1
|
Elamin G, Aljoundi A, Alahmdi MI, Abo-Dya NE, Soliman MES. Revealing the Role of the Arg and Lys in Shifting Paradigm from BTK Selective Inhibition to the BTK/HCK Dual Inhibition - Delving into the Inhibitory Activity of KIN-8194 against BTK, and HCK in the Treatment of Mutated BTKCys481 Waldenström Macroglobulinemia: A Computational Approach. Anticancer Agents Med Chem 2024; 24:813-825. [PMID: 36752293 DOI: 10.2174/1871520623666230208102609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/30/2022] [Accepted: 12/08/2022] [Indexed: 02/09/2023]
Abstract
BACKGROUND Despite the early success of Bruton's tyrosine kinase (BTK) inhibitors in the treatment of Waldenström macroglobulinemia (WM), these single-target drug therapies have limitations in their clinical applications, such as drug resistance. Several alternative strategies have been developed, including the use of dual inhibitors, to maximize the therapeutic potential of these drugs. OBJECTIVE Recently, the pharmacological activity of KIN-8194 was repurposed to serve as a 'dual-target' inhibitor of BTK and Hematopoietic Cell Kinase (HCK). However, the structural dual inhibitory mechanism remains unexplored, hence the aim of this study. METHODS Conducting predictive pharmacokinetic profiling of KIN-8194, as well as demonstrating a comparative structural mechanism of inhibition against the above-mentioned enzymes. RESULTS Our results revealed favourable binding affinities of -20.17 kcal/mol, and -35.82 kcal/mol for KIN-8194 towards HCK and BTK, respectively. Catalytic residues Arg137/174 and Lys42/170 in BTK and Arg303 and Lys75/173/244/247 in HCK were identified as crucial mediators of the dual binding mechanism of KIN-8194, corroborated by high per-residue energy contributions and consistent high-affinity interactions of these residues. Prediction of the pharmacokinetics and physicochemical properties of KIN-8194 further established its inhibitory potential, evidenced by the favourable absorption, metabolism, excretion, and minimal toxicity properties. Structurally, KIN-8194 impacted the stability, flexibility, solvent-accessible surface area, and rigidity of BTK and HCK, characterized by various alterations observed in the bound and unbound structures, which proved enough to disrupt their biological function. CONCLUSION These structural insights provided a baseline for the understanding of the dual inhibitory activity of KIN- 8194. Establishing the cruciality of the interactions between the KIN-8194 and Arg and Lys residues could guide the structure-based design of novel dual BTK/HCK inhibitors with improved therapeutic activities.
Collapse
Affiliation(s)
- Ghazi Elamin
- Department of Pharmaceutical Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Aimen Aljoundi
- Department of Pharmaceutical Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Mohamed I Alahmdi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, 7149, Saudi Arabia
| | - Nader E Abo-Dya
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tabuk University, Tabuk, 71491, Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mahmoud E S Soliman
- Department of Pharmaceutical Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| |
Collapse
|
2
|
Yusof NAM, Razali SA, Mohd Padzil A, Lau BYC, Baharum SN, Nor Muhammad NA, Raston NHA, Chong CM, Ikhsan NFM, Situmorang ML, Fei LC. Computationally Designed Anti-LuxP DNA Aptamer Suppressed Flagellar Assembly- and Quorum Sensing-Related Gene Expression in Vibrio parahaemolyticus. BIOLOGY 2022; 11:1600. [PMID: 36358301 PMCID: PMC9687752 DOI: 10.3390/biology11111600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/29/2023]
Abstract
(1) Background: Quorum sensing (QS) is the chemical communication between bacteria that sense chemical signals in the bacterial population to control phenotypic changes through the regulation of gene expression. The inhibition of QS has various potential applications, particularly in the prevention of bacterial infection. QS can be inhibited by targeting the LuxP, a periplasmic receptor protein that is involved in the sensing of the QS signaling molecule known as the autoinducer 2 (AI-2). The sensing of AI-2 by LuxP transduces the chemical information through the inner membrane sensor kinase LuxQ protein and activates the QS cascade. (2) Methods: An in silico approach was applied to design DNA aptamers against LuxP in this study. A method combining molecular docking and molecular dynamics simulations was used to select the oligonucleotides that bind to LuxP, which were then further characterized using isothermal titration calorimetry. Subsequently, the bioactivity of the selected aptamer was examined through comparative transcriptome analysis. (3) Results: Two aptamer candidates were identified from the ITC, which have the lowest dissociation constants (Kd) of 0.2 and 0.5 micromolar. The aptamer with the lowest Kd demonstrated QS suppression and down-regulated the flagellar-assembly-related gene expression. (4) Conclusions: This study developed an in silico approach to design an aptamer that possesses anti-QS properties.
Collapse
Affiliation(s)
- Nur Afiqah Md Yusof
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Siti Aisyah Razali
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
| | - Azyyati Mohd Padzil
- Malaysia Genome and Vaccine Institute (MGVI), National Institute of Biotechnology Malaysia (NIBM), Jalan Bangi, Kajang 43000, Selangor, Malaysia
| | - Benjamin Yii Chung Lau
- Malaysian Palm Oil Board, Persiaran Institusi, Bandar Baru Bangi, Kajang 43000, Selangor, Malaysia
| | - Syarul Nataqain Baharum
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Nor Azlan Nor Muhammad
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Nurul Hanun Ahmad Raston
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Chou Min Chong
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Natrah Fatin Mohd Ikhsan
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | | | - Low Chen Fei
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
3
|
Elamin G, Aljoundi A, Soliman MES. Co-Binding of JQ1 and Venetoclax Exhibited Synergetic Inhibitory Effect for Cancer Therapy; Potential Line of Treatment for the Waldenström Macroglobulinemia Lymphoma. Chem Biodivers 2022; 19:e202100845. [PMID: 35610180 DOI: 10.1002/cbdv.202100845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/24/2022] [Indexed: 11/11/2022]
Abstract
In recent times, the development of combination therapy has been a focal point in drug discovery. This article explores the potential synergistic effect of co-administration of Bcl2 inhibitor Venetoclax and BET inhibitor JQ1. We envisioned that the 'dual-site'-binding of Bcl2 has significant prospects and paves the way for the next round of rational design of potent Waldenström macroglobulinemia (WM) therapy. The preferential binding mechanisms of the multi-catalytic sites of the Bcl2 enzyme have been a subject of debate in the literature. This study conducted a systematic procedure to explore the preferred binding modes and the structural effects of co-binding at each catalytic active site. Interestingly, a mutual enhanced binding effect was observed - Venetoclax increased the binding affinity of JQ1 by 11.5 %, while JQ1 boosted the binding affinity of Venetoclax by 16.3 % when compared with individual inhibition of each drug. This synergistic binding effect has significantly increased protein stability, with substantial correlated movements and multiple van der Waals interactions. The structural and thermodynamic insights unveiled in this report would assist the future design of improved combined therapy against WM.
Collapse
Affiliation(s)
- Ghazi Elamin
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Aimen Aljoundi
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| |
Collapse
|
4
|
Elamin G, Aljoundi A, Soliman MES. Multi-catalytic Sites Inhibition of Bcl2 Induces Expanding of Hydrophobic Groove: A New Avenue Towards Waldenström Macroglobulinemia Therapy. Protein J 2022; 41:201-215. [PMID: 35237907 DOI: 10.1007/s10930-022-10046-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2022] [Indexed: 11/29/2022]
Abstract
B-cell lymphoma 2 (Bcl2) is a key protein regulator of apoptosis. The hydrophobic groove in Bcl2 is a unique structural feature to this class of enzymes and found to have a profound impact on protein overall structure, function, and dynamics. Dynamics of the hydrophobic groove is an essential determinant of the catalytic activity of Bcl2, an implicated protein in Waldenström macroglobulinemia (WM). The mobility of α3-α4 helices around the catalytic site of the protein remains crucial to its activity. The preferential binding mechanisms of the multi-catalytic sites of the Bcl2 enzyme have been a subject of debate in the literature. In addition to our previous report on the same protein, herein, we further investigate the preferential binding modes and the conformational implications of Venetoclax-JQ1 dual drug binding at both catalytic active sites of Bcl2. Structural analysis revealed asymmetric α3-α4 helices movement with the expansion of the distance between the α3 and α4 helix in Venetoclax-JQ1 dual inhibition by 15.2% and 26.3%, respectively when compared to JQ1 and Venetoclax individual drug inhibition-resulting in remarkable widening of hydrophobic groove. Moreso, a reciprocal enhanced binding effect was observed: Venetoclax increased the binding affinity of JQ1 by 11.5%, while the JQ1 fostered the binding affinity of Venetoclax by 16.3% compared with individual inhibition of each drug. This divergence has also resulted in higher protein stability, and prominent correlated motions were observed with the least fluctuations and multiple van der Waals interactions. Findings offer vital conformational dynamics and structural mechanisms of enzyme-single ligand and enzyme-dual ligand interactions, which could potentially shift the current therapeutic protocol of Waldenström macroglobulinemia.
Collapse
Affiliation(s)
- Ghazi Elamin
- Molecular Bio-Computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Aimen Aljoundi
- Molecular Bio-Computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-Computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa.
| |
Collapse
|
5
|
Unveiling the Role of the Fatty Acid Binding Protein 4 in the Metabolic-Associated Fatty Liver Disease. Biomedicines 2022; 10:biomedicines10010197. [PMID: 35052876 PMCID: PMC8773613 DOI: 10.3390/biomedicines10010197] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 02/04/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD), the main cause of chronic liver disease worldwide, is a progressive disease ranging from fatty liver to steatohepatitis (metabolic-associated steatohepatitis; MASH). Nevertheless, it remains underdiagnosed due to the lack of effective non-invasive methods for its diagnosis and staging. Although MAFLD has been found in lean individuals, it is closely associated with obesity-related conditions. Adipose tissue is the main source of liver triglycerides and adipocytes act as endocrine organs releasing a large number of adipokines and pro-inflammatory mediators involved in MAFLD progression into bloodstream. Among the adipocyte-derived molecules, fatty acid binding protein 4 (FABP4) has been recently associated with fatty liver and additional features of advanced stages of MAFLD. Additionally, emerging data from preclinical studies propose FABP4 as a causal actor involved in the disease progression, rather than a mere biomarker for the disease. Therefore, the FABP4 regulation could be considered as a potential therapeutic strategy to MAFLD. Here, we review the current knowledge of FABP4 in MAFLD, as well as its potential role as a therapeutic target for this disease.
Collapse
|
6
|
Elamin G, Aljoundi A, Soliman ME. A synergistic multitargeted of BET and HDAC: an intra-molecular mechanism of communication in treatment of Waldenström macroglobulinemia. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2021.2005248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ghazi Elamin
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Aimen Aljoundi
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mahmoud E.S. Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
7
|
Habib I, Khan S, Mohammad T, Hussain A, Alajmi MF, Rehman T, Anjum F, Hassan MI. Impact of non-synonymous mutations on the structure and function of telomeric repeat binding factor 1. J Biomol Struct Dyn 2021; 40:9053-9066. [PMID: 33982644 DOI: 10.1080/07391102.2021.1922313] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Telomeric repeat binding factor 1 (TRF1) is one of the major components of the shelterin complex. It directly binds to the telomere and controls its function by regulating the telomerase acting on it. Several variations are reported in the TRF1 gene; some are associated with variety of diseases. Here, we have studied the structural and functional significance of these variations in the TRFH domain of TRF1. We have used cutting-edge computational methods such as SIFT, PolyPhen-2, PROVEAN, Mutation Assessor, mCSM, SDM, STRUM, MAESTRO, and DUET to predict the effects of 124 mutations in the TRFH domain of TRF1. Out of 124 mutations, we have identified 12 deleterious mutations with high confidence based on their prediction. To see the impact of the finally selected mutations on the structure and stability of TRF1, all-atom molecular dynamics (MD) simulations on TRF1-Wild type (WT), L79R and P150R mutants for 200 ns were carried out. A significant conformational change in the structure of the P150R mutant was observed. Our integrated computational study provides a comprehensive understanding of structural changes in TRF1 incurred due to the mutations and subsequent function, leading to the progression of many diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Insan Habib
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Shama Khan
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, South Africa
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
8
|
Yin YY, Zhao J, Zhang LL, Xu XY, Liu JQ. Molecular mechanisms of inhibitor bindings to A-FABP deciphered by using molecular dynamics simulations and calculations of MM-GBSA. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2021; 32:293-315. [PMID: 33655818 DOI: 10.1080/1062936x.2021.1891966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Adipocyte fatty-acid binding protein (A-FABP) plays a central role in many aspects of metabolic diseases. It is an important target in drug design for treatment of FABP-related diseases. In this study, molecular dynamics (MD) simulations followed by calculations of molecular mechanics generalized Born surface area (MM-GBSA) and principal components analysis (PCA) were implemented to decipher molecular mechanism correlating with binding of inhibitors 57Q, 57P and L96 to A-FABP. The results show that van der Waals interactions are the leading factors to control associations of 57Q, 57P, and L96 with A-FABP, which reveals an energetic basis for designing of clinically available inhibitors towards A-FABP. The information from PCA and cross-correlation analysis rationally unveils that inhibitor bindings affect conformational changes of A-FABP and change relative movements between residues. Decomposition of binding affinity into contributions of individual residues not only detects hot spots of inhibitor/A-FABP binding but also shows that polar interactions of the positively charged residue Arg126 with three inhibitors provide a significant contribution for stabilization of the inhibitor/A-FABP bindings. Furthermore, the binding strength of L96 to residues Ser55, Phe57 and Lys58 are stronger than that of inhibitors 57Q and 57P to these residues.
Collapse
Affiliation(s)
- Y Y Yin
- School of Science, Shandong Jiaotong University, Jinan, China
| | - J Zhao
- School of Science, Shandong Jiaotong University, Jinan, China
| | - L L Zhang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - X Y Xu
- School of Science, Shandong Jiaotong University, Jinan, China
| | - J Q Liu
- School of Science, Shandong Jiaotong University, Jinan, China
| |
Collapse
|
9
|
Fakhar Z, Khan S, AlOmar SY, Alkhuriji A, Ahmad A. ABBV-744 as a potential inhibitor of SARS-CoV-2 main protease enzyme against COVID-19. Sci Rep 2021; 11:234. [PMID: 33420186 PMCID: PMC7794216 DOI: 10.1038/s41598-020-79918-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 12/01/2020] [Indexed: 01/29/2023] Open
Abstract
A new pathogen severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread worldwide and become pandemic with thousands new deaths and infected cases globally. To address coronavirus disease (COVID-19), currently no effective drug or vaccine is available. This necessity motivated us to explore potential lead compounds by considering drug repurposing approach targeting main protease (Mpro) enzyme of SARS-CoV-2. This enzyme considered to be an attractive drug target as it contributes significantly in mediating viral replication and transcription. Herein, comprehensive computational investigations were performed to identify potential inhibitors of SARS-CoV-2 Mpro enzyme. The structure-based pharmacophore modeling was developed based on the co-crystallized structure of the enzyme with its biological active inhibitor. The generated hypotheses were applied for virtual screening based PhaseScore. Docking based virtual screening workflow was used to generate hit compounds using HTVS, SP and XP based Glide GScore. The pharmacological and physicochemical properties of the selected lead compounds were characterized using ADMET. Molecular dynamics simulations were performed to explore the binding affinities of the considered lead compounds. Binding energies revealed that compound ABBV-744 binds to the Mpro with strong affinity (ΔGbind -45.43 kcal/mol), and the complex is more stable in comparison with other protein-ligand complexes. Our study classified three best compounds which could be considered as promising inhibitors against main protease SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Zeynab Fakhar
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO WITS, Johannesburg, 2050, South Africa
| | - Shama Khan
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Suliman Y AlOmar
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Afrah Alkhuriji
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Aijaz Ahmad
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa.
- Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg, 2193, South Africa.
| |
Collapse
|
10
|
Espinosa YR, Alvarez HA, Howard EI, Carlevaro CM. Molecular dynamics simulation of the heart type fatty acid binding protein in a crystal environment. J Biomol Struct Dyn 2020; 39:3459-3468. [PMID: 32448092 DOI: 10.1080/07391102.2020.1773315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Crystallographic data comes from a space-time average over all the unit cells within the crystal, so dynamic phenomena do not contribute significantly to the diffraction data. Many efforts have been made to reconstitute the movement of the macromolecules and explore the microstates that the confined proteins can adopt in the crystalline network. We explored different strategies to simulate a heart fatty acid binding protein (H-FABP) crystal by means of Molecular Dynamics (MD) simulations. We evaluate the effect of introducing restraints according to experimental isotropic B-factors and we analyzed the H-FABP motions in the crystal using Principal Component Analysis (PCA), isotropic and anisotropic B-factors. We compared the behavior of the protein simulated in the crystal confinement versus in solution, and we observed the effect of that confinement in the mobility of the protein residues. Restraining one-third of Cα atoms based on experimental B-factors produce lower B-factors than simulations without restraints, showing that the position restraint of the atoms with the lowest experimental B-factor is a good strategy to maintain the geometry of the crystal with an obvious decrease in the degrees of motion of the protein. PCA shows that, as position restraint reduces the conformational space explored by the system, the motion of the crystal is better recovered, for an essential subspace of the same size, in the simulations without restraints. Restraining only one Cα seems to be a good balance between giving flexibility to the system and preserving its structure. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yanis R Espinosa
- Instituto de Física de Líquidos y Sistemas Biológicos (CONICET-UNLP), La Plata, Argentina.,Grupo de Bioquímica Teórica, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - H Ariel Alvarez
- Instituto de Física de Líquidos y Sistemas Biológicos (CONICET-UNLP), La Plata, Argentina.,Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, UNLP, La Plata, Argentina.,Instituto de Ciencias de la Salud, Universidad Nacional Arturo Jauretche, Buenos Aires, Argentina
| | - Eduardo I Howard
- Instituto de Física de Líquidos y Sistemas Biológicos (CONICET-UNLP), La Plata, Argentina.,Universidad Tecnológica Nacional- Facultad Regional Tierra del Fuego, Ushuaia, Tierra del Fuego, Argentina
| | - C Manuel Carlevaro
- Instituto de Física de Líquidos y Sistemas Biológicos (CONICET-UNLP), La Plata, Argentina.,Departamento de Ingeniería Mecánica, Universidad Tecnológica Nacional, Facultad Regional La Plata, La Plata, Argentina
| |
Collapse
|
11
|
Chen J, Liu X, Zhang S, Chen J, Sun H, Zhang L, Zhang Q. Molecular mechanism with regard to the binding selectivity of inhibitors toward FABP5 and FABP7 explored by multiple short molecular dynamics simulations and free energy analyses. Phys Chem Chem Phys 2020; 22:2262-2275. [DOI: 10.1039/c9cp05704h] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recently, fatty acid binding proteins 5 and 7 (FABP5 and FABP7) have been regarded as the prospective targets for clinically treating multiple diseases related to FABPs.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science
- Shandong Jiaotong University
- Jinan 250357
- People's Republic of China
| | - Xinguo Liu
- School of Physics and Electronics
- Shandong Normal University
- Jinan
- People's Republic of China
| | - Shaolong Zhang
- School of Physics and Electronics
- Shandong Normal University
- Jinan
- People's Republic of China
| | - Junxiao Chen
- School of Chemistry and Pharmaceutical Engineering
- Qilu University of Technology
- Jinan
- People's Republic of China
| | - Haibo Sun
- School of Science
- Shandong Jiaotong University
- Jinan 250357
- People's Republic of China
| | - Lin Zhang
- School of Construction Machinery
- Shandong Jiaotong University
- Jinan 250357
- People's Republic of China
| | - Qinggang Zhang
- School of Physics and Electronics
- Shandong Normal University
- Jinan
- People's Republic of China
| |
Collapse
|
12
|
Zhong S, Huang K, Xiao Z, Sheng X, Li Y, Duan L. Binding Mechanism of Thrombin–Ligand Systems Investigated by a Polarized Protein-Specific Charge Force Field and Interaction Entropy Method. J Phys Chem B 2019; 123:8704-8716. [DOI: 10.1021/acs.jpcb.9b08064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Susu Zhong
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Kaifang Huang
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Zhengrong Xiao
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Xiehuang Sheng
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Yuchen Li
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Lili Duan
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
13
|
Low CF, Shamsir MS, Mohamed-Hussein ZA, Baharum SN. Evaluation of potential molecular interaction between quorum sensing receptor, LuxP and grouper fatty acids: in-silico screening and simulation. PeerJ 2019; 7:e6568. [PMID: 30984478 PMCID: PMC6452917 DOI: 10.7717/peerj.6568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/05/2019] [Indexed: 11/20/2022] Open
Abstract
Pathologically relevant behaviors of Vibrio, such as the expression of virulence factors, biofilm production, and swarming motility, have been shown to be controlled by quorum sensing. The autoinducer-2 quorum sensing receptor protein LuxP is one of the target proteins for drug development to suppress the virulence of Vibrio. Here, we reported the potential molecular interaction of fatty acids identified in vibriosis-resistant grouper with LuxP. Fatty acid, 4-oxodocosahexaenoic acid (4R8) showed significant binding affinity toward LuxP (-6.0 kcal/mol) based on molecular docking analysis. The dynamic behavior of the protein-ligand complex was illustrated by molecular dynamic simulations. The fluctuation of the protein backbone, the stability of ligand binding, and hydrogen bond interactions were assessed, suggesting 4R8 possesses potential interaction with LuxP, which was supported by the low binding free energy (-29.144 kJ/mol) calculated using the molecular mechanics Poisson-Boltzmann surface area.
Collapse
Affiliation(s)
- Chen-Fei Low
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Mohd Shahir Shamsir
- Faculty of Bioscience and Bioengineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Zeti-Azura Mohamed-Hussein
- Centre for Bioinformatics Research, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- Centre for Frontier Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Syarul Nataqain Baharum
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
14
|
Yan F, Liu X, Zhang S, Su J, Zhang Q, Chen J. Electrostatic interaction-mediated conformational changes of adipocyte fatty acid binding protein probed by molecular dynamics simulation. J Biomol Struct Dyn 2018; 37:3583-3595. [DOI: 10.1080/07391102.2018.1520648] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Fangfang Yan
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Xinguo Liu
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Shaolong Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Jing Su
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Qinggang Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan, China
| |
Collapse
|
15
|
Maphumulo SI, Halder AK, Govender T, Maseko S, Maguire GEM, Honarparvar B, Kruger HG. Exploring the flap dynamics of the South African HIV subtype C protease in presence of FDA-approved inhibitors: MD study. Chem Biol Drug Des 2018; 92:1899-1913. [PMID: 30003668 DOI: 10.1111/cbdd.13364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 07/09/2018] [Indexed: 01/01/2023]
Abstract
HIV-1 protease (HIV PR) is considered as one of the most attractive targets for the treatment of HIV and the impact of flap dynamics of HIV PR on the binding affinities of protease inhibitors (PIs) is a crucial ongoing research field. Recently, our research group evaluated the binding affinities of different FDA approved PIs against the South African HIV-1 subtype C (C-SA) protease (PR). The CSA-HIV PR displayed weaker binding affinity for most of the clinical PIs compared to HIV-1 B subtype for West and Central Europe, the Americas. In the current work, the flap dynamics of four different systems of HIV-1 C-SA PR complexed to FDA approved second generation PIs and its impact on binding was explored over the molecular dynamic trajectories. It was observed that the interactions of the selected drugs with the binding site residues of the protease may not be the major contributor for affinity towards PIs. Various post-MD analyses were performed, also entropic contributions, solvation free energies and hydrophobic core formation interactions were studied to assess how the flap dynamics of C-SA PR which is affected by such factors. From these contributions, large van der Waals interactions and low solvation free energies were found to be major factors for the higher activity of ATV against C-SA HIV PR. Furthermore, a comparatively stable hydrophobic core may be responsible for higher stability of the PR flaps of the ATV complex. The outcome of this study provides significant guidance to how the flap dynamics of C-SA PR is affected by various factors as a result of the binding affinity of various protease inhibitors. It will also assist with the design of potent inhibitors against C-SA HIV PR that apart from binding in the active site of PR can interacts with the flaps to prevent opening of the flaps resulting in inactivation of the protease.
Collapse
Affiliation(s)
- Siyabonga I Maphumulo
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Amit K Halder
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thavendran Govender
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sibusiso Maseko
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Glenn E M Maguire
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.,School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Bahareh Honarparvar
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
16
|
Gao Y, Zhu T, Chen J. Exploring drug-resistant mechanisms of I84V mutation in HIV-1 protease toward different inhibitors by thermodynamics integration and solvated interaction energy method. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.06.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
17
|
Wang C, Greene D, Xiao L, Qi R, Luo R. Recent Developments and Applications of the MMPBSA Method. Front Mol Biosci 2018; 4:87. [PMID: 29367919 PMCID: PMC5768160 DOI: 10.3389/fmolb.2017.00087] [Citation(s) in RCA: 370] [Impact Index Per Article: 52.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/30/2017] [Indexed: 12/23/2022] Open
Abstract
The Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) approach has been widely applied as an efficient and reliable free energy simulation method to model molecular recognition, such as for protein-ligand binding interactions. In this review, we focus on recent developments and applications of the MMPBSA method. The methodology review covers solvation terms, the entropy term, extensions to membrane proteins and high-speed screening, and new automation toolkits. Recent applications in various important biomedical and chemical fields are also reviewed. We conclude with a few future directions aimed at making MMPBSA a more robust and efficient method.
Collapse
Affiliation(s)
- Changhao Wang
- Chemical and Materials Physics Graduate Program, University of California, Irvine, Irvine, CA, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA, United States
| | - D'Artagnan Greene
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Li Xiao
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | - Ruxi Qi
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Ray Luo
- Chemical and Materials Physics Graduate Program, University of California, Irvine, Irvine, CA, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
- Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
18
|
Su J, Liu X, Zhang S, Yan F, Zhang Q, Chen J. A theoretical insight into selectivity of inhibitors toward two domains of bromodomain-containing protein 4 using molecular dynamics simulations. Chem Biol Drug Des 2017; 91:828-840. [DOI: 10.1111/cbdd.13148] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/22/2017] [Accepted: 11/01/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Jing Su
- School of Physics and Electronics; Shandong Normal University; Jinan China
| | - Xinguo Liu
- School of Physics and Electronics; Shandong Normal University; Jinan China
| | - Shaolong Zhang
- School of Physics and Electronics; Shandong Normal University; Jinan China
| | - Fangfang Yan
- School of Physics and Electronics; Shandong Normal University; Jinan China
| | - Qinggang Zhang
- School of Physics and Electronics; Shandong Normal University; Jinan China
| | - Jianzhong Chen
- School of Science; Shandong Jiaotong University; Jinan China
| |
Collapse
|
19
|
Hunter NH, Bakula BC, Bruce CD. Molecular dynamics simulations of apo and holo forms of fatty acid binding protein 5 and cellular retinoic acid binding protein II reveal highly mobile protein, retinoic acid ligand, and water molecules. J Biomol Struct Dyn 2017; 36:1893-1907. [PMID: 28566049 DOI: 10.1080/07391102.2017.1337591] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Structural and dynamic properties from a series of 300 ns molecular dynamics, MD, simulations of two intracellular lipid binding proteins, iLBPs, (Fatty Acid Binding Protein 5, FABP5, and Cellular Retinoic Acid Binding Protein II, CRABP-II) in both the apo form and when bound with retinoic acid reveal a high degree of protein and ligand flexibility. The ratio of FABP5 to CRABP-II in a cell may determine whether it undergoes natural apoptosis or unrestricted cell growth in the presence of retinoic acid. As a result, FABP5 is a promising target for cancer therapy. The MD simulations presented here reveal distinct differences in the two proteins and provide insight into the binding mechanism. CRABP-II is a much larger, more flexible protein that closes upon ligand binding, where FABP5 transitions to an open state in the holo form. The traditional understanding obtained from crystal structures of the gap between two β-sheets of the β-barrel common to iLBPs and the α-helix cap that forms the portal to the binding pocket is insufficient for describing protein conformation (open vs. closed) or ligand entry and exit. When the high degree of mobility between multiple conformations of both the ligand and protein are examined via MD simulation, a new mode of ligand motion that improves understanding of binding dynamics is revealed.
Collapse
Affiliation(s)
- Nathanael H Hunter
- a Department of Chemistry , John Carroll University , University Heights , OH , USA
| | - Blair C Bakula
- a Department of Chemistry , John Carroll University , University Heights , OH , USA
| | - Chrystal D Bruce
- a Department of Chemistry , John Carroll University , University Heights , OH , USA
| |
Collapse
|
20
|
Rodríguez-Calvo R, Girona J, Alegret JM, Bosquet A, Ibarretxe D, Masana L. Role of the fatty acid-binding protein 4 in heart failure and cardiovascular disease. J Endocrinol 2017; 233:R173-R184. [PMID: 28420707 DOI: 10.1530/joe-17-0031] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 04/18/2017] [Indexed: 01/05/2023]
Abstract
Obesity and ectopic fat accumulation in non-adipose tissues are major contributors to heart failure (HF) and cardiovascular disease (CVD). Adipocytes act as endocrine organs by releasing a large number of bioactive molecules into the bloodstream, which participate in a communication network between white adipose tissue and other organs, including the heart. Among these molecules, fatty acid-binding protein 4 (FABP4) has recently been shown to increase cardiometabolic risk. Both clinical and experimental evidence have identified FABP4 as a relevant player in atherosclerosis and coronary artery disease, and it has been directly related to cardiac alterations such as left ventricular hypertrophy (LVH) and both systolic and diastolic cardiac dysfunction. The available interventional studies preclude the establishment of a direct causal role of this molecule in CVD and HF and propose FABP4 as a biomarker rather than as an aetiological factor. However, several experimental reports have suggested that FABP4 may act as a direct contributor to cardiac metabolism and physiopathology, and the pharmacological targeting of FABP4 may restore some of the metabolic alterations that are conducive to CVD and HF. Here, we review the current knowledge regarding FABP4 in the context of HF and CVD as well as the molecular basis by which this protein participates in the regulation of cardiac function.
Collapse
Affiliation(s)
- Ricardo Rodríguez-Calvo
- Vascular Medicine and Metabolism UnitResearch Unit on Lipids and Atherosclerosis, 'Sant Joan' University Hospital, Universitat Rovira i Virgili, Institut de Investigació Sanitaria Pere Virgili (IISPV), Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Reus, Spain
| | - Josefa Girona
- Vascular Medicine and Metabolism UnitResearch Unit on Lipids and Atherosclerosis, 'Sant Joan' University Hospital, Universitat Rovira i Virgili, Institut de Investigació Sanitaria Pere Virgili (IISPV), Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Reus, Spain
| | - Josep M Alegret
- Department of CardiologyCardiovascular Research Group, 'Sant Joan' University Hospital, Universitat Rovira i Virgili, Institut de Investigació Sanitaria Pere Virgili (IISPV), Reus, Spain
| | - Alba Bosquet
- Vascular Medicine and Metabolism UnitResearch Unit on Lipids and Atherosclerosis, 'Sant Joan' University Hospital, Universitat Rovira i Virgili, Institut de Investigació Sanitaria Pere Virgili (IISPV), Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Reus, Spain
| | - Daiana Ibarretxe
- Vascular Medicine and Metabolism UnitResearch Unit on Lipids and Atherosclerosis, 'Sant Joan' University Hospital, Universitat Rovira i Virgili, Institut de Investigació Sanitaria Pere Virgili (IISPV), Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Reus, Spain
| | - Lluís Masana
- Vascular Medicine and Metabolism UnitResearch Unit on Lipids and Atherosclerosis, 'Sant Joan' University Hospital, Universitat Rovira i Virgili, Institut de Investigació Sanitaria Pere Virgili (IISPV), Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Reus, Spain
| |
Collapse
|
21
|
Fakhar Z, Govender T, Maguire GEM, Lamichhane G, Walker RC, Kruger HG, Honarparvar B. Differential flap dynamics in l,d-transpeptidase2 from mycobacterium tuberculosis revealed by molecular dynamics. MOLECULAR BIOSYSTEMS 2017; 13:1223-1234. [PMID: 28480928 DOI: 10.1039/c7mb00110j] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Despite the advances in tuberculosis treatment, TB is still one the most deadly infectious diseases and remains a major global health quandary. Mycobacterium tuberculosis (Mtb) is the only known mycobacterium with a high content of 3→3 crosslinks in the biosynthesis of peptidoglycan, which is negligible in most bacterial species. An Mtb lacking LdtMt2 leads to alteration of the colony morphology and loss of virulence which makes this enzyme an attractive target. Regardless of the vital role of LdtMt2 for cell wall survival, the impact of ligand binding on the dynamics of the β-hairpin flap is still unknown. Understanding the structural and dynamical behaviour of the flap regions provides clear insight into the design of the effective inhibitors against LdtMt2. Carbapenems, an specific class of β-lactam family, have been shown to inactivate this enzyme. Herein a comprehensive investigation of the flap dynamics of LdtMt2 complex with substrate and three carbapenems namely, ertapenem, imipenem and meropenem is discussed and analyzed for the first account using 140 ns molecular dynamics simulations. The structural features (RMSD, RMSF and Rg) derived by MD trajectories were analyzed. Distance analysis, particularly tip-tip SER135-ASN167 index, identified conformational changes in terms of flap opening and closure within binding process. Principal component analysis (PCA) was employed to qualitatively understand the divergent effects of different inhibitors on the dominant motion of each residue. To probe different internal dynamics induced by ligand binding, dynamic cross-correlation marix (DCCM) analysis was used. The binding free energies of the selected complexes were assessed using MM-GBSA method and per residue free energy decomposition analysis were performed to characterize the contribution of the key residues to the total binding free energies.
Collapse
Affiliation(s)
- Zeynab Fakhar
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa.
| | - Thavendran Govender
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa.
| | - Glenn E M Maguire
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa. and School of Chemistry and Physics, University of KwaZulu-Natal, 4001, Durban, South Africa
| | - Gyanu Lamichhane
- Center for Tuberculosis Research, Division of Infectious Diseases, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ross C Walker
- GlaxoSmithKline PLC, 1250 S. Collegeville Rd., Collegeville, PA 19426, USA and Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa.
| | - Bahareh Honarparvar
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa.
| |
Collapse
|
22
|
Large-scale molecular dynamics simulation: Effect of polarization on thrombin-ligand binding energy. Sci Rep 2016; 6:31488. [PMID: 27507430 PMCID: PMC4979035 DOI: 10.1038/srep31488] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/19/2016] [Indexed: 01/17/2023] Open
Abstract
Molecular dynamics (MD) simulations lasting 500 ns were performed in explicit water to investigate the effect of polarization on the binding of ligands to human α-thrombin based on the standard nonpolarizable AMBER force field and the quantum-derived polarized protein-specific charge (PPC). The PPC includes the electronic polarization effect of the thrombin-ligand complex, which is absent in the standard force field. A detailed analysis and comparison of the results of the MD simulation with experimental data provided strong evidence that intra-protein, protein-ligand hydrogen bonds and the root-mean-square deviation of backbone atoms were significantly stabilized through electronic polarization. Specifically, two critical hydrogen bonds between thrombin and the ligand were broken at approximately 190 ns when AMBER force field was used and the number of intra-protein backbone hydrogen bonds was higher under PPC than under AMBER. The thrombin-ligand binding energy was computed using the molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) method, and the results were consistent with the experimental value obtained using PPC. Because hydrogen bonds were unstable, it was failed to predict the binding affinity under the AMBER force field. Furthermore, the results of the present study revealed that differences in the binding free energy between AMBER and PPC almost comes from the electrostatic interaction. Thus, this study provides evidence that protein polarization is critical to accurately describe protein-ligand binding.
Collapse
|
23
|
Zhou Y, Nie T, Zhang Y, Song M, Li K, Ding M, Ding K, Wu D, Xu Y. The discovery of novel and selective fatty acid binding protein 4 inhibitors by virtual screening and biological evaluation. Bioorg Med Chem 2016; 24:4310-4317. [PMID: 27460668 DOI: 10.1016/j.bmc.2016.07.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 11/16/2022]
Abstract
Adipocyte fatty acid binding protein (AFABP, FABP4) has been proven to be a potential therapeutic target for diabetes, atherosclerosis and inflammation-related diseases. In this study, a series of new scaffolds of small molecule inhibitors of FABP4 were identified by virtual screening and were validated by a bioassay. Fifty selected compounds were tested, which led to the discovery of seven hits. Structural similarity-based searches were then performed based on the hits and led to the identification of one high affinity compound 33b (Ki=0.29±0.07μM, ΔTm=8.5°C). This compound's effective blockade of inflammatory response was further validated by its ability to suppress pro-inflammatory cytokines induced by lipopolysaccharide (LPS) stimulation. Molecular dynamics simulation (MD) and mutagenesis studies validated key residues for its inhibitory potency and thus provide an important clue for the further development of drugs.
Collapse
Affiliation(s)
- Yang Zhou
- Institute of Chemical Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou Science Park, Guangzhou 510530, China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Tao Nie
- The Key Laboratory of Regenerative Biology, The Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yan Zhang
- Institute of Chemical Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou Science Park, Guangzhou 510530, China
| | - Ming Song
- Institute of Chemical Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou Science Park, Guangzhou 510530, China
| | - Kuai Li
- The Key Laboratory of Regenerative Biology, The Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Mengxiao Ding
- The Key Laboratory of Regenerative Biology, The Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Ke Ding
- Institute of Chemical Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou Science Park, Guangzhou 510530, China
| | - Donghai Wu
- The Key Laboratory of Regenerative Biology, The Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| | - Yong Xu
- Institute of Chemical Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou Science Park, Guangzhou 510530, China.
| |
Collapse
|
24
|
Chen J. Drug resistance mechanisms of three mutations V32I, I47V and V82I in HIV-1 protease toward inhibitors probed by molecular dynamics simulations and binding free energy predictions. RSC Adv 2016. [DOI: 10.1039/c6ra09201b] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Molecular dynamics simulation and binding free energy calculations were used to probe drug resistance of HIV-1 protease mutations toward inhibitors.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science
- Shandong Jiaotong University
- Jinan 250357
- China
| |
Collapse
|
25
|
Chen J, Wang J, Zhang Q, Chen K, Zhu W. Probing Origin of Binding Difference of inhibitors to MDM2 and MDMX by Polarizable Molecular Dynamics Simulation and QM/MM-GBSA Calculation. Sci Rep 2015; 5:17421. [PMID: 26616018 PMCID: PMC4663504 DOI: 10.1038/srep17421] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 10/29/2015] [Indexed: 12/13/2022] Open
Abstract
Binding abilities of current inhibitors to MDMX are weaker than to MDM2. Polarizable molecular dynamics simulations (MD) followed by Quantum mechanics/molecular mechanics generalized Born surface area (QM//MM-GBSA) calculations were performed to investigate the binding difference of inhibitors to MDM2 and MDMX. The predicted binding free energies not only agree well with the experimental results, but also show that the decrease in van der Walls interactions of inhibitors with MDMX relative to MDM2 is a main factor of weaker bindings of inhibitors to MDMX. The analyses of dihedral angles based on MD trajectories suggest that the closed conformation formed by the residues M53 and Y99 in MDMX leads to a potential steric clash with inhibitors and prevents inhibitors from arriving in the deep of MDMX binding cleft, which reduces the van der Waals contacts of inhibitors with M53, V92, P95 and L98. The calculated results using the residue-based free energy decomposition method further prove that the interaction strength of inhibitors with M53, V92, P95 and L98 from MDMX are obviously reduced compared to MDM2. We expect that this study can provide significant theoretical guidance for designs of potent dual inhibitors to block the p53-MDM2/MDMX interactions.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan, 250014, China
| | - Jinan Wang
- Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Qinggang Zhang
- College of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Kaixian Chen
- Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Weiliang Zhu
- Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| |
Collapse
|
26
|
Shi S, Zhang S, Zhang Q. Probing Difference in Binding Modes of Inhibitors to MDMX by Molecular Dynamics Simulations and Different Free Energy Methods. PLoS One 2015; 10:e0141409. [PMID: 26513747 PMCID: PMC4625964 DOI: 10.1371/journal.pone.0141409] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 10/08/2015] [Indexed: 01/20/2023] Open
Abstract
The p53-MDMX interaction has attracted extensive attention of anti-cancer drug development in recent years. This current work adopted molecular dynamics (MD) simulations and cross-correlation analysis to investigate conformation changes of MDMX caused by inhibitor bindings. The obtained information indicates that the binding cleft of MDMX undergoes a large conformational change and the dynamic behavior of residues obviously change by the presence of different structural inhibitors. Two different methods of binding free energy predictions were employed to carry out a comparable insight into binding mechanisms of four inhibitors PMI, pDI, WK23 and WW8 to MDMX. The data show that the main factor controlling the inhibitor bindings to MDMX arises from van der Waals interactions. The binding free energies were further divided into contribution of each residue and the derived information gives a conclusion that the hydrophobic interactions, such as CH-CH, CH-π and π-π interactions, are responsible for the inhibitor associations with MDMX.
Collapse
Affiliation(s)
- Shuhua Shi
- School of Science, Shandong Jianzhu University, Jinan, China
- * E-mail: ;
| | - Shaolong Zhang
- College of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Qinggang Zhang
- College of Physics and Electronics, Shandong Normal University, Jinan, China
| |
Collapse
|
27
|
Abstract
Intracellular and extracellular interactions with proteins enables the functional and mechanistic diversity of lipids. Fatty acid-binding proteins (FABPs) were originally described as intracellular proteins that can affect lipid fluxes, metabolism and signalling within cells. As the functions of this protein family have been further elucidated, it has become evident that they are critical mediators of metabolism and inflammatory processes, both locally and systemically, and therefore are potential therapeutic targets for immunometabolic diseases. In particular, genetic deficiency and small molecule-mediated inhibition of FABP4 (also known as aP2) and FABP5 can potently improve glucose homeostasis and reduce atherosclerosis in mouse models. Further research has shown that in addition to their intracellular roles, some FABPs are found outside the cells, and FABP4 undergoes regulated, vesicular secretion. The circulating form of FABP4 has crucial hormonal functions in systemic metabolism. In this Review we discuss the roles and regulation of both intracellular and extracellular FABP actions, highlighting new insights that might direct drug discovery efforts and opportunities for management of chronic metabolic diseases.
Collapse
Affiliation(s)
- Gökhan S Hotamisligil
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, MN 55455, USA
| |
Collapse
|
28
|
Cheng W, Liang Z, Wang W, Yi C, Li H, Zhang S, Zhang Q. Insight into binding modes of p53 and inhibitors to MDM2 based on molecular dynamic simulations and principal component analysis. Mol Phys 2015. [DOI: 10.1080/00268976.2015.1087598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
29
|
Chen J, Wang X, Zhu T, Zhang Q, Zhang JZH. A Comparative Insight into Amprenavir Resistance of Mutations V32I, G48V, I50V, I54V, and I84V in HIV-1 Protease Based on Thermodynamic Integration and MM-PBSA Methods. J Chem Inf Model 2015; 55:1903-13. [DOI: 10.1021/acs.jcim.5b00173] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jianzhong Chen
- School
of Science, Shandong Jiaotong University, Jinan 250357 China
| | - Xingyu Wang
- NYU−ECNU
Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| | - Tong Zhu
- State
Key Laboratory of Precision Spectroscopy, Institute of Theoretical
and Computational Science, East China Normal University, Shanghai 200062, China
| | - Qinggang Zhang
- Collage
of Physics and Electronic Science, Shandong Normal University, Jinan 250014, China
| | - John Z. H. Zhang
- NYU−ECNU
Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- State
Key Laboratory of Precision Spectroscopy, Institute of Theoretical
and Computational Science, East China Normal University, Shanghai 200062, China
| |
Collapse
|
30
|
Chen J, Liang Z, Wang W, Yi C, Zhang S, Zhang Q. Revealing origin of decrease in potency of darunavir and amprenavir against HIV-2 relative to HIV-1 protease by molecular dynamics simulations. Sci Rep 2014; 4:6872. [PMID: 25362963 PMCID: PMC4217091 DOI: 10.1038/srep06872] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/13/2014] [Indexed: 12/30/2022] Open
Abstract
Clinical inhibitors Darunavir (DRV) and Amprenavir (APV) are less effective on HIV-2 protease (PR2) than on HIV-1 protease (PR1). To identify molecular basis associated with the lower inhibition, molecular dynamics (MD) simulations and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) calculations were performed to investigate the effectiveness of the PR1 inhibitors DRV and APV against PR1/PR2. The rank of predicted binding free energies agrees with the experimental determined one. Moreover, our results show that two inhibitors bind less strongly to PR2 than to PR1, again in agreement with the experimental findings. The decrease in binding free energies for PR2 relative to PR1 is found to arise from the reduction of the van der Waals interactions induced by the structural adjustment of the triple mutant V32I, I47V and V82I. This result is further supported by the difference between the van der Waals interactions of inhibitors with each residue in PR2 and in PR1. The results from the principle component analysis suggest that inhibitor binding tends to make the flaps of PR2 close and the one of PR1 open. We expect that this study can theoretically provide significant guidance and dynamics information for the design of potent dual inhibitors targeting PR1/PR2.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Zhiqiang Liang
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Wei Wang
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Changhong Yi
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Shaolong Zhang
- College of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Qinggang Zhang
- College of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| |
Collapse
|
31
|
Shi S, Zhang S, Zhang Q. Insight into the interaction mechanism of inhibitors P4 and WK23 with MDM2 based on molecular dynamics simulation and different free energy methods. COMPUT THEOR CHEM 2014. [DOI: 10.1016/j.comptc.2014.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|