1
|
Fungal composition in saliva and plaque in children with caries: Differences and influencing factors. MEDICINE IN MICROECOLOGY 2023. [DOI: 10.1016/j.medmic.2023.100076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
2
|
Diaz PI, Dongari-Bagtzoglou A. Critically Appraising the Significance of the Oral Mycobiome. J Dent Res 2020; 100:133-140. [PMID: 32924741 DOI: 10.1177/0022034520956975] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Recent efforts to understand the oral microbiome have focused on its fungal component. Since fungi occupy a low proportion of the oral microbiome biomass, mycobiome studies rely on sequencing of internal transcribed spacer (ITS) amplicons. ITS-based studies usually detect hundreds of fungi in oral samples. Here, we review the oral mycobiome, critically appraising the significance of such large fungal diversity. When harsh lysis methods are used to extract DNA, 2 oral mycobiome community types (mycotypes) are evident, each dominated by only 1 genus, either Candida or Malassezia. The rest of the diversity in ITS surveys represents low-abundance fungi possibly acquired from the environment and ingested food. So far, Candida is the only genus demonstrated to reach a significant biomass in the oral cavity and clearly shown to be associated with a distinct oral ecology. Candida thrives in the presence of lower oral pH and is enriched in caries, with mechanistic studies in animal models suggesting it participates in the disease process by synergistically interacting with acidogenic bacteria. Candida serves as the main etiological agent of oral mucosal candidiasis, in which a Candida-bacteriome partnership plays a key role. The function of other potential oral colonizers, such as lipid-dependent Malassezia, is still unclear, with further studies needed to establish whether Malassezia are metabolically active oral commensals. Low-abundance oral mycobiome members acquired from the environment may be viable in the oral cavity, and although they may not play a significant role in microbiome communities, they could serve as opportunistic pathogens in immunocompromised hosts. We suggest that further work is needed to ascertain the significance of oral mycobiome members beyond Candida. ITS-based surveys should be complemented with other methods to determine the in situ biomass and metabolic state of fungi thought to play a role in the oral environment.
Collapse
Affiliation(s)
- P I Diaz
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY, USA.,UB Microbiome Center, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - A Dongari-Bagtzoglou
- Division of Periodontology, Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, UConn Health, Farmington, CT, USA
| |
Collapse
|
3
|
O'Connell LM, Santos R, Springer G, Burne RA, Nascimento MM, Richards VP. Site-Specific Profiling of the Dental Mycobiome Reveals Strong Taxonomic Shifts during Progression of Early-Childhood Caries. Appl Environ Microbiol 2020; 86:e02825-19. [PMID: 31953340 PMCID: PMC7082576 DOI: 10.1128/aem.02825-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/15/2020] [Indexed: 02/02/2023] Open
Abstract
Dental caries is one of the most common diseases worldwide. Bacteria and fungi are both commensals in the oral cavity; however, most research regarding caries has focused on bacterial impacts. The oral fungal mycobiome associated with caries is not well characterized, and its role in disease is unclear. ITS1 amplicon sequencing was used to generate taxonomic profiles from site-specific supragingival plaque samples (n = 82) obtained from 33 children with different caries status. Children were either caries free (CF), caries active with enamel lesions (CAE), or caries active with dentin lesions (CA). Plaque samples were collected from caries-free surfaces (PF) and from enamel (PE) and dentin (PD) lesions. Taxonomic profiles representing the different categorizations (CF-PF, CAE-PF, CAE-PE, CA-PF, CA-PE, and CA-PD) were used to characterize the mycobiome and its change through disease progression. A total of 139 fungal species were identified. Candida albicans was the most abundant species, followed by Candida dubliniensis We found that severely progressed plaque communities (CA-PD) were significantly different from healthy plaque communities (CF-PF). A total of 32 taxa were differentially abundant across the plaque categories. C. albicans, C. dubliniensis, Nigrospora oryzae, and an unclassified Microdochium sp. were correlated with caries, whereas 12 other taxa were correlated with health. C. dubliniensis increased steadily as caries progressed, suggesting that C. dubliniensis may play an important role in caries pathogenicity. In contrast, four health-associated fungal taxa have the potential to antagonize the cariogen Streptococcus mutans via xylitol production, suggesting a possible fungal mechanism that could contribute to maintenance of dental health.IMPORTANCE Early-childhood caries is one of the most prevalent diseases in children worldwide and, while preventable, remains a global public health concern. Untreated cavities are painful and expensive and can lead to tooth loss and a lower quality of life. Caries are driven by acid production via microbial fermentation of dietary carbohydrates, resulting in enamel erosion. While caries is a well-studied disease, most research has focused on bacterial impacts, even though fungi are commensal organisms living within the plaque biofilm. There is very little known about how fungi impact caries pathogenicity. The elucidation of fungal taxa involved in caries disease progression is necessary for a more holistic view of the human oral microbiome. Data from this study will improve our understanding of how the fungal community changes as disease progresses and provide insight into the complex etiology of dental caries, which is necessary for the development of treatment plans and preventative measures.
Collapse
Affiliation(s)
- Lauren M O'Connell
- Department of Biological Sciences, College of Science, Clemson University, Clemson, South Carolina, USA
| | - Ryan Santos
- Department of Biological Sciences, College of Science, Clemson University, Clemson, South Carolina, USA
| | - Garrett Springer
- Department of Biological Sciences, College of Science, Clemson University, Clemson, South Carolina, USA
| | - Robert A Burne
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Marcelle M Nascimento
- Department of Restorative Dental Sciences, Division of Operative Dentistry, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Vincent P Richards
- Department of Biological Sciences, College of Science, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
4
|
Influence of Eugenia uniflora Extract on Adhesion to Human Buccal Epithelial Cells, Biofilm Formation, and Cell Surface Hydrophobicity of Candida spp. from the Oral Cavity of Kidney Transplant Recipients. Molecules 2018; 23:molecules23102418. [PMID: 30241381 PMCID: PMC6222389 DOI: 10.3390/molecules23102418] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 11/22/2022] Open
Abstract
This study evaluated the influence of the extract of Eugenia uniflora in adhesion to human buccal epithelial cells (HBEC) biofilm formation and cell surface hydrophobicity (CSH) of Candida spp. isolated from the oral cavity of kidney transplant patients. To evaluate virulence attributes in vitro, nine yeasts were grown in the presence and absence of 1000 μg/mL of the extract. Adhesion was quantified using the number of Candida cells adhered to 150 HBEC determined by optical microscope. Biofilm formation was evaluated using two methodologies: XTT (2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) and crystal violet assay, and further analyzed by electronic scan microscopy. CSH was quantified with the microbial adhesion to hydrocarbons test. We could detect that the extract of E. uniflora was able to reduce adhesion to HBEC and CSH for both Candida albicans and non-Candida albicansCandida species. We also observed a statistically significant reduced ability to form biofilms in biofilm-producing strains using both methods of quantification. However, two highly biofilm-producing strains of Candida tropicalis had a very large reduction in biofilm formation. This study reinforces the idea that besides growth inhibition, E. uniflora may interfere with the expression of some virulence factors of Candida spp. and may be possibly applied in the future as a novel antifungal agent.
Collapse
|
5
|
Savo Sardaro ML, Perin LM, Bancalari E, Neviani E, Gatti M. Advancement in LH-PCR methodology for multiple microbial species detections in fermented foods. Food Microbiol 2018; 74:113-119. [PMID: 29706326 DOI: 10.1016/j.fm.2018.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 12/31/2022]
Abstract
The length-heterogeneity PCR is a low throughput molecular biology methods explored to monitor bacteria populations in different environments. It could be more used in food microbiology analysis, not only for fingerprinting analysis, but it has been hampered until now by a limiting factor which relates to the high percentage of secondary peaks. With the aim to overcome this problem, different experiments were performed focusing on changing PCR parameters in order to obtain more specific amplicon patterns and also to reduce the complexity of community patterns. With this purpose, different annealing temperatures were tested on complex fermented food matrices taken from both animal and vegetable origin and also on the bacteria isolated from the same food source. In particular, the optimal annealing temperature identified for the fermented food samples is 59 °C and the optimal for bacterial strains varied between 63 °C and 65 °C. The approach allowed the modification of the LH-PCR protocol increasing the amplification efficiency and therefore the bacteria species discrimination. These temperatures also allowed the implementation of the previous LH-PCR published database. The modification in the level of accuracy of the LH-PCR technique could also allow an improvement in the relative species quantification by the peak area evaluation.
Collapse
Affiliation(s)
- Maria Luisa Savo Sardaro
- University of Parma, Department of Food and Drug, Parco Area delle Scienze 49A, 43124 Parma, Italy; San Raffaele University, Department of Nutrition and Gastronomy, Via Val Cannuta 247, Rome, Italy.
| | - Luana Martins Perin
- Universidade Federal de Viçosa, Departamento de Veterinaria, Campus Universitario, Centro, 36570-900 Viçosa, MG, Brazil
| | - Elena Bancalari
- University of Parma, Department of Food and Drug, Parco Area delle Scienze 49A, 43124 Parma, Italy
| | - Erasmo Neviani
- University of Parma, Department of Food and Drug, Parco Area delle Scienze 49A, 43124 Parma, Italy
| | - Monica Gatti
- University of Parma, Department of Food and Drug, Parco Area delle Scienze 49A, 43124 Parma, Italy
| |
Collapse
|
6
|
Zakaria MN, Furuta M, Takeshita T, Shibata Y, Sundari R, Eshima N, Ninomiya T, Yamashita Y. Oral mycobiome in community-dwelling elderly and its relation to oral and general health conditions. Oral Dis 2017; 23:973-982. [PMID: 28419681 DOI: 10.1111/odi.12682] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 03/31/2017] [Accepted: 04/11/2017] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Oral fungal infection is generally associated with dysbiosis related to antibiotic use, immunodeficiency, or frailty. However, fungal colonization in a typical population without apparent symptoms and its associated conditions are poorly understood. In this study, oral fungal colonization in community-dwelling and independently living elderly populations was evaluated and factors affecting fungal colonization were analyzed. SUBJECTS AND METHODS The subjects (410; 181 males and 229 females) were 75-99 years of age; those under prior antibiotic use were excluded. Fungal populations in the saliva were evaluated by PCR-based molecular techniques. Body mass index (BMI), smoking habits, and oral health conditions were examined. RESULTS Salivary fungal amounts exceeded 104 CFU/ml in 63 (15.4%) of 410 subjects. Candida albicans was most frequently detected (98.4%), followed by Candida glabrata (54.0%), and Candida dubliniensis (38.1%) in those subjects with fungi at 104 CFU/ml or over. Fungi at 104 CFU/ml or over in the presence of C. glabrata or C. dubliniensis was significantly associated with low BMI. CONCLUSIONS Candida albicans, C. glabrata, and C. dubliniensis dominated the oral mycobiome in Japanese community-dwelling elderly. Lower BMI might signify compromised health status and thus could result in susceptibility to specific candidiasis by C. glabrata and C. dubliniensis.
Collapse
Affiliation(s)
- M N Zakaria
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan.,Department of Operative Dentistry and Endodontology, Study Program of Dentistry, Faculty of Medicine, Jenderal Achmad Yani University, Jawa Barat, Indonesia
| | - M Furuta
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - T Takeshita
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan.,OBT Research Center, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Y Shibata
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - R Sundari
- Department of Operative Dentistry and Endodontology, Study Program of Dentistry, Faculty of Medicine, Jenderal Achmad Yani University, Jawa Barat, Indonesia
| | - N Eshima
- Center for Educational Outreach and Admissions, Kyoto University, Kyoto, Japan
| | - T Ninomiya
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Y Yamashita
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| |
Collapse
|
7
|
Molecular analysis of fungal populations in patients with oral candidiasis using next-generation sequencing. Sci Rep 2016; 6:28110. [PMID: 27305838 PMCID: PMC4910111 DOI: 10.1038/srep28110] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 05/31/2016] [Indexed: 01/06/2023] Open
Abstract
Oral candidiasis is closely associated with changes in oral fungal biodiversity and is caused primarily by Candida albicans. However, the widespread use of empiric and prophylactic antifungal drugs has caused a shift in fungal biodiversity towards other Candida or yeast species. Recently, next-generation sequencing (NGS) has provided an improvement over conventional culture techniques, allowing rapid comprehensive analysis of oral fungal biodiversity. In this study, we used NGS to examine the oral fungal biodiversity of 27 patients with pseudomembranous oral candidiasis (POC) and 66 healthy controls. The total number of fungal species in patients with POC and healthy controls was 67 and 86, respectively. The copy number of total PCR products and the proportion of non-C. albicans, especially C. dubliniensis, in patients with POC, were higher than those in healthy controls. The detection patterns in patients with POC were similar to those in controls after antifungal treatment. Interestingly, the number of fungal species and the copy number of total PCR products in healthy controls increased with aging. These results suggest that high fungal biodiversity and aging might be involved in the pathogenesis of oral candidiasis. We therefore conclude that NGS is a useful technique for investigating oral candida infections.
Collapse
|
8
|
Souza MN, Ortiz SO, Mello MM, Oliveira FDM, Severo LC, Goebel CS. COMPARISON BETWEEN FOUR USUAL METHODS OF IDENTIFICATION OF Candida SPECIES. Rev Inst Med Trop Sao Paulo 2016; 57:281-7. [PMID: 26422150 PMCID: PMC4616911 DOI: 10.1590/s0036-46652015000400002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Infection by Candidaspp. is associated with high mortality rates, especially when treatment is not appropriate and/or not immediate. Therefore, it is necessary to correctly identify the genus and species of Candida. The aim of this study was to compare the identification of 89 samples of Candida spp. by the manual methods germ tube test, auxanogram and chromogenic medium in relation to the ID 32C automated method. The concordances between the methods in ascending order, measured by the Kappa index were: ID 32C with CHROMagar Candida(κ = 0.38), ID 32C with auxanogram (κ = 0.59) and ID 32C with germ tube (κ = 0.9). One of the species identified in this study was C. tropicalis,which demonstrated a sensitivity of 46.2%, a specificity of 95.2%, PPV of 80%, NPV of 81.1%, and an accuracy of 80.9% in tests performed with CHROMagar Candida;and a sensitivity of 76.9%, a specificity of 96.8%, PPV of 90.9%, NPV of 91%, and an accuracy of 91% in the auxanogram tests. Therefore, it is necessary to know the advantages and limitations of methods to choose the best combination between them for a fast and correct identification of Candidaspecies.
Collapse
Affiliation(s)
| | | | | | | | - Luiz Carlos Severo
- Irmandade Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, RS, BR
| | | |
Collapse
|
9
|
Prevalence of oral Candida colonization in patients with diabetes mellitus. J Mycol Med 2016; 26:103-110. [PMID: 26879707 DOI: 10.1016/j.mycmed.2015.12.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 12/21/2015] [Accepted: 12/26/2015] [Indexed: 11/21/2022]
Abstract
OBJECTIVES OF THE STUDY We aimed to assess the prevalence of oral Candida colonization in patients with diabetes and its relationship with factors such as Candida species, serum glucose level, and the susceptibility rate of isolated yeasts to antifungals. PATIENTS Random samples were obtained from 113 patients with type 2 diabetes, 24 patients with type 1 diabetes, and 105 healthy controls. MATERIALS AND METHODS The samples were taken by swabbing the oral mucosa of patients with diabetes mellitus and healthy individuals. Afterwards the samples were inoculated onto CHROMagar-Candida. The growing colonies were counted, and the isolated yeasts were identified by PCR-RFLP and RapID methods. Various isolated species of Candida were also subjected to susceptibility testing of antibiotic drugs. Blood samples were taken to evaluate glycosylated hemoglobin (HbA1c). RESULTS Although the Candida carriage rate and density were statistically higher in diabetics than healthy individuals, no direct association was found between having high Candida-burden and glycosylated hemoglobin. The most commonly isolated species in both diabetics and controls was Candida albicans. Of the tested antifungal drugs, the highest rate of resistance was found against itraconazole, followed in frequency by ketoconazole and fluconazole. CONCLUSIONS This study identified a significant association between the poor glycemic control and the higher prevalence rates of Candida carriage and density in diabetic patients. In addition, a high prevalence of C. dubliniensis in diabetic patients was found, which might be misdiagnosed with its morphologically related species, C. albicans.
Collapse
|
10
|
Comparison of Switching and Biofilm Formation between MTL-Homozygous Strains of Candida albicans and Candida dubliniensis. EUKARYOTIC CELL 2015; 14:1186-202. [PMID: 26432632 DOI: 10.1128/ec.00146-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 09/23/2015] [Indexed: 11/20/2022]
Abstract
Candida albicans and Candida dubliniensis are highly related species that share the same main developmental programs. In C. albicans, it has been demonstrated that the biofilms formed by strains heterozygous and homozygous at the mating type locus (MTL) differ functionally, but studies rarely identify the MTL configuration. This becomes a particular problem in studies of C. dubliniensis, given that one-third of natural strains are MTL homozygous. For that reason, we have analyzed MTL-homozygous strains of C. dubliniensis for their capacity to switch from white to opaque, the stability of the opaque phenotype, CO2 induction of switching, pheromone induction of adhesion, the effects of minority opaque cells on biofilm thickness and dry weight, and biofilm architecture in comparison with C. albicans. Our results reveal that C. dubliniensis strains switch to opaque at lower average frequencies, exhibit a far lower level of opaque phase stability, are not stimulated to switch by high CO2, exhibit more variability in biofilm architecture, and most notably, form mature biofilms composed predominately of pseudohyphae rather than true hyphae. Therefore, while several traits of MTL-homozygous strains of C. dubliniensis appear to be degenerating or have been lost, others, most notably several related to biofilm formation, have been conserved. Within this context, the possibility is considered that C. dubliniensis is transitioning from a hypha-dominated to a pseudohypha-dominated biofilm and that aspects of C. dubliniensis colonization may provide insights into the selective pressures that are involved.
Collapse
|
11
|
Reis CP, Roque LV, Baptista M, Rijo P. Innovative formulation of nystatin particulate systems in toothpaste for candidiasis treatment. Pharm Dev Technol 2015; 21:282-7. [DOI: 10.3109/10837450.2014.999783] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Catarina Pinto Reis
- CBIOS – Research Center for Biosciences and Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Campo Grande, Lisboa, Portugal and
| | - Luís Vasques Roque
- School of Sciences and Health Technologies (ECTS), Universidade Lusófona de Humanidades e Tecnologias (ULHT), Lisboa, Campo Grande, Lisboa, Portugal
| | - Marina Baptista
- CBIOS – Research Center for Biosciences and Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Campo Grande, Lisboa, Portugal and
| | - Patrícia Rijo
- CBIOS – Research Center for Biosciences and Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Campo Grande, Lisboa, Portugal and
| |
Collapse
|