1
|
Matrullo G, Filomeni G, Rizza S. Redox regulation of focal adhesions. Redox Biol 2025; 80:103514. [PMID: 39879736 PMCID: PMC11810850 DOI: 10.1016/j.redox.2025.103514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/07/2025] [Accepted: 01/23/2025] [Indexed: 01/31/2025] Open
Abstract
Focal adhesions (FAs), multi-protein complexes that link the extracellular matrix to the intracellular cytoskeleton, are key mediators of cell adhesion, migration, and proliferation. These dynamic structures act as mechanical sensors, transmitting stimuli from the extracellular to intracellular environment activating in this way signaling pathways and enabling cells to adapt to environmental changes. As such, FAs are critical for tissue organization and serve as hubs governing cell spatial arrangement within the organism. The assembly, reactivity, and functional regulation of FAs are tightly controlled by post-translational modifications, including redox modulation by reactive oxygen and nitrogen species. Increasing evidence suggests that redox signaling plays a pivotal role in both the physiological and pathological functions of FAs and their downstream processes. Redox regulation affects various components of the FA complex, including integrins, focal adhesion kinase 1 (FAK1), SRC, adapter proteins, and cytoskeletal elements. In this review, we provide an updated overview of the complex interplay between redox signaling and post-translational modifications in FAs. We explore how redox reactions influence the structure, dynamics, and function of FAs, shedding light on their broader implications in health and disease.
Collapse
Affiliation(s)
- Gianmarco Matrullo
- Department of Biology, University of Rome "Tor Vergata", 00100, Rome, Italy
| | - Giuseppe Filomeni
- Department of Biology, University of Rome "Tor Vergata", 00100, Rome, Italy; Redox Biology Group, Danish Cancer Institute, 2100, Copenhagen, Denmark
| | - Salvatore Rizza
- Redox Biology Group, Danish Cancer Institute, 2100, Copenhagen, Denmark.
| |
Collapse
|
2
|
Gieniusz E, Skrzydlewska E, Łuczaj W. Current Insights into the Role of UV Radiation-Induced Oxidative Stress in Melanoma Pathogenesis. Int J Mol Sci 2024; 25:11651. [PMID: 39519202 PMCID: PMC11546485 DOI: 10.3390/ijms252111651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Cutaneous melanoma accounts for the majority of skin cancer-related deaths, and its incidence increases each year. The growing number of melanoma cases, especially in advanced stages, poses a significant socio-medical challenge throughout the world. Extensive research on melanoma pathogenesis identifies UV radiation as the most important factor in melanocytic transformation. Oxidative effects of UV irradiation exert their influence on melanoma pathogenesis primarily through modification of nucleic acids, proteins, and lipids, further disrupting cellular signaling and cell cycle regulation. Its effects extend beyond melanocytes, leading to immunosuppression in the exposed skin tissue, which consequently creates conditions for immune surveillance evasion and further progression. In this review, we focus on the specific molecular changes observed in the UV-dependent oxidative stress environment and their biological consequences in the course of the disease, which have not been considered in previous reviews on melanoma. Nonetheless, data show that the exact role of oxidative stress in melanoma initiation and progression remains unclear, as it affects cancerous cells differently depending on the specific context. A better understanding of the pathophysiological basis of melanoma development holds promise for identifying potential targets, which could lead to effective melanoma prevention strategies.
Collapse
Affiliation(s)
| | | | - Wojciech Łuczaj
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland; (E.G.); (E.S.)
| |
Collapse
|
3
|
Yang E, Ding Q, Fan X, Ye H, Xuan C, Zhao S, Ji Q, Yu W, Liu Y, Cao J, Fang M, Ding X. Machine learning modeling and prognostic value analysis of invasion-related genes in cutaneous melanoma. Comput Biol Med 2023; 162:107089. [PMID: 37267825 DOI: 10.1016/j.compbiomed.2023.107089] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/06/2023] [Accepted: 05/27/2023] [Indexed: 06/04/2023]
Abstract
In this study, we aimed to develop an invasion-related risk signature and prognostic model for personalized treatment and prognosis prediction in skin cutaneous melanoma (SKCM), as invasion plays a crucial role in this disease. We identified 124 differentially expressed invasion-associated genes (DE-IAGs) and selected 20 prognostic genes (TTYH3, NME1, ORC1, PLK1, MYO10, SPINT1, NUPR1, SERPINE2, HLA-DQB2, METTL7B, TIMP1, NOX4, DBI, ARL15, APOBEC3G, ARRB2, DRAM1, RNF213, C14orf28, and CPEB3) using Cox and LASSO regression to establish a risk score. Gene expression was validated through single-cell sequencing, protein expression, and transcriptome analysis. Negative correlations were discovered between risk score, immune score, and stromal score using ESTIMATE and CIBERSORT algorithms. High- and low-risk groups exhibited significant differences in immune cell infiltration and checkpoint molecule expression. The 20 prognostic genes effectively differentiated between SKCM and normal samples (AUCs >0.7). We identified 234 drugs targeting 6 genes from the DGIdb database. Our study provides potential biomarkers and a risk signature for personalized treatment and prognosis prediction in SKCM patients. We developed a nomogram and machine-learning prognostic model to predict 1-, 3-, and 5-year overall survival (OS) using risk signature and clinical factors. The best model, Extra Trees Classifier (AUC = 0.88), was derived from pycaret's comparison of 15 classifiers. The pipeline and app are accessible at https://github.com/EnyuY/IAGs-in-SKCM.
Collapse
Affiliation(s)
- Enyu Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China.
| | - Qianyun Ding
- Department of 'A', The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, 310003, Hangzhou, China.
| | - Xiaowei Fan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China.
| | - Haihan Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China.
| | - Cheng Xuan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China.
| | - Shuo Zhao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China.
| | - Qing Ji
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Department of Head and Neck and Rare Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, 310022, Hangzhou, China.
| | - Weihua Yu
- Department of Gastroenterology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, China.
| | - Yongfu Liu
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.
| | - Jun Cao
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Department of Head and Neck and Rare Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, 310022, Hangzhou, China.
| | - Meiyu Fang
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Department of Head and Neck and Rare Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, 310022, Hangzhou, China.
| | - Xianfeng Ding
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China.
| |
Collapse
|
4
|
Neuendorf HM, Simmons JL, Boyle GM. Therapeutic targeting of anoikis resistance in cutaneous melanoma metastasis. Front Cell Dev Biol 2023; 11:1183328. [PMID: 37181747 PMCID: PMC10169659 DOI: 10.3389/fcell.2023.1183328] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/14/2023] [Indexed: 05/16/2023] Open
Abstract
The acquisition of resistance to anoikis, the cell death induced by loss of adhesion to the extracellular matrix, is an absolute requirement for the survival of disseminating and circulating tumour cells (CTCs), and for the seeding of metastatic lesions. In melanoma, a range of intracellular signalling cascades have been identified as potential drivers of anoikis resistance, however a full understanding of the process is yet to be attained. Mechanisms of anoikis resistance pose an attractive target for the therapeutic treatment of disseminating and circulating melanoma cells. This review explores the range of small molecule, peptide and antibody inhibitors targeting molecules involved in anoikis resistance in melanoma, and may be repurposed to prevent metastatic melanoma prior to its initiation, potentially improving the prognosis for patients.
Collapse
Affiliation(s)
- Hannah M. Neuendorf
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Jacinta L. Simmons
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Glen M. Boyle
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
5
|
Rizza S, Di Leo L, Pecorari C, Giglio P, Faienza F, Montagna C, Maiani E, Puglia M, Bosisio FM, Petersen TS, Lin L, Rissler V, Viloria JS, Luo Y, Papaleo E, De Zio D, Blagoev B, Filomeni G. GSNOR deficiency promotes tumor growth via FAK1 S-nitrosylation. Cell Rep 2023; 42:111997. [PMID: 36656716 DOI: 10.1016/j.celrep.2023.111997] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/15/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Nitric oxide (NO) production in the tumor microenvironment is a common element in cancer. S-nitrosylation, the post-translational modification of cysteines by NO, is emerging as a key transduction mechanism sustaining tumorigenesis. However, most oncoproteins that are regulated by S-nitrosylation are still unknown. Here we show that S-nitrosoglutathione reductase (GSNOR), the enzyme that deactivates S-nitrosylation, is hypo-expressed in several human malignancies. Using multiple tumor models, we demonstrate that GSNOR deficiency induces S-nitrosylation of focal adhesion kinase 1 (FAK1) at C658. This event enhances FAK1 autophosphorylation and sustains tumorigenicity by providing cancer cells with the ability to survive in suspension (evade anoikis). In line with these results, GSNOR-deficient tumor models are highly susceptible to treatment with FAK1 inhibitors. Altogether, our findings advance our understanding of the oncogenic role of S-nitrosylation, define GSNOR as a tumor suppressor, and point to GSNOR hypo-expression as a therapeutically exploitable vulnerability in cancer.
Collapse
Affiliation(s)
- Salvatore Rizza
- Redox Biology, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark.
| | - Luca Di Leo
- Melanoma Research Team, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Chiara Pecorari
- Redox Biology, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Paola Giglio
- Department of Biology, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Fiorella Faienza
- Department of Biology, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Costanza Montagna
- Department of Biology, University of Rome "Tor Vergata", 00133 Rome, Italy; UniCamillus-Saint Camillus, University of Health Sciences, 00131 Rome, Italy
| | - Emiliano Maiani
- Department of Biology, University of Rome "Tor Vergata", 00133 Rome, Italy; UniCamillus-Saint Camillus, University of Health Sciences, 00131 Rome, Italy
| | - Michele Puglia
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Francesca M Bosisio
- Lab of Translational Cell and Tissue Research, University of Leuven, 3000 Leuven, Belgium
| | | | - Lin Lin
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Vendela Rissler
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Juan Salamanca Viloria
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, 8200 Aarhus N, Denmark; Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Shenzhen 518083, China
| | - Elena Papaleo
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Daniela De Zio
- Melanoma Research Team, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, Copenhagen University, 2100 Copenhagen, Denmark
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Giuseppe Filomeni
- Redox Biology, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; Department of Biology, University of Rome "Tor Vergata", 00133 Rome, Italy; Center for Healthy Aging, Copenhagen University, 2200 Copenhagen, Denmark.
| |
Collapse
|
6
|
Zhang X, Li H, Liu C, Yuan X. Role of ROS‑mediated autophagy in melanoma (Review). Mol Med Rep 2022; 26:303. [PMID: 35946460 PMCID: PMC9434998 DOI: 10.3892/mmr.2022.12819] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/22/2022] [Indexed: 11/06/2022] Open
Abstract
Melanoma is the most aggressive form of skin cancer with the poorest prognosis and its pathogenesis has yet to be fully elucidated. As key factors that regulate cellular homeostasis, both reactive oxygen species (ROS) and autophagy are involved in the development of melanoma, from melanomagenesis to progression and drug resistance. However, the interaction between ROS and autophagy in the etiology and treatment of melanoma is not well characterized. The present review examined the production of ROS and the role of oxidative stress in melanoma, and summarized the role of ROS‑mediated autophagy in melanomagenesis and melanoma cell fate decision following treatment with various anticancer drugs. The present findings may lead to a better understanding of the pathogenesis and progression of melanoma, and suggest promising treatment options for this disease.
Collapse
Affiliation(s)
- Xuebing Zhang
- Department of Dermatology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, Heilongjiang 150001, P.R. China
| | - Huaijun Li
- Department of Dermatology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, Heilongjiang 150001, P.R. China
| | - Chengxiang Liu
- Department of Dermatology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, Heilongjiang 150001, P.R. China
| | - Xingxing Yuan
- Department of Dermatology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
7
|
Thapa J, Yoshiiri G, Ito K, Okubo T, Nakamura S, Furuta Y, Higashi H, Yamaguchi H. Chlamydia trachomatis Requires Functional Host-Cell Mitochondria and NADPH Oxidase 4/p38MAPK Signaling for Growth in Normoxia. Front Cell Infect Microbiol 2022; 12:902492. [PMID: 35719337 PMCID: PMC9199516 DOI: 10.3389/fcimb.2022.902492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Chlamydia trachomatis (Ct) is an intracellular energy-parasitic bacterium that requires ATP derived from infected cells for its growth. Meanwhile, depending on the O2 concentration, the host cells change their mode of ATP production between oxidative phosphorylation in mitochondria (Mt) and glycolysis; this change depends on signaling via reactive oxygen species (ROS) produced by NADPH oxidases (NOXs) as well as Mt. It has been proposed that Ct correspondingly switches its source of acquisition of ATP between host-cell Mt and glycolysis, but this has not been verified experimentally. In the present study, we assessed the roles of host-cell NOXs and Mt in the intracellular growth of CtL2 (L2 434/Bu) under normoxia (21% O2) and hypoxia (2% O2) by using several inhibitors of NOXs (or the downstream molecule) and Mt-dysfunctional (Mtd) HEp-2 cells. Under normoxia, diphenyleneiodonium, an inhibitor of ROS diffusion, abolished the growth of CtL2 and other Chlamydiae (CtD and C. pneumoniae). Both ML171 (a pan-NOX inhibitor) and GLX351322 (a NOX4-specific inhibitor) impaired the growth of CtL2 under normoxia, but not hypoxia. NOX4-knockdown cells diminished the bacterial growth. SB203580, an inhibitor of the NOX4-downstream molecule p38MAPK, also inhibited the growth of CtL2 under normoxia but not hypoxia. Furthermore, CtL2 failed to grow in Mtd cells under normoxia, but no effect was observed under hypoxia. We conclude that under normoxia, Ct requires functional Mt in its host cells as an ATP source, and that this process requires NOX4/p38MAPK signaling in the host cells. In contrast to hypoxia, crosstalk between NOX4 and Mt via p38MAPK may be crucial for the growth of Ct under normoxia.
Collapse
Affiliation(s)
- Jeewan Thapa
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Gen Yoshiiri
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Koki Ito
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Torahiko Okubo
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Shinji Nakamura
- Laboratory of Morphology and Image Analysis, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshikazu Furuta
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Hideaki Higashi
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Hiroyuki Yamaguchi
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
8
|
Carvalho LAC, Queijo RG, Baccaro ALB, Siena ÁDD, Silva WA, Rodrigues T, Maria-Engler SS. Redox-Related Proteins in Melanoma Progression. Antioxidants (Basel) 2022; 11:438. [PMID: 35326089 PMCID: PMC8944639 DOI: 10.3390/antiox11030438] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/05/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Melanoma is the most aggressive type of skin cancer. Despite the available therapies, the minimum residual disease is still refractory. Reactive oxygen and nitrogen species (ROS and RNS) play a dual role in melanoma, where redox imbalance is involved from initiation to metastasis and resistance. Redox proteins modulate the disease by controlling ROS/RNS levels in immune response, proliferation, invasion, and relapse. Chemotherapeutics such as BRAF and MEK inhibitors promote oxidative stress, but high ROS/RNS amounts with a robust antioxidant system allow cells to be adaptive and cooperate to non-toxic levels. These proteins could act as biomarkers and possible targets. By understanding the complex mechanisms involved in adaptation and searching for new targets to make cells more susceptible to treatment, the disease might be overcome. Therefore, exploring the role of redox-sensitive proteins and the modulation of redox homeostasis may provide clues to new therapies. This study analyzes information obtained from a public cohort of melanoma patients about the expression of redox-generating and detoxifying proteins in melanoma during the disease stages, genetic alterations, and overall patient survival status. According to our analysis, 66% of the isoforms presented differential expression on melanoma progression: NOS2, SOD1, NOX4, PRX3, PXDN and GPX1 are increased during melanoma progression, while CAT, GPX3, TXNIP, and PRX2 are decreased. Besides, the stage of the disease could influence the result as well. The levels of PRX1, PRX5 and PRX6 can be increased or decreased depending on the stage. We showed that all analyzed isoforms presented some genetic alteration on the gene, most of them (78%) for increased mRNA expression. Interestingly, 34% of all melanoma patients showed genetic alterations on TRX1, most for decreased mRNA expression. Additionally, 15% of the isoforms showed a significant reduction in overall patient survival status for an altered group (PRX3, PRX5, TR2, and GR) and the unaltered group (NOX4). Although no such specific antioxidant therapy is approved for melanoma yet, inhibitors or mimetics of these redox-sensitive proteins have achieved very promising results. We foresee that forthcoming investigations on the modulation of these proteins will bring significant advances for cancer therapy.
Collapse
Affiliation(s)
- Larissa A. C. Carvalho
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, São Paulo 05508-00, SP, Brazil; (L.A.C.C.); (R.G.Q.)
| | - Rodrigo G. Queijo
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, São Paulo 05508-00, SP, Brazil; (L.A.C.C.); (R.G.Q.)
| | - Alexandre L. B. Baccaro
- Centro de Pós-Graduação e Pesquisa Oswaldo Cruz, Faculdade Oswaldo Cruz, Rua Brigadeiro Galvão, 535, Sao Paulo 01151-000, SP, Brazil;
| | - Ádamo D. D. Siena
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900, Ribeirao Preto 14049-900, SP, Brazil; (Á.D.D.S.); (W.A.S.J.)
| | - Wilson A. Silva
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900, Ribeirao Preto 14049-900, SP, Brazil; (Á.D.D.S.); (W.A.S.J.)
| | - Tiago Rodrigues
- Center for Natural and Human Sciences, Federal University of ABC, Avenida dos Estados, 5001, Santo Andre 09210-580, SP, Brazil;
| | - Silvya Stuchi Maria-Engler
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, São Paulo 05508-00, SP, Brazil; (L.A.C.C.); (R.G.Q.)
| |
Collapse
|
9
|
Oxidative Stress-Related Mechanisms in Melanoma and in the Acquired Resistance to Targeted Therapies. Antioxidants (Basel) 2021; 10:antiox10121942. [PMID: 34943045 PMCID: PMC8750393 DOI: 10.3390/antiox10121942] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023] Open
Abstract
Melanoma is a highly aggressive cancer with the poorest prognosis, representing the deadliest form of skin cancer. Activating mutations in BRAF are the most frequent genetic alterations, present in approximately 50% of all melanoma cases. The use of specific inhibitors towards mutant BRAF variants and MEK, a downstream signaling target of BRAF in the MAPK pathway, has significantly improved progression-free and overall survival in advanced melanoma patients carrying BRAF mutations. Nevertheless, despite these improvements, resistance still develops within the first year of therapy in around 50% of patients, which is a significant problem in managing BRAF-mutated advanced melanoma. Understanding these mechanisms is one of the mainstreams of the research on BRAFi/MEKi acquired resistance. Both genetic and epigenetic mechanisms have been described. Moreover, in recent years, oxidative stress has emerged as another major force involved in all the phases of melanoma development, from initiation to progression until the onsets of the metastatic phenotype and chemoresistance, and has thus become a target for therapy. In the present review, we discuss the current knowledge on oxidative stress and its signaling in melanoma, as well as the oxidative stress-related mechanisms in the acquired resistance to targeted therapies.
Collapse
|
10
|
Balta E, Kramer J, Samstag Y. Redox Regulation of the Actin Cytoskeleton in Cell Migration and Adhesion: On the Way to a Spatiotemporal View. Front Cell Dev Biol 2021; 8:618261. [PMID: 33585453 PMCID: PMC7875868 DOI: 10.3389/fcell.2020.618261] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
The actin cytoskeleton of eukaryotic cells is a dynamic, fibrous network that is regulated by the concerted action of actin-binding proteins (ABPs). In particular, rapid polarization of cells in response to internal and external stimuli is fundamental to cell migration and invasion. Various isoforms of ABPs in different tissues equip cells with variable degrees of migratory and adhesive capacities. In addition, regulation of ABPs by posttranslational modifications (PTM) is pivotal to the rapid responsiveness of cells. In this context, phosphorylation of ABPs and its functional consequences have been studied extensively. However, the study of reduction/oxidation (redox) modifications of oxidation-sensitive cysteine and methionine residues of actin, ABPs, adhesion molecules, and signaling proteins regulating actin cytoskeletal dynamics has only recently emerged as a field. The relevance of such protein oxidations to cellular physiology and pathophysiology has remained largely elusive. Importantly, studying protein oxidation spatiotemporally can provide novel insights into localized redox regulation of cellular functions. In this review, we focus on the redox regulation of the actin cytoskeleton, its challenges, and recently developed tools to study its physiological and pathophysiological consequences.
Collapse
Affiliation(s)
- Emre Balta
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Johanna Kramer
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Yvonne Samstag
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
11
|
The Interplay between HGF/c-met Axis and Nox4 in BRAF Mutated Melanoma. Int J Mol Sci 2021; 22:ijms22020761. [PMID: 33451139 PMCID: PMC7828605 DOI: 10.3390/ijms22020761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 01/22/2023] Open
Abstract
Background: Melanoma is the leading cause of death due to cutaneous malignancy and its incidence is on the rise. Several signaling pathways, including receptor tyrosine kinases, have a role in the development and progression of melanocytic lesions and malignant melanoma. Among those, the hepatocyte growth factor (HGF)/c-met axis is emerging as a critical player because it can play a role in drug resistance. Indeed, 50% of melanoma patients present BRAF mutations, however, all responders develop resistance to the inhibitors typically within one year of treatment. Interestingly, BRAF inhibitors induce reactive oxygen species (ROS) in melanoma cells, therefore, the aim of this study was to investigate a possible interplay between HGF/c-met and ROS sources, such as NADPH oxidases (Nox). Methods: The expression of c-met and Nox were quantified in 60 patients with primary cutaneous melanoma. In vitro experiments on melanoma primary cells and the cell line were performed to dissect the underpinned molecular mechanism. Results: The outcome of interest was the correlation between the high positivity for both Nox4 and c-met and metastasis occurring at least 1 year later than melanoma diagnosis in BRAF mutated patients, in contrast to nonmutated. In vitro experiments demonstrated that the axis HGF/c-met/Nox4/ROS triggers the epithelial-mesenchymal transition. Conclusions: The observed correlation suggests an interplay between c-met and Nox4 in promoting the onset of metastasis. This study suggests that Nox4 inhibitors could be associated to the current therapy used to treat melanoma patients with BRAF mutations.
Collapse
|
12
|
Premi S. Role of Melanin Chemiexcitation in Melanoma Progression and Drug Resistance. Front Oncol 2020; 10:1305. [PMID: 32850409 PMCID: PMC7425655 DOI: 10.3389/fonc.2020.01305] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/23/2020] [Indexed: 01/26/2023] Open
Abstract
Melanoma is the deadliest type of skin cancer. Human melanomas often show hyperactivity of nitric oxide synthase (NOS) and NADPH oxidase (NOX), which, respectively, generate nitric oxide (NO · ) and superoxide (O2 ·- ). The NO · and O2 - react instantly with each other to generate peroxynitrite (ONOO-) which is the driver of melanin chemiexcitation. Melanoma precursors, the melanocytes, are specialized skin cells that synthesize melanin, a potent shield against sunlight's ultraviolet (UV) radiation. However, melanin chemiexcitation paradoxically demonstrates the melanomagenic properties of melanin. In a loop, the NOS activity regulates melanin synthesis, and melanin is utilized by the chemiexcitation pathway to generate carcinogenic melanin-carbonyls in an excited triplet state. These carbonyl compounds induce UV-specific DNA damage without UV. Additionally, the carbonyl compounds are highly reactive and can make melanomagenic adducts with proteins, DNA and other biomolecules. Here we review the role of the melanin chemiexcitation pathway in melanoma initiation, progression, and drug resistance. We conclude by hypothesizing a non-classical, positive loop in melanoma where melanin chemiexcitation generates carcinogenic reactive carbonyl species (RCS) and DNA damage in normal melanocytes. In parallel, NOS and NOX regulate melanin synthesis generating raw material for chemiexcitation, and the resulting RCS and reactive nitrogen species (RNS) regulate cellular proteome and transcriptome in favor of melanoma progression, metastasis, and resistance against targeted therapies.
Collapse
Affiliation(s)
- Sanjay Premi
- Department of Tumor Biology, Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| |
Collapse
|
13
|
Mo CF, Li J, Yang SX, Guo HJ, Liu Y, Luo XY, Wang YT, Li MH, Li JY, Zou Q. IQGAP1 promotes anoikis resistance and metastasis through Rac1-dependent ROS accumulation and activation of Src/FAK signalling in hepatocellular carcinoma. Br J Cancer 2020; 123:1154-1163. [PMID: 32632148 PMCID: PMC7525663 DOI: 10.1038/s41416-020-0970-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 04/01/2020] [Accepted: 06/18/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) has a crucial role in the progression of hepatocellular carcinoma (HCC). Tumour cells must develop anoikis resistance in order to survive before metastasis. This study aimed to investigate the mechanism of IQGAP1 in HBV-mediated anoikis evasion and metastasis in HCC cells. METHODS IQGAP1 expression was detected by immunohistochemistry, real-time PCR and immunoblot analysis. Lentiviral-mediated stable upregulation or knockdown of IGAQP1, immunoprecipitation, etc. were used in function and mechanism study. RESULTS IQGAP1 was markedly upregulated in HBV-positive compared with HBV-negative HCC cells and tissues. IQGAP1 was positively correlated to poor prognosis of HBV-associated HCC patients. IQGAP1 overexpression significantly enhanced the anchorage-independent growth and metastasis, whereas IQGAP1-deficient HCC cells are more sensitive to anoikis. Mechanistically, we found that HBV-induced ROS enhanced the association of IQGAP1 and Rac1 that activated Rac1, leading to phosphorylation of Src/FAK pathway. Antioxidants efficiently inhibited IQGAP1-mediated anoikis resistance and metastasis. CONCLUSIONS Our study indicated an important mechanism by which upregulated IQGAP1 by HBV promoted anoikis resistance, migration and invasion of HCC cells through Rac1-dependent ROS accumulation and activation of Src/FAK signalling, suggesting IQGAP1 as a prognostic indicator and a novel therapeutic target in HCC patients with HBV infection.
Collapse
Affiliation(s)
- Chun-Fen Mo
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China.
| | - Jun Li
- Department of Gastroenterology, The first affiliated hospital of Chengdu medical college, Chengdu, China
| | - Shu-Xia Yang
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Hui-Jie Guo
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Yang Liu
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Xing-Yan Luo
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Yan-Tang Wang
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Min-Hui Li
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Jing-Yi Li
- Department of Urology, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China. .,School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China.
| | - Qiang Zou
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China.
| |
Collapse
|
14
|
Avagliano A, Fiume G, Pelagalli A, Sanità G, Ruocco MR, Montagnani S, Arcucci A. Metabolic Plasticity of Melanoma Cells and Their Crosstalk With Tumor Microenvironment. Front Oncol 2020; 10:722. [PMID: 32528879 PMCID: PMC7256186 DOI: 10.3389/fonc.2020.00722] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/16/2020] [Indexed: 12/21/2022] Open
Abstract
Cutaneous melanoma (CM) is a highly aggressive and drug resistant solid tumor, showing an impressive metabolic plasticity modulated by oncogenic activation. In particular, melanoma cells can generate adenosine triphosphate (ATP) during cancer progression by both cytosolic and mitochondrial compartments, although CM energetic request mostly relies on glycolysis. The upregulation of glycolysis is associated with constitutive activation of BRAF/MAPK signaling sustained by BRAFV600E kinase mutant. In this scenario, the growth and progression of CM are strongly affected by melanoma metabolic changes and interplay with tumor microenvironment (TME) that sustain tumor development and immune escape. Furthermore, CM metabolic plasticity can induce a metabolic adaptive response to BRAF/MEK inhibitors (BRAFi/MEKi), associated with the shift from glycolysis toward oxidative phosphorylation (OXPHOS). Therefore, in this review article we survey the metabolic alterations and plasticity of CM, its crosstalk with TME that regulates melanoma progression, drug resistance and immunosurveillance. Finally, we describe hallmarks of melanoma therapeutic strategies targeting the shift from glycolysis toward OXPHOS.
Collapse
Affiliation(s)
- Angelica Avagliano
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy.,Institute of Biostructures and Bioimages, National Research Council, Naples, Italy
| | - Gennaro Sanità
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Maria Rosaria Ruocco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Stefania Montagnani
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Alessandro Arcucci
- Department of Public Health, University of Naples Federico II, Naples, Italy
| |
Collapse
|
15
|
Obrador E, Liu-Smith F, Dellinger RW, Salvador R, Meyskens FL, Estrela JM. Oxidative stress and antioxidants in the pathophysiology of malignant melanoma. Biol Chem 2019; 400:589-612. [PMID: 30352021 DOI: 10.1515/hsz-2018-0327] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/09/2018] [Indexed: 02/07/2023]
Abstract
The high number of somatic mutations in the melanoma genome associated with cumulative ultra violet (UV) exposure has rendered it one of the most difficult of cancers to treat. With new treatment approaches based on targeted and immune therapies, drug resistance has appeared as a consistent problem. Redox biology, including reactive oxygen and nitrogen species (ROS and RNS), plays a central role in all aspects of melanoma pathophysiology, from initiation to progression and to metastatic cells. The involvement of melanin production and UV radiation in ROS/RNS generation has rendered the melanocytic lineage a unique system for studying redox biology. Overall, an elevated oxidative status has been associated with melanoma, thus much effort has been expended to prevent or treat melanoma using antioxidants which are expected to counteract oxidative stress. The consequence of this redox-rebalance seems to be two-fold: on the one hand, cells may behave less aggressively or even undergo apoptosis; on the other hand, cells may survive better after being disseminated into the circulating system or after drug treatment, thus resulting in metastasis promotion or further drug resistance. In this review we summarize the current understanding of redox signaling in melanoma at cellular and systemic levels and discuss the experimental and potential clinic use of antioxidants and new epigenetic redox modifiers.
Collapse
Affiliation(s)
- Elena Obrador
- Department of Phisiology, University of Valencia, 46010 Valencia, Spain
| | - Feng Liu-Smith
- Department of Epdemiology, Department of Medicine, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, USA.,Department of Medicine, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, USA
| | | | - Rosario Salvador
- Department of Phisiology, University of Valencia, 46010 Valencia, Spain
| | - Frank L Meyskens
- Department of Epdemiology, Department of Medicine, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, USA.,Department of Medicine, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, USA.,Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92697, USA
| | - José M Estrela
- Department of Phisiology, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
16
|
Aerobic glycolysis is a metabolic requirement to maintain the M2-like polarization of tumor-associated macrophages. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118604. [PMID: 31760090 DOI: 10.1016/j.bbamcr.2019.118604] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/03/2019] [Accepted: 11/10/2019] [Indexed: 12/30/2022]
Abstract
Macrophages (MO) are versatile cells, assuming distinct functional phenotypes depending on the activating stimulus and the microenvironment. The differential activation of macrophages is supported by profound intracellular metabolic changes, being well accepted that the M1/M(LPS+IFN-γ) phenotype rely on aerobic glycolysis, while M2/M(IL-4) macrophages depend on oxidative metabolism. On the other hand, although tumor-associated macrophages (TAMs) are characterized by their high expression of M2/M(IL-4) markers, is currently unclear whether TAMs present the same oxidative metabolic profile of M2/M(IL-4) cells. Herein, we demonstrate for the first time that despite their high expression of M2/M(IL-4) markers, TAMs show high glycolytic activity, with high lactate secretion similar to the M1/M(LPS+ IFN-γ) phenotype. This activity seems to be essential for the M2 profile of TAMs, since the inhibition of glycolysis, but not the impairment of the oxidative phosphorylation or pentose phosphate pathway, diminished the expression of M2/M(IL-4) markers. These novel data indicate that TAMs, although are usually phenotyped as M2/M(IL-4)-like macrophages, they are metabolically distinct from these cells, being rather similar to M1/M(LPS+IFN-γ) macrophages, depending on the glycolytic metabolism to support their profile and functions.
Collapse
|
17
|
Kim JS, Jeong K, Murphy JM, Rodriguez YAR, Lim STS. A Quantitative Method to Measure Low Levels of ROS in Nonphagocytic Cells by Using a Chemiluminescent Imaging System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1754593. [PMID: 31285782 PMCID: PMC6594271 DOI: 10.1155/2019/1754593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/07/2019] [Accepted: 05/19/2019] [Indexed: 12/13/2022]
Abstract
Chemiluminescence (CL) is one of the most useful methods for detecting reactive oxygen species (ROS). Although fluorescence dyes or genetically encoded biosensors have been developed, CL is still used due to its high sensitivity, ease of use, and low cost. While initially established and used to measure high levels of ROS in phagocytic cells, CL assays are not ideal for measuring low levels of ROS. Here, we developed a newly modified CL assay using a chemiluminescent imaging system for measuring low concentrations of ROS in nonphagocytic cells. We found that dissolving luminol in NaOH, rather than DMSO, increased the H2O2-induced CL signal and that the addition of 4-iodophenylboronic acid (4IPBA) further increased CL intensity. Our new system also increased the rate and intensity of the CL signal in phorbol 12-myristate 13-acetate- (PMA-) treated HT-29 colon cancer cells compared to those in luminol only. We were able to quantify ROS levels from both cells and media in parallel using an H2O2 standard. A significant benefit to our system is that we can easily measure stimulus-induced ROS formation in a real-time manner and also investigate intracellular signaling pathways from a single sample simultaneously. We found that PMA induced tyrosine phosphorylation of protein tyrosine kinases (PTKs), such as focal adhesion kinase (FAK), protein tyrosine kinase 2 (Pyk2), and Src, and increased actin stress fiber formation in a ROS-dependent manner. Interestingly, treatment with either N-acetyl-L-cysteine (NAC) or diphenyleneiodonium (DPI) reduced the PMA-stimulated phosphorylation of these PTKs, implicating a potential role in cellular ROS signaling. Thus, our newly optimized CL assay using 4IPBA and a chemiluminescent imaging method provides a simple, real-time, and low-cost method for the quantification of low levels of ROS.
Collapse
Affiliation(s)
- Jun-Sub Kim
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
- Department of Biotechnology, Korea National University of Transportation, Jeungpyeong 27909, Republic of Korea
| | - Kyuho Jeong
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - James M. Murphy
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Yelitza A. R. Rodriguez
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Ssang-Taek Steve Lim
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|
18
|
Tamborindeguy MT, Matte BF, Ramos GDO, Alves AM, Bernardi L, Lamers ML. NADPH-oxidase-derived ROS alters cell migration by modulating adhesions dynamics. Biol Cell 2018; 110:225-236. [DOI: 10.1111/boc.201800011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 08/03/2018] [Accepted: 08/10/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Maurício Tavares Tamborindeguy
- Basic Research Center in Dentistry, Dentistry School; Federal University of Rio Grande do Sul; Porto Alegre RS Brazil
- Center of Biotechnology; Federal University of Rio Grande do Sul; Porto Alegre RS Brazil
| | - Bibiana Franzen Matte
- Basic Research Center in Dentistry, Dentistry School; Federal University of Rio Grande do Sul; Porto Alegre RS Brazil
| | - Grasieli de Oliveira Ramos
- Basic Research Center in Dentistry, Dentistry School; Federal University of Rio Grande do Sul; Porto Alegre RS Brazil
- School of Dentistry; University of Oeste de Santa Catarina; Joaçaba SC Brazil
| | - Alessandro Menna Alves
- Basic Research Center in Dentistry, Dentistry School; Federal University of Rio Grande do Sul; Porto Alegre RS Brazil
- School of Dentistry; University Center Univates; Lajeado RS Brazil
| | - Lisiane Bernardi
- Basic Research Center in Dentistry, Dentistry School; Federal University of Rio Grande do Sul; Porto Alegre RS Brazil
| | - Marcelo Lazzaron Lamers
- Basic Research Center in Dentistry, Dentistry School; Federal University of Rio Grande do Sul; Porto Alegre RS Brazil
- Department of Morphological Sciences, Institute of Basic Health Sciences; Federal University of Rio Grande do Sul; Porto Alegre RS Brazil
| |
Collapse
|
19
|
Rudolf J, Raad H, Taieb A, Rezvani HR. NADPH Oxidases and Their Roles in Skin Homeostasis and Carcinogenesis. Antioxid Redox Signal 2018; 28:1238-1261. [PMID: 28990413 DOI: 10.1089/ars.2017.7282] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE Skin protects the body from dehydration, pathogens, and external mutagens. NADPH oxidases are central components for regulating the cellular redox balance. There is increasing evidence indicating that reactive oxygen species (ROS) generated by members of this enzyme family play important roles in the physiology and pathophysiology of the skin. Recent Advances: NADPH oxidases are active producers of ROS such as superoxide and hydrogen peroxide. Different isoforms are found in virtually all tissues. They play pivotal roles in normal cell homeostasis and in the cellular responses to various stressors. In particular, these enzymes are integral parts of redox-sensitive prosurvival and proapoptotic signaling pathways, in which they act both as effectors and as modulators. However, continuous (re)activation of NADPH oxidases can disturb the redox balance of cells, in the worst-case scenario in a permanent manner. Abnormal NADPH oxidase activity has been associated with a wide spectrum of diseases, as well as with aging and carcinogenesis. CRITICAL ISSUES Sunlight with its beneficial and deleterious effects induces the activation of NADPH oxidases in the skin. Evidence for the important roles of this enzyme family in skin cancer and skin aging, as well as in many chronic skin diseases, is now emerging. FUTURE DIRECTIONS Understanding the precise roles of NADPH oxidases in normal skin homeostasis, in the cellular responses to solar radiation, and during carcinogenesis will pave the way for their validation as therapeutic targets not only for the prevention and treatment of skin cancers but also for many other skin-related disorders. Antioxid. Redox Signal. 28, 1238-1261.
Collapse
Affiliation(s)
- Jana Rudolf
- 1 Inserm U 1035, Bordeaux, France .,2 Université de Bordeaux , Bordeaux, France
| | - Houssam Raad
- 1 Inserm U 1035, Bordeaux, France .,2 Université de Bordeaux , Bordeaux, France
| | - Alain Taieb
- 1 Inserm U 1035, Bordeaux, France .,2 Université de Bordeaux , Bordeaux, France .,3 Service de Dermatologie Adulte et Pédiatrique , CHU de Bordeaux, Bordeaux, France .,4 Centre de Référence des Maladies Rares de la Peau , CHU de Bordeaux, Bordeaux, France
| | - Hamid Reza Rezvani
- 1 Inserm U 1035, Bordeaux, France .,2 Université de Bordeaux , Bordeaux, France .,4 Centre de Référence des Maladies Rares de la Peau , CHU de Bordeaux, Bordeaux, France
| |
Collapse
|
20
|
Oliveira JSSD, Santos GDS, Moraes JA, Saliba AM, Barja-Fidalgo TC, Mattos-Guaraldi AL, Nagao PE. Reactive oxygen species generation mediated by NADPH oxidase and PI3K/Akt pathways contribute to invasion of Streptococcus agalactiae in human endothelial cells. Mem Inst Oswaldo Cruz 2018; 113:e140421. [PMID: 29641644 PMCID: PMC5887998 DOI: 10.1590/0074-02760170421] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/05/2018] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Streptococcus agalactiae can causes sepsis, pneumonia, and meningitis in neonates, the elderly, and immunocompromised patients. Although the virulence properties of S. agalactiae have been partially elucidated, the molecular mechanisms related to reactive oxygen species (ROS) generation in infected human endothelial cells need further investigation. OBJECTIVES This study aimed to evaluate the influence of oxidative stress in human umbilical vein endothelial cells (HUVECs) during S. agalactiae infection. METHODS ROS production during S. agalactiae-HUVEC infection was detected using the probe CM-H2DCFDA. Microfilaments labelled with phalloidin-FITC and p47phox-Alexa 546 conjugated were analysed by immunofluorescence. mRNA levels of p47phox (NADPH oxidase subunit) were assessed using Real Time qRT-PCR. The adherence and intracellular viability of S. agalactiae in HUVECs with or without pre-treatment of DPI, apocynin (NADPH oxidase inhibitors), and LY294002 (PI3K inhibitor) were evaluated by penicillin/gentamicin exclusion. Phosphorylation of p47phox and Akt activation by S. agalactiae were evaluated by immunoblotting analysis. FINDINGS Data showed increased ROS production 15 min after HUVEC infection. Real-Time qRT-PCR and western blotting performed in HUVEC infected with S. agalactiae detected alterations in mRNA levels and activation of p47phox. Pre-treatment of endothelial cells with NADPH oxidase (DPI and apocynin) and PI3K/Akt pathway (LY294002) inhibitors reduced ROS production, bacterial intracellular viability, and generation of actin stress fibres in HUVECs infected with S. agalactiae. CONCLUSIONS ROS generation via the NADPH oxidase pathway contributes to invasion of S. agalactiae in human endothelial cells accompanied by cytoskeletal reorganisation through the PI3K/Akt pathway, which provides novel evidence for the involvement of oxidative stress in S. agalactiae pathogenesis.
Collapse
Affiliation(s)
- Jessica Silva Santos de Oliveira
- Departamento de Biologia Celular, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Gabriela da Silva Santos
- Departamento de Biologia Celular, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - João Alfredo Moraes
- Departamento de Biologia Celular, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Alessandra Mattos Saliba
- Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Thereza Christina Barja-Fidalgo
- Departamento de Biologia Celular, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | | | - Prescilla Emy Nagao
- Departamento de Biologia Celular, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
21
|
Hanley CJ, Mellone M, Ford K, Thirdborough SM, Mellows T, Frampton SJ, Smith DM, Harden E, Szyndralewiez C, Bullock M, Noble F, Moutasim KA, King EV, Vijayanand P, Mirnezami AH, Underwood TJ, Ottensmeier CH, Thomas GJ. Targeting the Myofibroblastic Cancer-Associated Fibroblast Phenotype Through Inhibition of NOX4. J Natl Cancer Inst 2018; 110:4060751. [PMID: 28922779 PMCID: PMC5903651 DOI: 10.1093/jnci/djx121] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 03/08/2017] [Accepted: 05/18/2017] [Indexed: 12/15/2022] Open
Abstract
Background Cancer-associated fibroblasts (CAFs) are tumor-promoting and correlate with poor survival in many cancers, which has led to their emergence as potential therapeutic targets. However, effective methods to manipulate these cells clinically have yet to be developed. Methods CAF accumulation and prognostic significance in head and neck cancer (oral, n = 260; oropharyngeal, n = 271), and colorectal cancer (n = 56) was analyzed using immunohistochemistry. Mechanisms regulating fibroblast-to-myofibroblast transdifferentiation were investigated in vitro using RNA interference/pharmacological inhibitors followed by polymerase chain reaction (PCR), immunoblotting, immunofluorescence, and functional assays. RNA sequencing/bioinformatics and immunohistochemistry were used to analyze NAD(P)H Oxidase-4 (NOX4) expression in different human tumors. NOX4's role in CAF-mediated tumor progression was assessed in vitro, using CAFs from multiple tissues in Transwell and organotypic culture assays, and in vivo, using xenograft (n = 9-15 per group) and isograft (n = 6 per group) tumor models. All statistical tests were two-sided. Results Patients with moderate/high levels of myofibroblastic-CAF had a statistically significant decrease in cancer-specific survival rates in each cancer type analyzed (hazard ratios [HRs] = 1.69-7.25, 95% confidence intervals [CIs] = 1.11 to 31.30, log-rank P ≤ .01). Fibroblast-to-myofibroblast transdifferentiation was dependent on a delayed phase of intracellular reactive oxygen species, generated by NOX4, across different anatomical sites and differentiation stimuli. A statistically significant upregulation of NOX4 expression was found in multiple human cancers (P < .001), strongly correlating with myofibroblastic-CAFs (r = 0.65-0.91, adjusted P < .001). Genetic/pharmacological inhibition of NOX4 was found to revert the myofibroblastic-CAF phenotype ex vivo (54.3% decrease in α-smooth muscle actin [α-SMA], 95% CI = 10.6% to 80.9%, P = .009), prevent myofibroblastic-CAF accumulation in vivo (53.2%-79.0% decrease in α-SMA across different models, P ≤ .02) and slow tumor growth (30.6%-64.0% decrease across different models, P ≤ .04). Conclusions These data suggest that pharmacological inhibition of NOX4 may have broad applicability for stromal targeting across cancer types.
Collapse
Affiliation(s)
- Christopher J Hanley
- Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton, UK
| | - Massimiliano Mellone
- Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton, UK
| | - Kirsty Ford
- Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton, UK
| | - Steve M Thirdborough
- Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton, UK
| | - Toby Mellows
- Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton, UK
| | - Steven J Frampton
- Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton, UK
| | - David M Smith
- Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton, UK
| | - Elena Harden
- Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton, UK
| | | | - Marc Bullock
- Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton, UK
| | - Fergus Noble
- Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton, UK
| | - Karwan A Moutasim
- Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton, UK
| | - Emma V King
- Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton, UK
| | | | - Alex H Mirnezami
- Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton, UK
| | - Timothy J Underwood
- Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton, UK
| | | | - Gareth J Thomas
- Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton, UK
| |
Collapse
|
22
|
Rosa TG, dos Santos SN, de Jesus Andreoli Pinto T, Ghisleni DDM, Barja-Fidalgo TC, Ricci-Junior E, Al-Qahtani M, Kozempel J, Bernardes ES, Santos-Oliveira R. Microradiopharmaceutical for Metastatic Melanoma. Pharm Res 2017; 34:2922-2930. [DOI: 10.1007/s11095-017-2275-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 10/01/2017] [Indexed: 12/12/2022]
|
23
|
Huang H, Du W, Brekken RA. Extracellular Matrix Induction of Intracellular Reactive Oxygen Species. Antioxid Redox Signal 2017; 27:774-784. [PMID: 28791881 DOI: 10.1089/ars.2017.7305] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
SIGNIFICANCE The extracellular matrix (ECM) is the noncellular component secreted by cells and is present within all tissues and organs. The ECM provides the structural support required for tissue integrity and also contributes to diseases, including cancer. Many diseases rich in ECM are characterized by changes in reactive oxygen species (ROS) levels that have been shown to have important context-dependent functions. Recent Advances: Many studies have found that the ECM affects ROS production through integrins. The activation of integrins by ECM ligands results in stimulation of multiple pathways that can generate ROS. Furthermore, control of ECM-integrin interaction by matricellular proteins is an underappreciated pathway that functions as an ROS rheostat in remodeling tissues. CRITICAL ISSUES A better understanding of how the ECM affects the generation of intracellular ROS is required for advances in the development of therapeutic strategies that affect or exploit oxidative stress. FUTURE DIRECTIONS Targeting ROS generation can be therapeutic or can promote disease progression in a context-dependent manner. Many ECM proteins can impact ROS generation. However, given the breadth of different proteins that constitute the ECM and the cell surface receptors that interact with ECM proteins, there are likely many tissue and microenvironmental-specific ROS-generating pathways that have yet to be investigated in depth. Identifying canonical pathways of ECM-induced ROS generation should be a priority for the field. Antioxid. Redox Signal. 27, 774-784.
Collapse
Affiliation(s)
- Huocong Huang
- 1 Division of Surgical Oncology, Department of Surgery, Hamon Center for Therapeutic Oncology Research , Dallas, Texas
| | - Wenting Du
- 1 Division of Surgical Oncology, Department of Surgery, Hamon Center for Therapeutic Oncology Research , Dallas, Texas
| | - Rolf A Brekken
- 1 Division of Surgical Oncology, Department of Surgery, Hamon Center for Therapeutic Oncology Research , Dallas, Texas.,2 Department of Pharmacology, UT Southwestern, Dallas, Texas
| |
Collapse
|
24
|
Redox regulation in tumor cell epithelial-mesenchymal transition: molecular basis and therapeutic strategy. Signal Transduct Target Ther 2017; 2:17036. [PMID: 29263924 PMCID: PMC5661624 DOI: 10.1038/sigtrans.2017.36] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 04/25/2017] [Accepted: 04/25/2017] [Indexed: 02/05/2023] Open
Abstract
Epithelial–mesenchymal transition (EMT) is recognized as a driving force of cancer cell metastasis and drug resistance, two leading causes of cancer recurrence and cancer-related death. It is, therefore, logical in cancer therapy to target the EMT switch to prevent such cancer metastasis and recurrence. Previous reports have indicated that growth factors (such as epidermal growth factor and fibroblast growth factor) and cytokines (such as the transforming growth factor beta (TGF-β) family) are major stimulators of EMT. However, the mechanisms underlying EMT initiation and progression remain unclear. Recently, emerging evidence has suggested that reactive oxygen species (ROS), important cellular secondary messengers involved in diverse biological events in cancer cells, play essential roles in the EMT process in cancer cells by regulating extracellular matrix (ECM) remodeling, cytoskeleton remodeling, cell–cell junctions, and cell mobility. Thus, targeting EMT by manipulating the intracellular redox status may hold promise for cancer therapy. Herein, we will address recent advances in redox biology involved in the EMT process in cancer cells, which will contribute to the development of novel therapeutic strategies by targeting redox-regulated EMT for cancer treatment.
Collapse
|
25
|
CRISPR-Cas9 Mediated NOX4 Knockout Inhibits Cell Proliferation and Invasion in HeLa Cells. PLoS One 2017; 12:e0170327. [PMID: 28099519 PMCID: PMC5242459 DOI: 10.1371/journal.pone.0170327] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 01/03/2017] [Indexed: 11/19/2022] Open
Abstract
Increased expression of NOX4 protein is associated with cancer progression and metastasis but the role of NOX4 in cell proliferation and invasion is not fully understood. We generated NOX4 knockout HeLa cell lines using the CRISPR-Cas9 gene editing system to explore the cellular functions of NOX4. After transfection of CRISPR-Cas9 construct, we performed T7 endonuclease 1 assays and DNA sequencing to generate and identify insertion and deletion of the NOX4 locus. We confirmed the knockout of NOX4 by Western blotting. NOX4 knockout cell lines showed reduced cell proliferation with an increase of sub-G1 cell population and the decrease of S/G2/M population. Moreover, NOX4 deficiency resulted in a dramatic decrease in invadopodium formation and the invasive activity. In addition, NOX4 deficiency also caused a decrease in focal adhesions and cell migration in HeLa cells. These results suggest that NOX4 is required for both efficient proliferation and invasion of HeLa cells.
Collapse
|
26
|
Kim HJ, Magesh V, Lee JJ, Kim S, Knaus UG, Lee KJ. Ubiquitin C-terminal hydrolase-L1 increases cancer cell invasion by modulating hydrogen peroxide generated via NADPH oxidase 4. Oncotarget 2016; 6:16287-303. [PMID: 25915537 PMCID: PMC4599270 DOI: 10.18632/oncotarget.3843] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/20/2015] [Indexed: 12/22/2022] Open
Abstract
This study explored the role of ubiquitin C-terminal hydrolase-L1 (UCH-L1) in the production of ROS and tumor invasion. UCH-L1 was found to increase cellular ROS levels and promote cell invasion. Silencing UCH-L1, as well as inhibition of H2O2 generation by catalase or by DPI, a NOX inhibitor, suppressed the migration potential of B16F10 cells, indicating that UCH-L1 promotes cell migration by up-regulating H2O2 generation. Silencing NOX4, which generates H2O2, with siRNA eliminated the effect of UCH-L1 on cell migration. On the other hand, NOX4 overexpressed in HeLa cells happens to be ubiquitinated, and NOX4 following deubiquitination by UCH-L1, restored H2O2-generating activity. These in vitro findings are consistent with the results obtained in vivo with catalase (−/−) C57BL/6J mice. When H2O2 and UCH-L1 levels were independently varied in these animals, the former by infecting with H2O2-scavenging adenovirus-catalase, and the latter by overexpressing or silencing UCH-L1, pulmonary metastasis of B16F10 cells overexpressing UCH-L1 increased significantly in catalase (−/−) mice. In contrast, invasion did not increase when UCH-L1 was silenced in the B16F10 cells. These findings indicate that H2O2 levels regulated by UCH-L1 are necessary for cell invasion to occur and demonstrate that UCH-L1 promotes cell invasion by up-regulating H2O2 via deubiquitination of NOX4.
Collapse
Affiliation(s)
- Hyun Jung Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Venkataraman Magesh
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Jae-Jin Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Sun Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Ulla G Knaus
- Conway Institute, University College Dublin, Dublin, Ireland
| | - Kong-Joo Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| |
Collapse
|