1
|
Liu S, Wang X, Peng L. Comparative Transcriptomic Analysis of the Metabolism of Betalains and Flavonoids in Red Amaranth Hypocotyl under Blue Light and Dark Conditions. Molecules 2023; 28:5627. [PMID: 37570597 PMCID: PMC10420052 DOI: 10.3390/molecules28155627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
Amaranth plants contain abundant betalains and flavonoids. Anthocyanins are important flavonoids; however, they cannot coexist in the same plant with betalains. Blue light influences metabolite synthesis and hypocotyl elongation; accordingly, analyses of its effects on betalain and flavonoid biosynthesis in Amaranthus tricolor may provide insight into the distribution of these plant pigments. We analyzed the betalain and flavonoid content and transcriptome profiles in amaranth hypocotyls under blue light and dark conditions. Furthermore, we analyzed the expression patterns of key genes related to betalains and flavonoids. Amaranth hypocotyls were shorter and redder and showed higher betalain and flavonoid content under blue light than in dark conditions. Key genes involved in the synthesis of betalains and flavonoids were upregulated under blue light. The gene encoding DELLA was also upregulated. These results suggest that blue light favors the synthesis of both betalains and flavonoids via the suppression of bioactive gibberellin and the promotion of DELLA protein accumulation, which also suppresses hypocotyl elongation. The metabolite profiles differed between plants under blue light and dark conditions. These findings improve our understanding of the environmental cues and molecular mechanisms underlying pigment variation in Amaranthus.
Collapse
Affiliation(s)
- Shengcai Liu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Xiao Wang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Liyun Peng
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530005, China;
| |
Collapse
|
2
|
Srivastava AK, Srivastava R, Sharma A, Bharati AP, Yadav J, Singh AK, Tiwari PK, Srivatava AK, Chakdar H, Kashyap PL, Saxena AK. Transcriptome Analysis to Understand Salt Stress Regulation Mechanism of Chromohalobacter salexigens ANJ207. Front Microbiol 2022; 13:909276. [PMID: 35847097 PMCID: PMC9279137 DOI: 10.3389/fmicb.2022.909276] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/08/2022] [Indexed: 11/21/2022] Open
Abstract
Soil salinity is one of the major global issues affecting soil quality and agricultural productivity. The plant growth-promoting halophilic bacteria that can thrive in regions of high salt (NaCl) concentration have the ability to promote the growth of plants in salty environments. In this study, attempts have been made to understand the salinity adaptation of plant growth-promoting moderately halophilic bacteria Chromohalobacter salexigens ANJ207 at the genetic level through transcriptome analysis. In order to identify the stress-responsive genes, the transcriptome sequencing of C. salexigens ANJ207 under different salt concentrations was carried out. Among the 8,936 transcripts obtained, 93 were upregulated while 1,149 were downregulated when the NaCl concentration was increased from 5 to 10%. At 10% NaCl concentration, genes coding for lactate dehydrogenase, catalase, and OsmC-like protein were upregulated. On the other hand, when salinity was increased from 10 to 25%, 1,954 genes were upregulated, while 1,287 were downregulated. At 25% NaCl, genes coding for PNPase, potassium transporter, aconitase, excinuclease subunit ABC, and transposase were found to be upregulated. The quantitative real-time PCR analysis showed an increase in the transcript of genes related to the biosynthesis of glycine betaine coline genes (gbcA, gbcB, and L-pro) and in the transcript of genes related to the uptake of glycine betaine (OpuAC, OpuAA, and OpuAB). The transcription of the genes involved in the biosynthesis of L-hydroxyproline (proD and proS) and one stress response proteolysis gene for periplasmic membrane stress sensing (serP) were also found to be increased. The presence of genes for various compatible solutes and their increase in expression at the high salt concentration indicated that a coordinated contribution by various compatible solutes might be responsible for salinity adaptation in ANJ207. The investigation provides new insights into the functional roles of various genes involved in salt stress tolerance and oxidative stress tolerance produced by high salt concentration in ANJ207 and further support the notion regarding the utilization of bacterium and their gene(s) in ameliorating salinity problem in agriculture.
Collapse
Affiliation(s)
- Alok Kumar Srivastava
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Ruchi Srivastava
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Anjney Sharma
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Akhilendra Pratap Bharati
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India.,Department of Life Science and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, India
| | - Jagriti Yadav
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Alok Kumar Singh
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Praveen Kumar Tiwari
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Anchal Kumar Srivatava
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Hillol Chakdar
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Prem Lal Kashyap
- Indian Council of Agricultural Research-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Anil Kumar Saxena
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India
| |
Collapse
|
3
|
Srivastava AK, Srivastava R, Bharati AP, Singh AK, Sharma A, Das S, Tiwari PK, Srivastava AK, Chakdar H, Kashyap PL, Saxena AK. Analysis of Biosynthetic Gene Clusters, Secretory, and Antimicrobial Peptides Reveals Environmental Suitability of Exiguobacterium profundum PHM11. Front Microbiol 2022; 12:785458. [PMID: 35185816 PMCID: PMC8851196 DOI: 10.3389/fmicb.2021.785458] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
Halotolerant bacteria produce a wide range of bioactive compounds with important applications in agriculture for abiotic stress amelioration and plant growth promotion. In the present study, 17 biosynthetic gene clusters (BGCs) were identified in Exiguobacterium profundum PHM11 belonging to saccharides, desmotamide, pseudaminic acid, dipeptide aldehydes, and terpene biosynthetic pathways representing approximately one-sixth of genomes. The terpene biosynthetic pathway was conserved in Exiguobacterium spp. while the E. profundum PHM11 genome confirms the presence of the 1-deoxy-d-xylulose 5-phosphate (DXP) pathway for the isopentenyl diphosphate (IPP) synthesis. Further, 2,877 signal peptides (SPs) were identified using the PrediSi server, out of which 592 proteins were prophesied for the secretion having a transmembrane helix (TMH). In addition, antimicrobial peptides (AMPs) were also identified using BAGEL4. The transcriptome analysis of PHM11 under salt stress reveals the differential expression of putative secretion and transporter genes having SPs and TMH. Priming of the rice, wheat and maize seeds with PHM11 under salt stress led to improvement in the root length, root diameters, surface area, number of links and forks, and shoot length. The study shows that the presence of BGCs, SPs, and secretion proteins constituting TMH and AMPs provides superior competitiveness in the environment and make E. profundum PHM11 a suitable candidate for plant growth promotion under salt stress.
Collapse
Affiliation(s)
- Alok Kumar Srivastava
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
- Alok Kumar Srivastava,
| | - Ruchi Srivastava
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Akhilendra Pratap Bharati
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Alok Kumar Singh
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Anjney Sharma
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Sudipta Das
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Praveen Kumar Tiwari
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Anchal Kumar Srivastava
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Hillol Chakdar
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Prem Lal Kashyap
- Indian Council of Agricultural Research-Indian Institute of Wheat and Barley Research, Karnal, India
- *Correspondence: Prem Lal Kashyap, ;
| | - Anil Kumar Saxena
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| |
Collapse
|
4
|
Liu S, Zheng X, Pan J, Peng L, Cheng C, Wang X, Zhao C, Zhang Z, Lin Y, XuHan X, Lai Z. RNA-sequencing analysis reveals betalains metabolism in the leaf of Amaranthus tricolor L. PLoS One 2019; 14:e0216001. [PMID: 31022263 PMCID: PMC6483260 DOI: 10.1371/journal.pone.0216001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 04/11/2019] [Indexed: 12/13/2022] Open
Abstract
Amaranth plants contain large amounts of betalains, including betaxanthins and betacyanins. Amaranthin is a betacyanin, and its molecular structure and associated metabolic pathway differ from those of betanin in beet plants. The chlorophyll, carotenoid, betalain, and flavonoid contents in amaranth leaves were analyzed. The abundance of betalain, betacyanin, and betaxanthin was 2-5-fold higher in the red leaf sectors than in the green leaf sectors. Moreover, a transcriptome database was constructed for the red and green sectors of amaranth leaves harvested from 30-day-old seedlings. 22 unigenes were selected to analyze the expression profiles in the two leaf sectors. The RNA-sequencing data indicated that many unigenes are involved in betalain metabolic pathways. The potential relationships between diverse metabolic pathways and betalain metabolism were analyzed. The validation of the expression of 22 selected unigenes in a qRT-PCR assay revealed the genes that were differentially expressed in the two leaf sectors. Betalains were biosynthesized in specific tissues of the red sectors of amaranth leaves. Almost all of the genes related to betalain metabolism were identified in the transcriptome database, and the expression profiles were different between the red sectors and green sectors in the leaf. Amaranth plants consist of diverse metabolic pathways, and the betalain metabolic pathway is linked to a group of other metabolic pathways.
Collapse
Affiliation(s)
- Shengcai Liu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xueli Zheng
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Junfei Pan
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liyun Peng
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chunzhen Cheng
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiao Wang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chunli Zhao
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zihao Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xu XuHan
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
- Institut de la Recherche Interdisciplinaire de Toulouse, Toulouse, France
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
5
|
Vera Hernández FP, Martínez Núñez M, Ruiz Rivas M, Vázquez Portillo RE, Bibbins Martínez MD, Luna Suárez S, Rosas Cárdenas FDF. Reference genes for RT-qPCR normalisation in different tissues, developmental stages and stress conditions of amaranth. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:713-721. [PMID: 29603549 DOI: 10.1111/plb.12725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/23/2018] [Indexed: 06/08/2023]
Abstract
Studies of gene expression are very important for the identification of genes that participate in different biological processes. Currently, reverse transcription quantitative real-time PCR (RT-qPCR) is a high-throughput, sensitive and widely used method for gene expression analysis. Nevertheless, RT-qPCR requires precise normalisation of data to avoid the misinterpretation of experimental data. In this sense, the selection of reference genes is critical for gene expression analysis. At this time, several studies focus on the selection of reference genes in several species. However, the identification and validation of reference genes for the normalisation of RT-qPCR have not been described in amaranth. A set of seven housekeeping genes were analysed using RT-qPCR, to determine the most stable reference genes in amaranth for normalisation of gene expression analysis. Transcript stability and gene expression level of candidate reference genes were analysed in different tissues, at different developmental stages and under different types of stress. The data were compared using the geNorm, NormFinder and Bestkeeper statistical methods. The reference genes optimum for normalisation of data varied with respect to treatment. The results indicate that AhyMDH, AhyGAPDH, AhyEF-1α and AhyACT would be optimum for accurate normalisation of experimental data, when all treatment are analysed in the same experiment. This study presents the most stable reference genes for normalisation of gene expression analysis in amaranth, which will contribute significantly to future gene studies of this species.
Collapse
Affiliation(s)
- F P Vera Hernández
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada (CIBA-IPN), Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla, Tlaxcala, México
| | - M Martínez Núñez
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada (CIBA-IPN), Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla, Tlaxcala, México
| | - M Ruiz Rivas
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada (CIBA-IPN), Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla, Tlaxcala, México
| | - R E Vázquez Portillo
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada (CIBA-IPN), Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla, Tlaxcala, México
| | - M D Bibbins Martínez
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada (CIBA-IPN), Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla, Tlaxcala, México
| | - S Luna Suárez
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada (CIBA-IPN), Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla, Tlaxcala, México
| | - F de F Rosas Cárdenas
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada (CIBA-IPN), Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla, Tlaxcala, México
| |
Collapse
|
6
|
Zhou W, Huang Q, Wu X, Zhou Z, Ding M, Shi M, Huang F, Li S, Wang Y, Kai G. Comprehensive transcriptome profiling of Salvia miltiorrhiza for discovery of genes associated with the biosynthesis of tanshinones and phenolic acids. Sci Rep 2017; 7:10554. [PMID: 28874707 PMCID: PMC5585387 DOI: 10.1038/s41598-017-10215-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/07/2017] [Indexed: 12/14/2022] Open
Abstract
Tanshinones and phenolic acids are crucial bioactive compounds biosynthesized in Salvia miltiorrhiza. Methyl jasmonate (MeJA) is an effective elicitor to enhance the production of phenolic acids and tanshinones simultaneously, while yeast extract (YE) is used as a biotic elicitor that only induce tanshinones accumulation. However, little was known about the different molecular mechanism. To identify the downstream and regulatory genes involved in tanshinone and phenolic acid biosynthesis, we conducted comprehensive transcriptome profiling of S. miltiorrhiza hairy roots treated with either MeJA or YE. Total 55588 unigenes were assembled from about 1.72 billion clean reads, of which 42458 unigenes (76.4%) were successfully annotated. The expression patterns of 19 selected genes in the significantly upregulated unigenes were verified by quantitative real-time PCR. The candidate downstream genes and other cytochrome P450s involved in the late steps of tanshinone and phenolic acid biosynthesis pathways were screened from the RNA-seq dataset based on co-expression pattern analysis with specific biosynthetic genes. Additionally, 375 transcription factors were identified to exhibit a significant up-regulated expression pattern in response to induction. This study can provide us a valuable gene resource for elucidating the molecular mechanism of tanshinones and phenolic acids biosynthesis in hairy roots of S. miltiorrhiza.
Collapse
Affiliation(s)
- Wei Zhou
- College of pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.,The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Linan, Hangzhou, Zhejiang, 311300, China
| | - Qiang Huang
- Laboratory of Plant Biotechnology, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xiao Wu
- Laboratory of Plant Biotechnology, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zewen Zhou
- Laboratory of Plant Biotechnology, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Mingquan Ding
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Linan, Hangzhou, Zhejiang, 311300, China
| | - Min Shi
- Laboratory of Plant Biotechnology, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Fenfen Huang
- Laboratory of Plant Biotechnology, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Shen Li
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Linan, Hangzhou, Zhejiang, 311300, China
| | - Yao Wang
- Laboratory of Plant Biotechnology, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Guoyin Kai
- College of pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China. .,Laboratory of Plant Biotechnology, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
7
|
Lightfoot DJ, Jarvis DE, Ramaraj T, Lee R, Jellen EN, Maughan PJ. Single-molecule sequencing and Hi-C-based proximity-guided assembly of amaranth (Amaranthus hypochondriacus) chromosomes provide insights into genome evolution. BMC Biol 2017; 15:74. [PMID: 28854926 PMCID: PMC5577786 DOI: 10.1186/s12915-017-0412-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/04/2017] [Indexed: 11/10/2022] Open
Abstract
Background Amaranth (Amaranthus hypochondriacus) was a food staple among the ancient civilizations of Central and South America that has recently received increased attention due to the high nutritional value of the seeds, with the potential to help alleviate malnutrition and food security concerns, particularly in arid and semiarid regions of the developing world. Here, we present a reference-quality assembly of the amaranth genome which will assist the agronomic development of the species. Results Utilizing single-molecule, real-time sequencing (Pacific Biosciences) and chromatin interaction mapping (Hi-C) to close assembly gaps and scaffold contigs, respectively, we improved our previously reported Illumina-based assembly to produce a chromosome-scale assembly with a scaffold N50 of 24.4 Mb. The 16 largest scaffolds contain 98% of the assembly and likely represent the haploid chromosomes (n = 16). To demonstrate the accuracy and utility of this approach, we produced physical and genetic maps and identified candidate genes for the betalain pigmentation pathway. The chromosome-scale assembly facilitated a genome-wide syntenic comparison of amaranth with other Amaranthaceae species, revealing chromosome loss and fusion events in amaranth that explain the reduction from the ancestral haploid chromosome number (n = 18) for a tetraploid member of the Amaranthaceae. Conclusions The assembly method reported here minimizes cost by relying primarily on short-read technology and is one of the first reported uses of in vivo Hi-C for assembly of a plant genome. Our analyses implicate chromosome loss and fusion as major evolutionary events in the 2n = 32 amaranths and clearly establish the homoeologous relationship among most of the subgenome chromosomes, which will facilitate future investigations of intragenomic changes that occurred post polyploidization. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0412-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- D J Lightfoot
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), KAUST Environmental Epigenetic Program (KEEP), Thuwal, 23955-6900, Saudi Arabia
| | - D E Jarvis
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - T Ramaraj
- National Center for Genome Resources, Santa Fe, NM, 87505, USA
| | - R Lee
- Department of Plant & Wildlife Sciences, Brigham Young University, 5144 LSB, Provo, UT, 84602, USA
| | - E N Jellen
- Department of Plant & Wildlife Sciences, Brigham Young University, 5144 LSB, Provo, UT, 84602, USA
| | - P J Maughan
- Department of Plant & Wildlife Sciences, Brigham Young University, 5144 LSB, Provo, UT, 84602, USA.
| |
Collapse
|
8
|
Sokol M, Jessen KM, Pedersen FS. Utility of next-generation RNA-sequencing in identifying chimeric transcription involving human endogenous retroviruses. APMIS 2016; 124:127-39. [PMID: 26818267 DOI: 10.1111/apm.12477] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 10/12/2015] [Indexed: 12/13/2022]
Abstract
Several studies have shown that human endogenous retroviruses and endogenous retrovirus-like repeats (here collectively HERVs) impose direct regulation on human genes through enhancer and promoter motifs present in their long terminal repeats (LTRs). Although chimeric transcription in which novel gene isoforms containing retroviral and human sequence are transcribed from viral promoters are commonly associated with disease, regulation by HERVs is beneficial in other settings; for example, in human testis chimeric isoforms of TP63 induced by an ERV9 LTR protect the male germ line upon DNA damage by inducing apoptosis, whereas in the human globin locus the γ- and β-globin switch during normal hematopoiesis is mediated by complex interactions of an ERV9 LTR and surrounding human sequence. The advent of deep sequencing or next-generation sequencing (NGS) has revolutionized the way researchers solve important scientific questions and develop novel hypotheses in relation to human genome regulation. We recently applied next-generation paired-end RNA-sequencing (RNA-seq) together with chromatin immunoprecipitation with sequencing (ChIP-seq) to examine ERV9 chimeric transcription in human reference cell lines from Encyclopedia of DNA Elements (ENCODE). This led to the discovery of advanced regulation mechanisms by ERV9s and other HERVs across numerous human loci including transcription of large gene-unannotated genomic regions, as well as cooperative regulation by multiple HERVs and non-LTR repeats such as Alu elements. In this article, well-established examples of human gene regulation by HERVs are reviewed followed by a description of paired-end RNA-seq, and its application in identifying chimeric transcription genome-widely. Based on integrative analyses of RNA-seq and ChIP-seq, data we then present novel examples of regulation by ERV9s of tumor suppressor genes CADM2 and SEMA3A, as well as transcription of an unannotated region. Taken together, this article highlights the high suitability of contemporary sequencing methods in future analyses of human biology in relation to evolutionary acquired retroviruses in the human genome.
Collapse
Affiliation(s)
- Martin Sokol
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Finn Skou Pedersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
9
|
Liu GH, Xu MJ, Chang QC, Gao JF, Wang CR, Zhu XQ. De novo transcriptomic analysis of the female and male adults of the blood fluke Schistosoma turkestanicum. Parasit Vectors 2016; 9:143. [PMID: 26968659 PMCID: PMC4788885 DOI: 10.1186/s13071-016-1436-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 03/05/2016] [Indexed: 12/19/2022] Open
Abstract
Background Schistosoma turkestanicum is a parasite of considerable veterinary importance as an agent of animal schistosomiasis in many countries, including China. The S. turkestanicum cercariae can also infect humans, causing cercarial dermatitis in many countries and regions of the world. In spite of its significance as a pathogen of animals and humans, there is little transcriptomic and genomic data in the public databases. Methods Herein, we performed the transcriptome Illumina RNA sequencing (RNA-seq) of adult males and females of S. turkestanicum and de novo transcriptome assembly. Results Approximately 81.1 (female) and 80.5 (male) million high-quality clean reads were obtained and then 29,526 (female) and 41,346 (male) unigenes were assembled. A total of 34,624 unigenes were produced from S. turkestanicum females and males, with an average length of 878 nucleotides (nt) and N50 of 1480 nt. Of these unigenes, 25,158 (72.7 %) were annotated by blast searches against the NCBI non-redundant protein database. Among these, 21,995 (63.5 %), 22,189 (64.1 %) and 13,754 (39.7 %) of the unigenes had significant similarity in the NCBI non-redundant protein (NR), non-redundant nucleotide (NT) and Swiss-Prot databases, respectively. In addition, 3150 unigenes were identified to be expressed specifically in females and 1014 unigenes were identified to be expressed specifically in males. Interestingly, several pathways associated with gonadal development and sex maintenance were found, including the Wnt signaling pathway (103; 2 %) and progesterone-mediated oocyte maturation (77; 1.5 %). Conclusions The present study characterized and compared the transcriptomes of adult female and male blood fluke, S. turkestanicum. These results will not only serve as valuable resources for future functional genomics studies to understand the molecular aspects of S. turkestanicum, but also will provide essential information for ongoing whole genome sequencing efforts on this pathogenic blood fluke.
Collapse
Affiliation(s)
- Guo-Hua Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, PR China
| | - Min-Jun Xu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, PR China.,College of Animal Science, South China Agricultural University, Guangzhou, Guangdong Province, 510642, PR China
| | - Qiao-Cheng Chang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, PR China
| | - Jun-Feng Gao
- Department of Parasitology, Heilongjiang Institute of Veterinary Science, Qiqihar, Heilongjiang Province, 161006, PR China
| | - Chun-Ren Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, PR China.
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, PR China. .,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu Province, 225009, PR China.
| |
Collapse
|
10
|
Ramesh KR, Hemalatha R, Vijayendra CA, Arshi UZS, Dushyant SB, Dinesh KB. Transcriptome analysis of Solanum melongena L. (eggplant) fruit to identify putative allergens and their epitopes. Gene 2016; 576:64-71. [DOI: 10.1016/j.gene.2015.09.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 09/05/2015] [Accepted: 09/24/2015] [Indexed: 10/23/2022]
|
11
|
Zheng X, Liu S, Cheng C, Guo R, Chen Y, Xie L, Mao Y, Lin Y, Zhang Z, Lai Z. Cloning and expression analysis of betalain biosynthesis genes in Amaranthus tricolor. Biotechnol Lett 2015; 38:723-9. [DOI: 10.1007/s10529-015-2021-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/17/2015] [Indexed: 10/22/2022]
|
12
|
Baba SA, Mohiuddin T, Basu S, Swarnkar MK, Malik AH, Wani ZA, Abbas N, Singh AK, Ashraf N. Comprehensive transcriptome analysis of Crocus sativus for discovery and expression of genes involved in apocarotenoid biosynthesis. BMC Genomics 2015; 16:698. [PMID: 26370545 PMCID: PMC4570256 DOI: 10.1186/s12864-015-1894-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 09/01/2015] [Indexed: 11/30/2022] Open
Abstract
Background Crocus sativus stigmas form rich source of apocarotenoids like crocin, picrocrocin and saffranal which besides imparting color, flavour and aroma to saffron spice also have tremendous pharmacological properties. Inspite of their importance, the biosynthetic pathway of Crocus apocarotenoids is not fully elucidated. Moreover, the mechanism of their stigma specific accumulation remains unknown. Therefore, deep transcriptome sequencing of Crocus stigma and rest of the flower tissue was done to identify the genes and transcriptional regulators involved in the biosynthesis of these compounds. Results Transcriptome of stigma and rest of the flower tissue was sequenced using Illumina Genome Analyzer IIx platform which generated 64,604,402 flower and 51,350,714 stigma reads. Sequences were assembled de novo using trinity resulting in 64,438 transcripts which were classified into 32,204 unigenes comprising of 9853 clusters and 22,351 singletons. A comprehensive functional annotation and gene ontology (GO) analysis was carried out. 58.5 % of the transcripts showed similarity to sequences present in public databases while rest could be specific to Crocus. 5789 transcripts showed similarity to transcription factors representing 76 families out of which Myb family was most abundant. Many genes involved in carotenoid/apocarotenoid pathway were identified for the first time in this study which includes zeta-carotene isomerase and desaturase, carotenoid isomerase and lycopene epsilon-cyclase. GO analysis showed that the predominant classes in biological process category include metabolic process followed by cellular process and primary metabolic process. KEGG mapping analysis indicated that pathways involved in ribosome, carbon and starch and sucrose metabolism were highly represented. Differential expression analysis indicated that key carotenoid/apocarotenoid pathway genes including phytoene synthase, phytoene desaturase and carotenoid cleavage dioxygenase 2 are enriched in stigma thereby providing molecular proof for stigma to be the site of apocarotenoid biosynthesis. Conclusions This data would provide a rich source for understanding the carotenoid/apocarotenoid metabolism in Crocus. The database would also help in investigating many questions related to saffron biology including flower development. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1894-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shoib Ahmad Baba
- Plant Biotechnology Division, CSIR- Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, J&K-190005, India. .,Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, 110 001, India.
| | - Tabasum Mohiuddin
- Plant Biotechnology Division, CSIR- Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, J&K-190005, India. .,Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, 110 001, India.
| | - Swaraj Basu
- Stazione Zoologica Anton Dohrn di Napoli, Naples, Italy.
| | - Mohit Kumar Swarnkar
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India.
| | - Aubid Hussain Malik
- Plant Biotechnology Division, CSIR- Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, J&K-190005, India. .,Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, 110 001, India.
| | - Zahoor Ahmed Wani
- Plant Biotechnology Division, CSIR- Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, J&K-190005, India. .,Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, 110 001, India.
| | - Nazia Abbas
- Plant Biotechnology Division, CSIR- Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, J&K-190005, India.
| | - Anil Kumar Singh
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India.
| | - Nasheeman Ashraf
- Plant Biotechnology Division, CSIR- Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, J&K-190005, India. .,Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, 110 001, India.
| |
Collapse
|
13
|
Jia XL, Wang GL, Xiong F, Yu XR, Xu ZS, Wang F, Xiong AS. De novo assembly, transcriptome characterization, lignin accumulation, and anatomic characteristics: novel insights into lignin biosynthesis during celery leaf development. Sci Rep 2015; 5:8259. [PMID: 25651889 PMCID: PMC4317703 DOI: 10.1038/srep08259] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/13/2015] [Indexed: 12/13/2022] Open
Abstract
Celery of the family Apiaceae is a biennial herb that is cultivated and consumed worldwide. Lignin is essential for cell wall structural integrity, stem strength, water transport, mechanical support, and plant pathogen defense. This study discussed the mechanism of lignin formation at different stages of celery development. The transcriptome profile, lignin distribution, anatomical characteristics, and expression profile of leaves at three stages were analyzed. Regulating lignin synthesis in celery growth development has a significant economic value. Celery leaves at three stages were collected, and Illumina paired-end sequencing technology was used to analyze large-scale transcriptome sequences. From Stage 1 to 3, the collenchyma and vascular bundles in the petioles and leaf blades thickened and expanded, whereas the phloem and the xylem extensively developed. Spongy and palisade mesophyll tissues further developed and were tightly arranged. Lignin accumulation increased in the petioles and the mesophyll (palisade and spongy), and the xylem showed strong lignification. Lignin accumulation in different tissues and at different stages of celery development coincides with the anatomic characteristics and transcript levels of genes involved in lignin biosynthesis. Identifying the genes that encode lignin biosynthesis-related enzymes accompanied by lignin distribution may help elucidate the regulatory mechanisms of lignin biosynthesis in celery.
Collapse
Affiliation(s)
- Xiao-Ling Jia
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guang-Long Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fei Xiong
- Key Laboratories of Crop Genetics and Physiology of the Jiangsu Province and Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Xu-Run Yu
- Key Laboratories of Crop Genetics and Physiology of the Jiangsu Province and Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|