1
|
Zhang J, Liu H, Chen Y, Liu H, Zhang S, Yin G, Xie Q. Augmenting regulatory T cells: new therapeutic strategy for rheumatoid arthritis. Front Immunol 2024; 15:1312919. [PMID: 38322264 PMCID: PMC10844451 DOI: 10.3389/fimmu.2024.1312919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic autoimmune condition marked by inflammation of the joints, degradation of the articular cartilage, and bone resorption. Recent studies found the absolute and relative decreases in circulating regulatory T cells (Tregs) in RA patients. Tregs are a unique type of cells exhibiting immunosuppressive functions, known for expressing the Foxp3 gene. They are instrumental in maintaining immunological tolerance and preventing autoimmunity. Increasing the absolute number and/or enhancing the function of Tregs are effective strategies for treating RA. This article reviews the studies on the mechanisms and targeted therapies related to Tregs in RA, with a view to provide better ideas for the treatment of RA.
Collapse
Affiliation(s)
- Jiaqian Zhang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Hongjiang Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuehong Chen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Shengxiao Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Geng Yin
- Department of General Practice, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qibing Xie
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Pudjihartono N, Ho D, Golovina E, Fadason T, Kempa-Liehr AW, O'Sullivan JM. Juvenile idiopathic arthritis-associated genetic loci exhibit spatially constrained gene regulatory effects across multiple tissues and immune cell types. J Autoimmun 2023; 138:103046. [PMID: 37229810 DOI: 10.1016/j.jaut.2023.103046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/04/2023] [Accepted: 04/15/2023] [Indexed: 05/27/2023]
Abstract
Juvenile idiopathic arthritis (JIA) is an autoimmune, inflammatory joint disease with complex genetic etiology. Previous GWAS have found many genetic loci associated with JIA. However, the biological mechanism behind JIA remains unknown mainly because most risk loci are located in non-coding genetic regions. Interestingly, increasing evidence has found that regulatory elements in the non-coding regions can regulate the expression of distant target genes through spatial (physical) interactions. Here, we used information on the 3D genome organization (Hi-C data) to identify target genes that physically interact with SNPs within JIA risk loci. Subsequent analysis of these SNP-gene pairs using data from tissue and immune cell type-specific expression quantitative trait loci (eQTL) databases allowed the identification of risk loci that regulate the expression of their target genes. In total, we identified 59 JIA-risk loci that regulate the expression of 210 target genes across diverse tissues and immune cell types. Functional annotation of spatial eQTLs within JIA risk loci identified significant overlap with gene regulatory elements (i.e., enhancers and transcription factor binding sites). We found target genes involved in immune-related pathways such as antigen processing and presentation (e.g., ERAP2, HLA class I and II), the release of pro-inflammatory cytokines (e.g., LTBR, TYK2), proliferation and differentiation of specific immune cell types (e.g., AURKA in Th17 cells), and genes involved in physiological mechanisms related to pathological joint inflammation (e.g., LRG1 in arteries). Notably, many of the tissues where JIA-risk loci act as spatial eQTLs are not classically considered central to JIA pathology. Overall, our findings highlight the potential tissue and immune cell type-specific regulatory changes contributing to JIA pathogenesis. Future integration of our data with clinical studies can contribute to the development of improved JIA therapy.
Collapse
Affiliation(s)
- N Pudjihartono
- The Liggins Institute, The University of Auckland, Auckland, New Zealand.
| | - D Ho
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - E Golovina
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - T Fadason
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - A W Kempa-Liehr
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand
| | - J M O'Sullivan
- The Liggins Institute, The University of Auckland, Auckland, New Zealand; The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand; MRC Lifecourse Epidemiology Unit, University of Southampton, United Kingdom; Australian Parkinsons Mission, Garvan Institute of Medical Research, Sydney, New South Wales, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia; A*STAR Singapore Institute for Clinical Sciences, Singapore, Singapore.
| |
Collapse
|
3
|
Rheumatoid arthritis and non-coding RNAs; how to trigger inflammation. Life Sci 2023; 315:121367. [PMID: 36639050 DOI: 10.1016/j.lfs.2023.121367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/31/2022] [Accepted: 12/31/2022] [Indexed: 01/12/2023]
Abstract
Rheumatoid arthritis (RA) is a systemic and chronic inflammatory disease categorized by continuous synovitis in the joints and systemic inflammatory responses that can cause lifelong disability. The major cause of RA is the dysregulation of the immune response. The development of RA disease includes multiplex association of several interleukins and cells, which leads to synovial cell growth, cartilage and bone damage. The primary stage of RA disease is related to the modification of both the innate and adaptive immune systems, which leads to the formation of autoantibodies. This process results in many damaged molecules and epitope spreading. Both the innate (e.g., dendritic cells, macrophages, and neutrophils) and acquired immune cells (e.g., T and B lymphocytes) will increase and continue the chronic inflammatory condition in the next stages of the RA disease. In recent years, non-coding RNAs have been proved as significant controllers of biological functions, especially immune cell expansion and reactions. Non-coding RNAs were primarily containing microRNA (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA). Various studies confirmed non-coding RNAs as hopeful markers for diagnosing and curing RA. This review will describe and cover existing knowledge about RA pathogenesis, which might be favorable for discovering possible ncRNA markers for RA.
Collapse
|
4
|
Kumar D, Sahoo SS, Chauss D, Kazemian M, Afzali B. Non-coding RNAs in immunoregulation and autoimmunity: Technological advances and critical limitations. J Autoimmun 2023; 134:102982. [PMID: 36592512 PMCID: PMC9908861 DOI: 10.1016/j.jaut.2022.102982] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 01/02/2023]
Abstract
Immune cell function is critically dependent on precise control over transcriptional output from the genome. In this respect, integration of environmental signals that regulate gene expression, specifically by transcription factors, enhancer DNA elements, genome topography and non-coding RNAs (ncRNAs), are key components. The first three have been extensively investigated. Even though non-coding RNAs represent the vast majority of cellular RNA species, this class of RNA remains historically understudied. This is partly because of a lag in technological and bioinformatic innovations specifically capable of identifying and accurately measuring their expression. Nevertheless, recent progress in this domain has enabled a profusion of publications identifying novel sub-types of ncRNAs and studies directly addressing the function of ncRNAs in human health and disease. Many ncRNAs, including circular and enhancer RNAs, have now been demonstrated to play key functions in the regulation of immune cells and to show associations with immune-mediated diseases. Some ncRNAs may function as biomarkers of disease, aiding in diagnostics and in estimating response to treatment, while others may play a direct role in the pathogenesis of disease. Importantly, some are relatively stable and are amenable to therapeutic targeting, for example through gene therapy. Here, we provide an overview of ncRNAs and review technological advances that enable their study and hold substantial promise for the future. We provide context-specific examples by examining the associations of ncRNAs with four prototypical human autoimmune diseases, specifically rheumatoid arthritis, psoriasis, inflammatory bowel disease and multiple sclerosis. We anticipate that the utility and mechanistic roles of these ncRNAs in autoimmunity will be further elucidated in the near future.
Collapse
Affiliation(s)
- Dhaneshwar Kumar
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Subhransu Sekhar Sahoo
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Daniel Chauss
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA.
| |
Collapse
|
5
|
Karimi B, Dehghani Firoozabadi A, Peymani M, Ghaedi K. Circulating long noncoding RNAs as novel bio-tools: Focus on autoimmune diseases. Hum Immunol 2022; 83:618-627. [PMID: 35717260 DOI: 10.1016/j.humimm.2022.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 11/04/2022]
Abstract
Long non-coding RNAs (lncRNAs) are an emerging class of non-coding RNAs that do not encode proteins. These RNAs have various essential regulatory functions. Irregular expression of lncRNAs has been related to the pathological process of varied diseases, and are considered promising diagnostic biomarkers. LncRNAs can release into the circulation and be stable in body fluids as circulating lncRNAs. A subset of circulating lncRNAs that exist in exosomes are referred to as exosomal lncRNA molecules. These lncRNAs are highly stable and resist RNases. Exosomes have captured a great deal of attention due to their involvement in regulating communications between cells. In conditions of autoimmune disease, exosomes play critical roles in the pathological processes. In this context, circulating lncRNAs have been shown to modulate the immune response and indicated as prognosis and diagnostic biomarkers for autoimmune diseases. This review highlights the role of circulating lncRNAs (particularly exosomal) as diagnostic biomarkers for autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, psoriasis, and Sjögren's syndrome.
Collapse
Affiliation(s)
- Bahareh Karimi
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Kamran Ghaedi
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
6
|
Liu LJ, Liao JM, Zhu F. Proliferating cell nuclear antigen clamp associated factor, a potential proto-oncogene with increased expression in malignant gastrointestinal tumors. World J Gastrointest Oncol 2021; 13:1425-1439. [PMID: 34721775 PMCID: PMC8529917 DOI: 10.4251/wjgo.v13.i10.1425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/11/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal (GI) cancers, including malignancies in the gastrointestinal tract and accessory organs of digestion, represent the leading cause of death worldwide due to the poor prognosis of most GI cancers. An investigation into the potential molecular targets of prediction, diagnosis, prognosis, and therapy in GI cancers is urgently required. Proliferating cell nuclear antigen (PCNA) clamp associated factor (PCLAF), which plays an essential role in cell proliferation, apoptosis, and cell cycle regulation by binding to PCNA, is a potential molecular target of GI cancers as it contributes to a series of malignant properties, including tumorigenesis, epithelial-mesenchymal transition, migration, and invasion. Furthermore, PCLAF is an underlying plasma prediction target in colorectal cancer and liver cancer. In addition to GI cancers, PCLAF is also involved in other types of cancers and autoimmune diseases. Several pivotal pathways, including the Rb/E2F pathway, NF-κB pathway, and p53-p21 cascade, are implicated in PCLAF-mediated diseases. PCLAF also contributes to some diseases through dysregulation of the p53 pathway, WNT signal pathway, MEK/ERK pathway, and PI3K/AKT/mTOR signal cascade. This review mainly describes in detail the role of PCLAF in physiological status and GI cancers. The signaling pathways involved in PCLAF are also summarized. Suppression of the interaction of PCLAF/PCNA or the expression of PCLAF might be potential biological therapeutic strategies for GI cancers.
Collapse
Affiliation(s)
- Li-Juan Liu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy & Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Jian-Ming Liao
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy & Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, Hubei Province, China
- Department of Neurosurgery, Renmin Hospital, Wuhan University, Wuhan 430060, Hubei Province, China
| | - Fan Zhu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy & Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, Hubei Province, China
| |
Collapse
|
7
|
Ranjan B, Sun W, Park J, Mishra K, Schmidt F, Xie R, Alipour F, Singhal V, Joanito I, Honardoost MA, Yong JMY, Koh ET, Leong KP, Rayan NA, Lim MGL, Prabhakar S. DUBStepR is a scalable correlation-based feature selection method for accurately clustering single-cell data. Nat Commun 2021; 12:5849. [PMID: 34615861 PMCID: PMC8494900 DOI: 10.1038/s41467-021-26085-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 09/15/2021] [Indexed: 11/09/2022] Open
Abstract
Feature selection (marker gene selection) is widely believed to improve clustering accuracy, and is thus a key component of single cell clustering pipelines. Existing feature selection methods perform inconsistently across datasets, occasionally even resulting in poorer clustering accuracy than without feature selection. Moreover, existing methods ignore information contained in gene-gene correlations. Here, we introduce DUBStepR (Determining the Underlying Basis using Stepwise Regression), a feature selection algorithm that leverages gene-gene correlations with a novel measure of inhomogeneity in feature space, termed the Density Index (DI). Despite selecting a relatively small number of genes, DUBStepR substantially outperformed existing single-cell feature selection methods across diverse clustering benchmarks. Additionally, DUBStepR was the only method to robustly deconvolve T and NK heterogeneity by identifying disease-associated common and rare cell types and subtypes in PBMCs from rheumatoid arthritis patients. DUBStepR is scalable to over a million cells, and can be straightforwardly applied to other data types such as single-cell ATAC-seq. We propose DUBStepR as a general-purpose feature selection solution for accurately clustering single-cell data.
Collapse
Affiliation(s)
- Bobby Ranjan
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Singapore, 138672, Singapore
| | - Wenjie Sun
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Singapore, 138672, Singapore
| | - Jinyu Park
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Singapore, 138672, Singapore
| | - Kunal Mishra
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Singapore, 138672, Singapore
| | - Florian Schmidt
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Singapore, 138672, Singapore
| | - Ronald Xie
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Singapore, 138672, Singapore
| | - Fatemeh Alipour
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Singapore, 138672, Singapore
| | - Vipul Singhal
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Singapore, 138672, Singapore
| | - Ignasius Joanito
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Singapore, 138672, Singapore
| | - Mohammad Amin Honardoost
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Singapore, 138672, Singapore
- Department of Medicine, School of Medicine, National University of Singapore, 21 Lower Kent Ridge Road, Singapore, 119077, Singapore
| | - Jacy Mei Yun Yong
- Department of Rheumatology, Allergy and Immunology, Tan Tock Seng Hospital, Singapore, 308433, Singapore
| | - Ee Tzun Koh
- Department of Rheumatology, Allergy and Immunology, Tan Tock Seng Hospital, Singapore, 308433, Singapore
| | - Khai Pang Leong
- Department of Rheumatology, Allergy and Immunology, Tan Tock Seng Hospital, Singapore, 308433, Singapore
| | - Nirmala Arul Rayan
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Singapore, 138672, Singapore
| | - Michelle Gek Liang Lim
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Singapore, 138672, Singapore
| | - Shyam Prabhakar
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Singapore, 138672, Singapore.
| |
Collapse
|
8
|
Bi J, Wang D, Cui L, Yang Q. RNA sequencing-based long non-coding RNA analysis and immunoassay in ovarian endometriosis. Am J Reprod Immunol 2020; 85:e13359. [PMID: 33063885 DOI: 10.1111/aji.13359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/26/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022] Open
Abstract
PROBLEM The mechanism underlying endometriosis is currently unknown. However, studies have indicated that immunity plays an important role in endometriosis occurrence and development. Long non-coding RNAs (lncRNAs) do not encode proteins but participate in a variety of biological processes via different mechanisms. This study investigated differences in immune cells and immune-related lncRNAs via high-throughput RNA sequencing (RNA-seq) analysis of ectopic and eutopic endometria with endometriosis. METHOD OF STUDY RNA-seq was performed in six pairs of ectopic and eutopic endometria samples, and real-time quantitative polymerase chain reaction was used to verify the results of RNA-seq for 30 pairs of samples. Different immune cell types were identified based on the RNA-seq results, using ImmuCellAI. Immune-related lncRNAs were obtained by analyzing immune-related genes from the ImmPort Database and RNA-seq results. RESULTS A total of 952 differentially expressed lncRNAs were identified, of which 446 were immune-related. The ectopic and eutopic endometrium could easily be distinguished in the principal component analysis of immune-related lncRNAs. Analysis of 24 immune cell types revealed the differential abundance of 13 types. Sixty immune-related mRNAs were associated with the top 20 dysregulated immune-related lncRNAs, 11 of which were transcripts of immune cell marker genes. CONCLUSIONS Our data indicated that a variety of dysregulated lncRNAs were associated with immunity, and these may provide a basis for future immune-related endometriosis research.
Collapse
Affiliation(s)
- Jianlei Bi
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Department of Obstetrics and Gynecology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Dandan Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Liangyi Cui
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
9
|
Mechanism of miRNA-based Aconitum leucostomum Worosch. Monomer inhibition of bone marrow-derived dendritic cell maturation. Int Immunopharmacol 2020; 88:106791. [PMID: 32871480 DOI: 10.1016/j.intimp.2020.106791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 06/15/2020] [Accepted: 07/06/2020] [Indexed: 11/24/2022]
Abstract
Delvestidine (DLTD) is a monomeric compound isolated from Aconitum leucostomum Worosch, a widely used medicine for local treatment of rheumatoid arthritis (RA). Studies have shown that Aconitum leucostomum Worosch. can inhibit maturation of bone marrow-derived dendritic cells (BMDCs). Further, microRNAs (miRNAs) have regulatory effects on DC maturity and function. However, the mechanism underlying DLTD effects on DC maturity and RA remains to be elucidated. This study investigated whether DLTD-mediated inhibition of DC maturation is regulated by miRNAs. LPS-induced mature BMDCs were treated with DLTD for 48 h. CD80 and CD86 expression on BMDCs was detected by flow cytometry, and levels of inflammatory factors IL-6, IL-23, IL-1β, and TNF-α were detected by ELISA and PCR. Further, gene expression and miRNA expression profiles were investigated by bioinformatics analysis and verified by PCR. DLTD was found to inhibit CD80 and CD86 expression on the surface of BMDCs and secretion of inflammatory factors IL-6, IL-23, IL-1β, and TNF-α. In total, 54 differentially expressed miRNAs were detected, including 29 up-regulated and 25 down-regulated miRNAs after DLTD treatment. Analysis of biological information revealed that the differentially expressed target genes mainly regulated biological processes, including cell differentiation, cell cycle, and protein kinase complexes. Additionally, miR-511-3p downstream targets Calcr, Fzd10, and Eps8, were closely related to BMDCs maturation. DLTD may induce BMDCs maturity through regulation of miRNAs that affect Calcr, Fzd10, and Eps8 gene signals.
Collapse
|
10
|
Laufer VA, Tiwari HK, Reynolds RJ, Danila MI, Wang J, Edberg JC, Kimberly RP, Kottyan LC, Harley JB, Mikuls TR, Gregersen PK, Absher DM, Langefeld CD, Arnett DK, Bridges SL. Genetic influences on susceptibility to rheumatoid arthritis in African-Americans. Hum Mol Genet 2020; 28:858-874. [PMID: 30423114 DOI: 10.1093/hmg/ddy395] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/05/2018] [Accepted: 11/09/2018] [Indexed: 12/29/2022] Open
Abstract
Large meta-analyses of rheumatoid arthritis (RA) susceptibility in European (EUR) and East Asian (EAS) populations have identified >100 RA risk loci, but genome-wide studies of RA in African-Americans (AAs) are absent. To address this disparity, we performed an analysis of 916 AA RA patients and 1392 controls and aggregated our data with genotyping data from >100 000 EUR and Asian RA patients and controls. We identified two novel risk loci that appear to be specific to AAs: GPC5 and RBFOX1 (PAA < 5 × 10-9). Most RA risk loci are shared across different ethnicities, but among discordant loci, we observed strong enrichment of variants having large effect sizes. We found strong evidence of effect concordance for only 3 of the 21 largest effect index variants in EURs. We used the trans-ethnic fine-mapping algorithm PAINTOR3 to prioritize risk variants in >90 RA risk loci. Addition of AA data to those of EUR and EAS descent enabled identification of seven novel high-confidence candidate pathogenic variants (defined by posterior probability > 0.8). In summary, our trans-ethnic analyses are the first to include AAs, identified several new RA risk loci and point to candidate pathogenic variants that may underlie this common autoimmune disease. These findings may lead to better ways to diagnose or stratify treatment approaches in RA.
Collapse
Affiliation(s)
- Vincent A Laufer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hemant K Tiwari
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Richard J Reynolds
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Maria I Danila
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jelai Wang
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jeffrey C Edberg
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert P Kimberly
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Leah C Kottyan
- Center for Autoimmune Genetics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - John B Harley
- Center for Autoimmune Genetics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,United States Department of Veterans Affairs Medical Center, Cincinnati, OH, USA
| | - Ted R Mikuls
- VA Nebraska-Western Iowa Health Care System and the Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Peter K Gregersen
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY, USA
| | - Devin M Absher
- Hudson Alpha Institute for Biotechnology, Huntsville, AL, USA
| | - Carl D Langefeld
- Department of Biostatistical Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Donna K Arnett
- University of Kentucky College of Public Health, Lexington, KY, USA
| | - S Louis Bridges
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
11
|
Wang J, Yan S, Yang J, Lu H, Xu D, Wang Z. Non-coding RNAs in Rheumatoid Arthritis: From Bench to Bedside. Front Immunol 2020; 10:3129. [PMID: 32047497 PMCID: PMC6997467 DOI: 10.3389/fimmu.2019.03129] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 12/23/2019] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis is a common systemic and autoimmune disease characterized by symmetrical and inflammatory destruction of distal joints. Its primary pathological characters are synovitis and vasculitis. Accumulating studies have implicated the critical role of non-coding RNAs (ncRNAs) in inflammation and autoimmune regulation, primarily including microRNA (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA). NcRNAs are significant regulators in distinct physiological and pathophysiological processes. Many validated non-coding RNAs have been identified as promising biomarkers for the diagnosis and treatment of RA. This review will shed some light on RA pathogenesis and be helpful for identifying potential ncRNA biomarkers for RA.
Collapse
Affiliation(s)
- Jinghua Wang
- Clinical Medicine College, Weifang Medical University, Weifang, China.,Department of Rheumatology, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Shushan Yan
- Department of Gastrointestinal and Anal Diseases Surgery, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jinghan Yang
- Clinical Medicine College, Weifang Medical University, Weifang, China.,Department of Rheumatology, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Hongying Lu
- Functional Laboratory, Clinical Medicine College of Weifang Medical University, Weifang, China
| | - Donghua Xu
- Clinical Medicine College, Weifang Medical University, Weifang, China.,Department of Rheumatology, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Zengyan Wang
- Department of Operating Room, Zhucheng People's Hospital, Zhucheng, China
| |
Collapse
|
12
|
Aterido A, Cañete JD, Tornero J, Blanco F, Fernández-Gutierrez B, Pérez C, Alperi-López M, Olivè A, Corominas H, Martínez-Taboada V, González I, Fernández-Nebro A, Erra A, López-Lasanta M, López Corbeto M, Palau N, Marsal S, Julià A. A Combined Transcriptomic and Genomic Analysis Identifies a Gene Signature Associated With the Response to Anti-TNF Therapy in Rheumatoid Arthritis. Front Immunol 2019; 10:1459. [PMID: 31312201 PMCID: PMC6614444 DOI: 10.3389/fimmu.2019.01459] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/10/2019] [Indexed: 12/14/2022] Open
Abstract
Background: Rheumatoid arthritis (RA) is the most frequent autoimmune disease involving the joints. Although anti-TNF therapies have proven effective in the management of RA, approximately one third of patients do not show a significant clinical response. The objective of this study was to identify new genetic variation associated with the clinical response to anti-TNF therapy in RA. Methods: We performed a sequential multi-omic analysis integrating different sources of molecular information. First, we extracted the RNA from synovial biopsies of 11 RA patients starting anti-TNF therapy to identify gene coexpression modules (GCMs) in the RA synovium. Second, we analyzed the transcriptomic association between each GCM and the clinical response to anti-TNF therapy. The clinical response was determined at week 14 using the EULAR criteria. Third, we analyzed the association between the GCMs and anti-TNF response at the genetic level. For this objective, we used genome-wide data from a cohort of 348 anti-TNF treated patients from Spain. The GCMs that were significantly associated with the anti-TNF response were then tested for validation in an independent cohort of 2,706 anti-TNF treated patients. Finally, the functional implication of the validated GCMs was evaluated via pathway and cell type epigenetic enrichment analyses. Results: A total of 149 GCMs were identified in the RA synovium. From these, 13 GCMs were found to be significantly associated with anti-TNF response (P < 0.05). At the genetic level, we detected two of the 13 GCMs to be significantly associated with the response to adalimumab (P = 0.0015) and infliximab (P = 0.021) in the Spain cohort. Using the independent cohort of RA patients, we replicated the association of the GCM associated with the response to adalimumab (P = 0.0019). The validated module was found to be significantly enriched for genes involved in the nucleotide metabolism (P = 2.41e-5) and epigenetic marks from immune cells, including CD4+ regulatory T cells (P = 0.041). Conclusions: These findings show the existence of a drug-specific genetic basis for anti-TNF response, thereby supporting treatment stratification in the search for response biomarkers in RA.
Collapse
Affiliation(s)
- Adrià Aterido
- Rheumatology Research Group, Vall d'Hebron Research Institute, Barcelona, Spain.,Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Juan D Cañete
- Rheumatology Department, Hospital Clínic de Barcelona and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Jesús Tornero
- Rheumatology Department, Hospital Universitario De Guadalajara, Guadalajara, Spain
| | - Francisco Blanco
- Rheumatology Department, INIBIC-Hospital Universitario A Coruña, A Coruña, Spain
| | | | - Carolina Pérez
- Rheumatology Department, Parc de Salut Mar, Barcelona, Spain
| | | | - Alex Olivè
- Rheumatology Department, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
| | - Héctor Corominas
- Rheumatology Department, Hospital Moisès Broggi, Barcelona, Spain
| | | | - Isidoro González
- Rheumatology Department, Hospital Universitario La Princesa, IIS La Princesa, Madrid, Spain
| | - Antonio Fernández-Nebro
- UGC Reumatología, Instituto Investigación Biomédica Málaga, Hospital Regional Universitario, Universidad de Málaga, Málaga, Spain
| | - Alba Erra
- Rheumatology Department, Hospital Sant Rafael, Barcelona, Spain
| | - María López-Lasanta
- Rheumatology Research Group, Vall d'Hebron Research Institute, Barcelona, Spain
| | | | - Núria Palau
- Rheumatology Research Group, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Sara Marsal
- Rheumatology Research Group, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Antonio Julià
- Rheumatology Research Group, Vall d'Hebron Research Institute, Barcelona, Spain
| |
Collapse
|
13
|
Xu D, Jiang Y, Yang L, Hou X, Wang J, Gu W, Wang X, Liu L, Zhang J, Lu H. Long noncoding RNAs expression profile and functional networks in rheumatoid arthritis. Oncotarget 2017; 8:95280-95292. [PMID: 29221127 PMCID: PMC5707021 DOI: 10.18632/oncotarget.20036] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 07/25/2017] [Indexed: 12/23/2022] Open
Abstract
The modifying effects of long noncoding RNAs (lncRNAs) in rheumatoid arthritis (RA) recently have drawn much attention; however, the underlying mechanisms remain largely unknown. Herein, we aim to investigate the expression profile of lncRNAs in RA and identify promising targets for RA diagnosis and treatment. Microarray screening and real-time PCR of lncRNAs were performed by use of serum samples from 3 RA patients and 3 healthy controls. Significantly differentially expressed lncRNAs were verified in serum samples from 43 RA patients and 40 healthy controls by real-time PCR. We found that there were 73 up-regulated and 61 down-regulated lncRNAs as well as 128 up-regulated and 37 down-regulated mRNAs in serum samples of RA patients. Validation in RA clinical samples indicated 5 of these lncRNAs were significantly up-regulated including RNA143598, RNA143596, HIX0032090, IGHCgamma1, and XLOC_002730. Significant association was observed between these lncRNAs and the disease course, erythrocyte sedimentation rate (ESR), rheumatoid factor (RF) as well as anti-cyclic citrullinated peptide (anti-CCP) antibody. Additionally, 55 of the differentially expressed mRNAs were associated with 41 lncRNAs and were involved in signaling pathways of toll like receptors (TLRs), nuclear factor-kappa B (NF-κB), and cytokine, especially the IRF3/IRF7 mediated signaling transduction. Our study firstly shows the specific profile of lncRNAs in the serum of RA patients and potential signaling pathways involved in RA pathogenesis, which may provide novel targets for the diagnosis and treatment of patients with RA.
Collapse
Affiliation(s)
- Donghua Xu
- Department of Rheumatology and Immunology, The Affiliated Hospital of Weifang Medical University, Weifang 261000, China.,Clinical Medicine College of Weifang Medical University, Weifang 261000, China
| | - Ye Jiang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lu Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xixing Hou
- Department of Rheumatology and Immunology, The Affiliated Hospital of Weifang Medical University, Weifang 261000, China
| | - Jihong Wang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Weifang Medical University, Weifang 261000, China
| | - Weijun Gu
- Department of Rheumatology and Immunology, The Affiliated Hospital of Weifang Medical University, Weifang 261000, China
| | - Xiaodong Wang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Weifang Medical University, Weifang 261000, China
| | - Lanyu Liu
- Department of Gynecology and Obstetrics, Weifang Hospital of Maternal and Child Health, Weifang 261000, Shandong Province, China
| | - Juan Zhang
- Department of Rehabilitation, Affiliated Huai'an Hospital of Xuzhou Medical College and Second People's Hospital of Huai'an, Huai'an 223001, China
| | - Hongying Lu
- Functional Laboratory, Clinical Medicine College of Weifang Medical University, Weifang 261000, China
| |
Collapse
|
14
|
Epigenetic aspects of rheumatoid arthritis: contribution of non-coding RNAs. Semin Arthritis Rheum 2017; 46:724-731. [DOI: 10.1016/j.semarthrit.2017.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/20/2016] [Accepted: 01/13/2017] [Indexed: 01/07/2023]
|
15
|
Ju JH, Shenoy SA, Crystal RG, Mezey JG. An independent component analysis confounding factor correction framework for identifying broad impact expression quantitative trait loci. PLoS Comput Biol 2017; 13:e1005537. [PMID: 28505156 PMCID: PMC5448815 DOI: 10.1371/journal.pcbi.1005537] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 05/30/2017] [Accepted: 04/28/2017] [Indexed: 11/19/2022] Open
Abstract
Genome-wide expression Quantitative Trait Loci (eQTL) studies in humans have provided numerous insights into the genetics of both gene expression and complex diseases. While the majority of eQTL identified in genome-wide analyses impact a single gene, eQTL that impact many genes are particularly valuable for network modeling and disease analysis. To enable the identification of such broad impact eQTL, we introduce CONFETI: Confounding Factor Estimation Through Independent component analysis. CONFETI is designed to address two conflicting issues when searching for broad impact eQTL: the need to account for non-genetic confounding factors that can lower the power of the analysis or produce broad impact eQTL false positives, and the tendency of methods that account for confounding factors to model broad impact eQTL as non-genetic variation. The key advance of the CONFETI framework is the use of Independent Component Analysis (ICA) to identify variation likely caused by broad impact eQTL when constructing the sample covariance matrix used for the random effect in a mixed model. We show that CONFETI has better performance than other mixed model confounding factor methods when considering broad impact eQTL recovery from synthetic data. We also used the CONFETI framework and these same confounding factor methods to identify eQTL that replicate between matched twin pair datasets in the Multiple Tissue Human Expression Resource (MuTHER), the Depression Genes Networks study (DGN), the Netherlands Study of Depression and Anxiety (NESDA), and multiple tissue types in the Genotype-Tissue Expression (GTEx) consortium. These analyses identified both cis-eQTL and trans-eQTL impacting individual genes, and CONFETI had better or comparable performance to other mixed model confounding factor analysis methods when identifying such eQTL. In these analyses, we were able to identify and replicate a few broad impact eQTL although the overall number was small even when applying CONFETI. In light of these results, we discuss the broad impact eQTL that have been previously reported from the analysis of human data and suggest that considerable caution should be exercised when making biological inferences based on these reported eQTL.
Collapse
Affiliation(s)
- Jin Hyun Ju
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, United States of America
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY, United States of America
| | - Sushila A. Shenoy
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, United States of America
| | - Ronald G. Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, United States of America
| | - Jason G. Mezey
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, United States of America
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY, United States of America
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, United States of America
- * E-mail:
| |
Collapse
|
16
|
Jiang H, Ma R, Zou S, Wang Y, Li Z, Li W. Reconstruction and analysis of the lncRNA–miRNA–mRNA network based on competitive endogenous RNA reveal functional lncRNAs in rheumatoid arthritis. MOLECULAR BIOSYSTEMS 2017; 13:1182-1192. [PMID: 28470264 DOI: 10.1039/c7mb00094d] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease with an unknown etiology, occurring in approximately 1.0% of general population.
Collapse
Affiliation(s)
- Hui Jiang
- College of Basic Medicine
- Anhui Medical University
- Hefei
- China
- Department of Pharmacy
| | - Rong Ma
- Institute for Cardiovascular and Metabolic Disease
- University of North Texas Health Sciences Center
- Fort Worth
- USA
| | - Shubiao Zou
- Department of Clinical Laboratory
- The Second Affiliated Hospital of Nanchang University
- Nanchang
- China
| | - Yongzhong Wang
- Department of Pharmacy
- The First Affiliated Hospital of Anhui University of Chinese Medicine
- Hefei
- China
| | - Zhuqing Li
- College of Basic Medicine
- Anhui Medical University
- Hefei
- China
| | - Weiping Li
- College of Basic Medicine
- Anhui Medical University
- Hefei
- China
| |
Collapse
|
17
|
Sang W, Sun C, Zhang C, Zhang D, Wang Y, Xu L, Zhang Z, Wei X, Pan B, Yan D, Zhu F, Yan Z, Cao J, Loughran TP, Xu K. MicroRNA-150 negatively regulates the function of CD4(+) T cells through AKT3/Bim signaling pathway. Cell Immunol 2016; 306-307:35-40. [PMID: 27329362 DOI: 10.1016/j.cellimm.2016.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/28/2016] [Accepted: 05/29/2016] [Indexed: 12/21/2022]
Abstract
Donor-derived CD4(+) T lymphocytes are the major effector cells directly involved in the development of graft-versus-host disease (GVHD). As a negative regulator of immune cell differentiation and development, microRNA-150 (miR-150) induces immunological tolerance in CD4(+) T cells after transplantation. However, the specific mechanisms have not been fully elucidated. In this study, we demonstrated that miR-150 is capable of not only inhibiting proliferation and activation of CD4(+) T cells but also promoting apoptosis. Mechanistically, miR-150 targets v-akt murine thymoma viral oncogene homolog 3 (AKT3), and subsequently downregulates B-cell lymphoma 2 (Bcl-2) interacting mediator of cell death (BIM). We have also demonstrated that re-expression of AKT3 reversed miR-150-mediated inhibition of CD4(+) T lymphocyte development. Therefore, we conclude that miR-150 negatively regulates CD4(+) T cell function by inhibiting the AKT3/BIM signaling pathway. These findings also suggest that manipulating the levels of miRNA-150 could be a valuable strategy in prevention and/or treatment of acute graft-versus-host disease.
Collapse
Affiliation(s)
- Wei Sang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; The Key Laboratory of Transplantation Immunity, Affiliated Hospital of Xuzhou Medical University, Jiangsu Province, China
| | - Cai Sun
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; The Key Laboratory of Transplantation Immunity, Affiliated Hospital of Xuzhou Medical University, Jiangsu Province, China
| | - Cong Zhang
- Department of hematology, Huaibei Miners General Hospital, Anhui Province, China
| | - Dianzheng Zhang
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, USA
| | - Ying Wang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; The Key Laboratory of Transplantation Immunity, Affiliated Hospital of Xuzhou Medical University, Jiangsu Province, China
| | - Linyan Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; The Key Laboratory of Transplantation Immunity, Affiliated Hospital of Xuzhou Medical University, Jiangsu Province, China
| | - Zhe Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; The Key Laboratory of Transplantation Immunity, Affiliated Hospital of Xuzhou Medical University, Jiangsu Province, China
| | - Xiangyu Wei
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; The Key Laboratory of Transplantation Immunity, Affiliated Hospital of Xuzhou Medical University, Jiangsu Province, China
| | - Bin Pan
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; The Key Laboratory of Transplantation Immunity, Affiliated Hospital of Xuzhou Medical University, Jiangsu Province, China
| | - Dongmei Yan
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; The Key Laboratory of Transplantation Immunity, Affiliated Hospital of Xuzhou Medical University, Jiangsu Province, China
| | - Feng Zhu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; The Key Laboratory of Transplantation Immunity, Affiliated Hospital of Xuzhou Medical University, Jiangsu Province, China
| | - Zhiling Yan
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; The Key Laboratory of Transplantation Immunity, Affiliated Hospital of Xuzhou Medical University, Jiangsu Province, China
| | - Jiang Cao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; The Key Laboratory of Transplantation Immunity, Affiliated Hospital of Xuzhou Medical University, Jiangsu Province, China
| | - Thomas P Loughran
- Department of Medicine, University of Virginia Cancer Center, VA, USA.
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; The Key Laboratory of Transplantation Immunity, Affiliated Hospital of Xuzhou Medical University, Jiangsu Province, China.
| |
Collapse
|
18
|
Kheirouri S, Hadi V, Alizadeh M. Immunomodulatory Effect of Nigella sativa Oil on T Lymphocytes in Patients with Rheumatoid Arthritis. Immunol Invest 2016; 45:271-83. [PMID: 27100726 DOI: 10.3109/08820139.2016.1153649] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND AND OBJECTIVES Abundant evidence indicates the involvement of CD4(+), CD8(+), and CD4(+)CD25(+) T lymphocytes in the induction and/or protection of rheumatoid arthritis (RA). We aimed to investigate the modulatory effect of Nigella sativa (NS) oil on the selected T cell subset percentage in females with RA. METHODS A randomized, double-blinded placebo-controlled, 2 months, parallel-group clinical trial was conducted. Forty-three female patients (20-50 years) with mild to moderate RA were recruited and assigned into NS (n = 23) and placebo (n = 20) groups to receive one gram of NS oil, or starch, capsule in two divided doses, respectively. The disease activity scores of 28 joints (DAS28) were calculated and percentages of CD4(+), CD8(+), and CD4(+)CD25(+) T cells were examined using flow cytometry. RESULTS Treatment with NS led to significant reduction of the serum high-sensitivity C-reactive protein (hs-CRP) level and DAS-28 score and an improved number of swollen joints compared with baseline and placebo groups. A relatively comparable CD4(+) T cell percentage was observed in the NS and placebo groups either in baseline or the end of study. The treatment also resulted in reduced CD8(+), and increased CD4(+)CD25(+) T cell percentage and the CD4(+)/CD8(+) ratio as compared to placebo and baseline. A negative significant correlation between changes in CD8(+) and changes in CD4(+)CD25(+) T cells and a positive significant correlation between changes in CD4(+)CD25(+) T cells and changes in the CD4(+)/CD8(+) ratio was observed in the NS group. CONCLUSION This study gives strength to the potential relevance of NS in clinical management of RA through modulation of T lymphocytes.
Collapse
Affiliation(s)
- Sorayya Kheirouri
- a Department of Nutrition , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Vahid Hadi
- a Department of Nutrition , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mohammad Alizadeh
- a Department of Nutrition , Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
19
|
Shikonin Inhibits Inflammatory Response in Rheumatoid Arthritis Synovial Fibroblasts via lncRNA-NR024118. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:631737. [PMID: 26640499 PMCID: PMC4657066 DOI: 10.1155/2015/631737] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/29/2015] [Accepted: 07/30/2015] [Indexed: 11/17/2022]
Abstract
Background. Shikonin is a major chemical component of zicao that possesses anti-inflammatory properties and the ability to mediate cellular and humoral immunity, especially in rheumatoid arthritis (RA). We investigated the impact of shikonin on inflammatory response in RA synovial fibroblasts using the CAIA model. Methods. Severe polyarticular arthritis was induced in Balb/c female mice. Expressions of lncRNA-NR024118, SOCS3, proinflammatory cytokines, and MMPs were evaluated using RT-RCR. Histone acetylation and SOCS3 protein expression were assessed by ChIP assay and western blot, respectively. Results. Mice treated with shikonin showed an abrogation of soft tissue and bone lesions. Shikonin remarkably enhanced the expression of NR024118 and SOCS3 and suppressed the secretion and expression of IL-6, IL-8, and MMPs. Proliferation of cultured RA synovial fibroblasts in the presence of IL-1β was also significantly inhibited by shikonin. Moreover, shikonin dose-dependently increased acetylation of histone H3 at the promoter of NR024118. Finally, NR024118 overexpression and interference significantly changed SOCS3 expression and NR024118 interference could reverse regulation of shikonin on SOCS3, proinflammatory cytokines, and MMPs expression level in MH7A cells. Conclusion. Our results reveal that, in the CAIA mouse model of RA, shikonin has disease modifying activity that is attributable to the inhibition of inflammatory response via lncRNA-NR024118.
Collapse
|
20
|
Scaria V. Joining the long shots: emerging evidence on the role of long noncoding RNAs in rheumatoid arthritis. Int J Rheum Dis 2015; 17:831-3. [DOI: 10.1111/1756-185x.12570] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Vinod Scaria
- GN Ramachandran Knowledge Center for Genome Informatics; CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB); Delhi India
- Faculty of Life Sciences; Academy of Scientific and Innovative Research (AcSIR),; Delhi India
| |
Collapse
|