1
|
Feng H, Xue M, Deng H, Cheng S, Hu Y, Zhou C. Ginsenoside and Its Therapeutic Potential for Cognitive Impairment. Biomolecules 2022; 12:1310. [PMID: 36139149 PMCID: PMC9496100 DOI: 10.3390/biom12091310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Cognitive impairment (CI) is one of the major clinical features of many neurodegenerative diseases. It can be aging-related or even appear in non-central nerve system (CNS) diseases. CI has a wide spectrum that ranges from the cognitive complaint with normal screening tests to mild CI and, at its end, dementia. Ginsenosides, agents extracted from a key Chinese herbal medicine (ginseng), show great promise as a new therapeutic option for treating CI. This review covered both clinical trials and preclinical studies to summarize the possible mechanisms of how ginsenosides affect CI in different diseases. It shows that ginsenosides can modulate signaling pathways associated with oxidative stress, apoptosis, inflammation, synaptic plasticity, and neurogenesis. The involved signaling pathways mainly include the PI3K/Akt, CREB/BDNF, Keap1/Nrf2 signaling, and NF-κB/NLRP3 inflammasome pathways. We hope to provide a theoretical basis for the treatment of CI for related diseases by ginsenosides.
Collapse
Affiliation(s)
- Hui Feng
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
| | - Mei Xue
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
| | - Hao Deng
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300073, China
| | - Shiqi Cheng
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang 330008, China
| | - Yue Hu
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
| | - Chunxiang Zhou
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
| |
Collapse
|
2
|
Chen Y, Bian Y, Wang JW, Gong TT, Ying YM, Ma LF, Shan WG, Xie XQ, Zhan ZJ. Effects of α-Mangostin Derivatives on the Alzheimer's Disease Model of Rats and Their Mechanism: A Combination of Experimental Study and Computational Systems Pharmacology Analysis. ACS OMEGA 2020; 5:9846-9863. [PMID: 32391472 PMCID: PMC7203693 DOI: 10.1021/acsomega.0c00057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 04/16/2020] [Indexed: 06/09/2023]
Abstract
α-Mangostin (α-M) is a natural xanthone from the pericarp of fruit Garcinia mangostana and possesses versatile biological activities. α-M has a therapeutic potential to treat Alzheimer's disease (AD) because of its anti-inflammatory, antioxidative, and neuroprotective activities. However, the use of α-M for AD treatment is limited due to its cytotoxic activities and relatively low potency. Modifications of its chemical structure were needed to reduce its cytotoxicity and improve its therapeutic potential against AD. For this purpose, 16 α-M carbamate derivatives were synthesized. An animal model of AD was established, and the effects of AMG-1 on the spatial learning ability and memory ability were evaluated using behavioral tests. The effect on neuropathology was tested by histopathological evaluation, Nissl staining, and silver staining. Computational systems pharmacology analysis using the chemogenomics knowledgebase was applied for network studies. Compound-target, target-pathway, and target-disease networks were constructed, integrating both in silico analysis and reported experimental data. The results show that AMG-1 can demonstrate its therapeutic effects in a one-molecule, multiple-targets manner to remarkably ameliorate neurological changes and reverse behavioral deficits in AD model rats. The improved cognitive function and alleviated neuronal injury can be observed. The ability of AMG-1 to scavenge β-amyloid in the hippocampus was validated in AD model rats.
Collapse
Affiliation(s)
- Yan Chen
- College
of Pharmacology Sciences Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Department of Pharmaceutical
Sciences and Computational Chemical
Genomics Screening Center, School of Pharmacy; NIH National Center of Excellence
for Computational Drug Abuse Research; Drug Discovery Institute; Departments of Computational
Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Yuemin Bian
- Department of Pharmaceutical
Sciences and Computational Chemical
Genomics Screening Center, School of Pharmacy; NIH National Center of Excellence
for Computational Drug Abuse Research; Drug Discovery Institute; Departments of Computational
Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Jian-Wei Wang
- College
of Pharmacology Sciences Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Ting-Ting Gong
- College
of Pharmacology Sciences Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - You-Min Ying
- College
of Pharmacology Sciences Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Lie-Feng Ma
- College
of Pharmacology Sciences Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Wei-Guang Shan
- College
of Pharmacology Sciences Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiang-Qun Xie
- Department of Pharmaceutical
Sciences and Computational Chemical
Genomics Screening Center, School of Pharmacy; NIH National Center of Excellence
for Computational Drug Abuse Research; Drug Discovery Institute; Departments of Computational
Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Zha-Jun Zhan
- College
of Pharmacology Sciences Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
3
|
Panaxadiol saponins treatment caused the subtle variations in the global transcriptional state of Asiatic corn borer, Ostrinia furnacalis. J Ginseng Res 2020; 44:123-134. [PMID: 32148395 PMCID: PMC7033338 DOI: 10.1016/j.jgr.2017.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/28/2017] [Accepted: 12/05/2017] [Indexed: 11/22/2022] Open
Abstract
Background Methods Results Conclusion
Collapse
|
4
|
Nutritional Regulators of Bcl-xL in the Brain. Molecules 2018; 23:molecules23113019. [PMID: 30463183 PMCID: PMC6278276 DOI: 10.3390/molecules23113019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/15/2018] [Accepted: 11/18/2018] [Indexed: 01/12/2023] Open
Abstract
B-cell lymphoma-extra large (Bcl-xL) is an anti-apoptotic Bcl-2 protein found in the mitochondrial membrane. Bcl-xL is reported to support normal brain development and protects neurons against toxic stimulation during pathological process via its roles in regulation of mitochondrial functions. Despite promising evidence showing neuroprotective properties of Bcl-xL, commonly applied molecular approaches such as genetic manipulation may not be readily applicable for human subjects. Therefore, findings at the bench may be slow to be translated into treatments for disease. Currently, there is no FDA approved application that specifically targets Bcl-xL and treats brain-associated pathology in humans. In this review, we will discuss naturally occurring nutrients that may exhibit regulatory effects on Bcl-xL expression or activity, thus potentially providing affordable, readily-applicable, easy, and safe strategies to protect the brain.
Collapse
|
5
|
Yang Y, Ren C, Zhang Y, Wu X. Ginseng: An Nonnegligible Natural Remedy for Healthy Aging. Aging Dis 2017; 8:708-720. [PMID: 29344412 PMCID: PMC5758347 DOI: 10.14336/ad.2017.0707] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 07/07/2017] [Indexed: 12/13/2022] Open
Abstract
Aging is an irreversible physiological process that affects all humans. Numerous theories have been proposed to regarding the process from a Western medicine perspective; however, ancient Chinese medicine practices and theories have increasingly gained attention, particularly ginseng, a grass that has been studied for the anti-aging properties of its active constituents. This review seeks to analyze current data on ginseng and its anti-aging properties. The plant species, characteristics, and active ingredients will be introduced. The main part of this review is focused on ginseng and its active components with regards to their effects on prolonging lifespan, the regulation of multiple organ systems including cardiovascular, nervous, immune, and skin, as well as the anti-oxidant and anti-inflammatory properties. The molecular mechanisms of these properties elucidated via various studies are summarized as further evidence of the anti-aging effects of ginseng.
Collapse
Affiliation(s)
- Yong Yang
- Department of Herbal Formula Science, Chinese Medicine College, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Changhong Ren
- Institute of Hypoxia Medicine, Xuanwu hospital, Capital Medical University, Beijing, 100053, China
| | - Yuan Zhang
- Department of Herbal Formula Science, Chinese Medicine College, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - XiaoDan Wu
- Department of Herbal Formula Science, Chinese Medicine College, Beijing University of Chinese Medicine, Beijing, 100029, China
| |
Collapse
|
6
|
Fei YL, Lv HJ, Li YB, Liu J, Qian YH, Yang WN, Ma KG, Li HB, Qu QM. Tongxinluo improves cognition by decreasing β-amyloid in spontaneous hypertensive rats. Brain Res 2017; 1663:151-160. [DOI: 10.1016/j.brainres.2017.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 12/31/2022]
|
7
|
Kure C, Timmer J, Stough C. The Immunomodulatory Effects of Plant Extracts and Plant Secondary Metabolites on Chronic Neuroinflammation and Cognitive Aging: A Mechanistic and Empirical Review. Front Pharmacol 2017; 8:117. [PMID: 28344556 PMCID: PMC5344987 DOI: 10.3389/fphar.2017.00117] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 02/24/2017] [Indexed: 01/25/2023] Open
Abstract
Advances in healthcare have considerably improved the life expectancy of the human population over the last century and this has brought about new challenges. As we live longer the capacity for cognitive aging increases. Consequently, it has been noted that decline in cognitive performance in the elderly in domains of reasoning, problem solving skills, attention, processing speed, working memory and episodic memory is a significant societal problem. Despite the enormity of this issue there are relatively few interventions for cognitive aging. This may be due to our current state of knowledge on biological factors that underpin cognitive aging. One of the biological contributors to cognitive aging is chronic neuroinflammation. This review will provide an overview of the peripheral and central mechanisms involved in chronic neuroinflammation and how neuroinflammation may be related to age-associated cognitive decline. Plant based extracts including herbal and nutritional supplements with anti-inflammatory properties will be examined in relation to their utility in treating age-related cognitive decline. Plant based extracts in particular offer interesting pharmacological properties that may be quickly utilized to prevent cognitive aging.
Collapse
Affiliation(s)
| | | | - Con Stough
- Swinburne Centre for Human Psychopharmacology, Swinburne UniversityHawthorn, VIC, Australia
| |
Collapse
|
8
|
Schlotterer A, Greten HJ, Remppis BA, Kukudov G, Efferth T, Machado J, Humpert P, Hammes HP, Morcos M. Neuroprotection and antioxidative effects of Sijunzi Tang Decoction in the nematode Caenorhabditis elegans. Eur J Integr Med 2016. [DOI: 10.1016/j.eujim.2016.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Cognitive-Enhancing Herbal Formulae in Korean Medicine: Identification of Candidates by Text Mining and Literature Review. J Altern Complement Med 2016; 22:413-8. [DOI: 10.1089/acm.2015.0257] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
10
|
Kainic Acid-Induced Excitotoxicity Experimental Model: Protective Merits of Natural Products and Plant Extracts. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:972623. [PMID: 26793262 PMCID: PMC4697086 DOI: 10.1155/2015/972623] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 11/17/2022]
Abstract
Excitotoxicity is well recognized as a major pathological process of neuronal death in neurodegenerative diseases involving the central nervous system (CNS). In the animal models of neurodegeneration, excitotoxicity is commonly induced experimentally by chemical convulsants, particularly kainic acid (KA). KA-induced excitotoxicity in rodent models has been shown to result in seizures, behavioral changes, oxidative stress, glial activation, inflammatory mediator production, endoplasmic reticulum stress, mitochondrial dysfunction, and selective neurodegeneration in the brain upon KA administration. Recently, there is an emerging trend to search for natural sources to combat against excitotoxicity-associated neurodegenerative diseases. Natural products and plant extracts had attracted a considerable amount of attention because of their reported beneficial effects on the CNS, particularly their neuroprotective effect against excitotoxicity. They provide significant reduction and/or protection against the development and progression of acute and chronic neurodegeneration. This indicates that natural products and plants extracts may be useful in protecting against excitotoxicity-associated neurodegeneration. Thus, targeting of multiple pathways simultaneously may be the strategy to maximize the neuroprotection effect. This review summarizes the mechanisms involved in KA-induced excitotoxicity and attempts to collate the various researches related to the protective effect of natural products and plant extracts in the KA model of neurodegeneration.
Collapse
|