Clauzure
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Ángel Gabriel Valdivieso
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Tomás Antonio Santa-Coloma
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
28
|
Chen CY, Yang CH, Tsai YF, Liaw CC, Chang WY, Hwang TL. Ugonin U stimulates NLRP3 inflammasome activation and enhances inflammasome-mediated pathogen clearance. Redox Biol 2016; 11:263-274. [PMID: 28012441 PMCID: PMC5198739 DOI: 10.1016/j.redox.2016.12.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/10/2016] [Accepted: 12/17/2016] [Indexed: 12/12/2022] Open
Abstract
The NOD-like receptor pyrin domain 3 (NLRP3) inflammasome contains Nod-like receptors, a subclass of pattern recognition receptors, suggesting that this complex has a prominent role in host defenses. Various structurally diverse stimulators activate the NLRP3 inflammasome through different signaling pathways. We previously reported that ugonin U (UgU), a natural flavonoid isolated from Helminthostachys zeylanica (L) Hook, directly stimulates phospholipase C (PLC) and triggers superoxide release in human neutrophils. In the present study, we showed that UgU induced NLRP3 inflammasome assembly and subsequent caspase-1 and interleukin (IL)-1β processing in lipopolysaccharide-primed human monocytes. Moreover, UgU elicited mitochondrial superoxide generation in a dose-dependent manner, and a specific scavenger of mitochondrial reactive oxygen species (ROS) diminished UgU-induced IL-1β and caspase-1 activation. UgU induced Ca2+ mobilization, which was inhibited by treatment with inhibitors of PLC or inositol triphosphate receptor (IP3R). Blocking Ca2+ mobilization, PLC, or IP3R diminished UgU-induced IL-1β release, caspase-1 activation, and mitochondrial ROS generation. These data demonstrated that UgU activated the NLPR3 inflammasome activation through Ca2+ mobilization and the production of mitochondrial ROS. We also demonstrated that UgU-dependent NLRP3 inflammasome activation enhanced the bactericidal function of human monocytes. The ability of UgU to stimulate human neutrophils and monocytes, both of which are professional phagocytes, and its capacity to activate the NLRP3 inflammasome, which is a promising molecular target for developing anti-infective medicine, indicate that UgU treatment should be considered as a possible novel therapy for treating infectious diseases. The immuno-stimulatory effects UgU in human monocytes were evaluated. UgU induces Ca2+ mobilization and eventually activates the NLRP3 inflammasome. UgU facilitates the bactericidal function of human monocytes.
Collapse
Affiliation(s)
- Chun-Yu Chen
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chuan-Hui Yang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Yung-Fong Tsai
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chih-Chuang Liaw
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Wen-Yi Chang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan; Research Center for Industry of Human Ecology, Research Center for Chinese Herbal Medicine, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan.
| |
Collapse
|
29
|
c- Src and its role in cystic fibrosis. Eur J Cell Biol 2016; 95:401-413. [DOI: 10.1016/j.ejcb.2016.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/08/2016] [Accepted: 08/10/2016] [Indexed: 12/15/2022] Open
|
30
|
LOX-1 and TLR4 affect each other and regulate the generation of ROS in A. fumigatus keratitis. Int Immunopharmacol 2016; 40:392-399. [PMID: 27694040 DOI: 10.1016/j.intimp.2016.09.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 08/29/2016] [Accepted: 09/27/2016] [Indexed: 11/24/2022]
Abstract
PURPOSE To explore the relationship between LOX-1 and TLR4 in Aspergillus fumigatus (A. fumigatus) keratitis. To determine LOX-1 and TLR4 can affect each other and regulate inflammation through regulation of the generation of reactive oxygen species (ROS) in A. fumigatus keratitis. METHODS The cornea and abdominal cavity extracted neutrophils of susceptible C57BL/6 mice were infected with A. fumigatus. The cornea and neutrophils were pretreated with LOX-1 neutralizing antibody, Polyinosinic acid (Poly(I)) (the inhibitor of LOX-1) or CLI-095 (the inhibitor of TLR4) separately before infection. LOX-1, TLR4 and IL-1β expression were detected in normal and infected cornea by PCR and Western Blot, while ROS was detected in the neutrophils by flow cytometry. RESULTS LOX-1, TLR4, IL-1β mRNA and protein levels were up-regulated in C57BL/6 cornea after infection. LOX-1 neutralizing antibody or Poly(I) pretreatment decreased the expression of LOX-1, TLR4 and IL-1β in C57BL/6 cornea after infection and CLI-095 pretreatment decreased the expression of LOX-1, TLR4 and IL-1β in C57BL/6 cornea after infection. ROS generation was increased in C57BL/6 neutrophils after infection, however, ROS generation was decreased in C57BL/6 neutrophils after infection by LOX-1 neutralizing antibody or Poly(I) or CLI-095 pretreatment. CONCLUSION LOX-1, TLR4 and IL-1β expression and ROS generation are increased after infection. LOX-1 and TLR4 can affect each other and regulate the generation of ROS in A. fumigatus keratitis. Inhibition of LOX-1 and TLR4 can reduce ROS generation.
Collapse
|
31
|
Atlante A, Favia M, Bobba A, Guerra L, Casavola V, Reshkin SJ. Characterization of mitochondrial function in cells with impaired cystic fibrosis transmembrane conductance regulator (CFTR) function. J Bioenerg Biomembr 2016; 48:197-210. [PMID: 27146408 DOI: 10.1007/s10863-016-9663-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/25/2016] [Indexed: 01/19/2023]
Abstract
Evidence supporting the occurrence of oxidative stress in Cystic Fibrosis (CF) is well established and the literature suggests that oxidative stress is inseparably linked to mitochondrial dysfunction. Here, we have characterized mitochondrial function, in particular as it regards the steps of oxidative phosphorylation and ROS production, in airway cells either homozygous for the F508del-CFTR allele or stably expressing wt-CFTR. We find that oxygen consumption, ΔΨ generation, adenine nucleotide translocator-dependent ADP/ATP exchange and both mitochondrial Complex I and IV activities are impaired in CF cells, while both mitochondrial ROS production and membrane lipid peroxidation increase. Importantly, treatment of CF cells with the small molecules VX-809 and 4,6,4'-trimethylangelicin, which act as "correctors" for F508del CFTR by rescuing the F508del CFTR-dependent chloride secretion, while having no effect per sè on mitochondrial function in wt-CFTR cells, significantly improved all the above mitochondrial parameters towards values found in the airway cells expressing wt-CFTR. This novel study on mitochondrial bioenergetics provides a springboard for future research to further understand the molecular mechanisms responsible for the involvement of mitochondria in CF and identify the proteins primarily responsible for the F508del-CFTR-dependent mitochondrial impairment and thus reveal potential novel targets for CF therapy.
Collapse
Affiliation(s)
- Anna Atlante
- Institute of Biomembrane and Bioenergetics - CNR, Via G. Amendola 165/A, 70126, Bari, Italy.
| | - Maria Favia
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70126, Bari, Italy
| | - Antonella Bobba
- Institute of Biomembrane and Bioenergetics - CNR, Via G. Amendola 165/A, 70126, Bari, Italy
| | - Lorenzo Guerra
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70126, Bari, Italy
| | - Valeria Casavola
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70126, Bari, Italy
| | - Stephan Joel Reshkin
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70126, Bari, Italy
| |
Collapse
|
32
|
ROS and ROS-Mediated Cellular Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4350965. [PMID: 26998193 PMCID: PMC4779832 DOI: 10.1155/2016/4350965] [Citation(s) in RCA: 1141] [Impact Index Per Article: 126.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/01/2015] [Accepted: 12/20/2015] [Indexed: 12/22/2022]
Abstract
It has long been recognized that an increase of reactive oxygen species (ROS) can modify the cell-signaling proteins and have functional consequences, which successively mediate pathological processes such as atherosclerosis, diabetes, unchecked growth, neurodegeneration, inflammation, and aging. While numerous articles have demonstrated the impacts of ROS on various signaling pathways and clarify the mechanism of action of cell-signaling proteins, their influence on the level of intracellular ROS, and their complex interactions among multiple ROS associated signaling pathways, the systemic summary is necessary. In this review paper, we particularly focus on the pattern of the generation and homeostasis of intracellular ROS, the mechanisms and targets of ROS impacting on cell-signaling proteins (NF-κB, MAPKs, Keap1-Nrf2-ARE, and PI3K-Akt), ion channels and transporters (Ca(2+) and mPTP), and modifying protein kinase and Ubiquitination/Proteasome System.
Collapse
|
33
|
Bitam S, Pranke I, Hollenhorst M, Servel N, Moquereau C, Tondelier D, Hatton A, Urbach V, Sermet-Gaudelus I, Hinzpeter A, Edelman A. An unexpected effect of TNF-α on F508del-CFTR maturation and function. F1000Res 2015; 4:218. [PMID: 26594334 PMCID: PMC4648213 DOI: 10.12688/f1000research.6683.2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/28/2015] [Indexed: 01/12/2023] Open
Abstract
Cystic fibrosis (CF) is a multifactorial disease caused by mutations in the cystic fibrosis transmembrane conductance regulator gene ( CFTR), which encodes a cAMP-dependent Cl (-) channel. The most frequent mutation, F508del, leads to the synthesis of a prematurely degraded, otherwise partially functional protein. CFTR is expressed in many epithelia, with major consequences in the airways of patients with CF, characterized by both fluid transport abnormalities and persistent inflammatory responses. The relationship between the acute phase of inflammation and the expression of wild type (WT) CFTR or F508del-CFTR is poorly understood. The aim of the present study was to investigate this effect. The results show that 10 min exposure to TNF-alpha (0.5-50ng/ml) of F508del-CFTR-transfected HeLa cells and human bronchial cells expressing F508del-CFTR in primary culture (HBE) leads to the maturation of F508del-CFTR and induces CFTR chloride currents. The enhanced CFTR expression and function upon TNFα is sustained, in HBE cells, for at least 24 h. The underlying mechanism of action involves a protein kinase C (PKC) signaling pathway, and occurs through insertion of vesicles containing F508del-CFTR to the plasma membrane, with TNFα behaving as a corrector molecule. In conclusion, a novel and unexpected action of TNFα has been discovered and points to the importance of systematic studies on the roles of inflammatory mediators in the maturation of abnormally folded proteins in general and in the context of CF in particular.
Collapse
Affiliation(s)
- Sara Bitam
- Inserm U1151, Team 2 - CNRS UMR 8253, Faculté de Médecine Paris Descartes, Institut Necker Enfants Malades, Paris, 75993, France
| | - Iwona Pranke
- Inserm U1151, Team 2 - CNRS UMR 8253, Faculté de Médecine Paris Descartes, Institut Necker Enfants Malades, Paris, 75993, France
| | - Monika Hollenhorst
- Inserm U1151, Team 2 - CNRS UMR 8253, Faculté de Médecine Paris Descartes, Institut Necker Enfants Malades, Paris, 75993, France
| | - Nathalie Servel
- Inserm U1151, Team 2 - CNRS UMR 8253, Faculté de Médecine Paris Descartes, Institut Necker Enfants Malades, Paris, 75993, France
| | - Christelle Moquereau
- Inserm U1151, Team 2 - CNRS UMR 8253, Faculté de Médecine Paris Descartes, Institut Necker Enfants Malades, Paris, 75993, France
| | - Danielle Tondelier
- Inserm U1151, Team 2 - CNRS UMR 8253, Faculté de Médecine Paris Descartes, Institut Necker Enfants Malades, Paris, 75993, France
| | - Aurélie Hatton
- Inserm U1151, Team 2 - CNRS UMR 8253, Faculté de Médecine Paris Descartes, Institut Necker Enfants Malades, Paris, 75993, France
| | - Valérie Urbach
- Inserm U1151, Team 2 - CNRS UMR 8253, Faculté de Médecine Paris Descartes, Institut Necker Enfants Malades, Paris, 75993, France
| | - Isabelle Sermet-Gaudelus
- Inserm U1151, Team 2 - CNRS UMR 8253, Faculté de Médecine Paris Descartes, Institut Necker Enfants Malades, Paris, 75993, France
| | - Alexandre Hinzpeter
- INSERM U955, Team 5, Université Paris Est Créteil, Champs-sur-Marne, 77420, France
| | - Aleksander Edelman
- Inserm U1151, Team 2 - CNRS UMR 8253, Faculté de Médecine Paris Descartes, Institut Necker Enfants Malades, Paris, 75993, France
| |
Collapse
|