1
|
Weinzierl A, Harder Y, Schmauss D, Menger MD, Laschke MW. Microvascular Fragments Protect Ischemic Musculocutaneous Flap Tissue from Necrosis by Improving Nutritive Tissue Perfusion and Suppressing Apoptosis. Biomedicines 2023; 11:biomedicines11051454. [PMID: 37239125 DOI: 10.3390/biomedicines11051454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/06/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Microvascular fragments (MVF) derived from enzymatically digested adipose tissue are functional vessel segments that have been shown to increase the survival rate of surgical flaps. However, the underlying mechanisms have not been clarified so far. To achieve this, we raised random-pattern musculocutaneous flaps on the back of wild-type mice and mounted them into dorsal skinfold chambers. The flaps were injected with MVF that were freshly isolated from green fluorescent protein-positive (GFP+) donor mice or saline solution (control). On days 1, 3, 5, 7, and 10 after surgery, intravital fluorescence microscopy was performed for the quantitative assessment of angiogenesis, nutritive blood perfusion, and flap necrosis. Subsequently, the flaps were analyzed by histology and immunohistochemistry. The injection of MVF reduced necrosis of the ischemic flap tissue by ~20%. When compared to controls, MVF-injected flaps also displayed a significantly higher functional capillary density and number of newly formed microvessels in the transition zone, where vital tissue bordered on necrotic tissue. Immunohistochemical analyses revealed a markedly lower number of cleaved caspase-3+ apoptotic cells in the transition zone of MVF-injected flaps and a significantly increased number of CD31+ microvessels in both the flaps' base and transition zone. Up to ~10% of these microvessels were GFP+, proving their origin from injected MVF. These findings demonstrate that MVF reduce flap necrosis by increasing angiogenesis, improving nutritive tissue perfusion, and suppressing apoptosis. Hence, the injection of MVF may represent a promising strategy to reduce ischemia-induced flap necrosis in future clinical practice.
Collapse
Affiliation(s)
- Andrea Weinzierl
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Yves Harder
- Department of Plastic, Reconstructive and Aesthetic Surgery, Ospedale Regionale di Lugano, Ente Ospedaliero Cantonale (EOC), 6900 Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Daniel Schmauss
- Department of Plastic, Reconstructive and Aesthetic Surgery, Ospedale Regionale di Lugano, Ente Ospedaliero Cantonale (EOC), 6900 Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| |
Collapse
|
2
|
Abdel-Latif A, Ahmed T, Leung SW, Alnabelsi T, Tarhuni W, Sekela ME. Autologous CD133 + Cells and Laser Revascularization in patients with severe Ischemic Cardiomyopathy. Stem Cell Rev Rep 2022; 19:817-822. [PMID: 36376770 DOI: 10.1007/s12015-022-10479-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2022] [Indexed: 11/16/2022]
Abstract
OBJECTIVE We tested the hypothesis that targeted TMLR combined with intramyocardial injection of autologous CD 133+ progenitor cells is safe and feasible in patients with chronic ischemic cardiomyopathy (ICM) and no revascularization options. METHODS Eight male patients (age 62 ± 2.4 years) with multivessel severe ischemic heart disease and no revascularization options were enrolled. Autologous CD 133 + endothelial progenitor cells were derived and purified from the bone marrow on the day of surgery using the clinical-grade closed CliniMACS system. Using a lateral thoracotomy approach, TMLR was performed, followed by transmyocardial transplantation of purified CD133 + cells (mean number of transplanted cells: 12.5 × 106) in the region surrounding the TMLR sites. These sites were selected based on ischemia on pre-procedure perfusion imaging. We performed clinical and myocardial perfusion imaging pre-procedure and then at 6- and 12-month follow-up. RESULTS No major complications or death occurred during the procedure or during the peri-operative hospital stay. One patient died of cardiac cause 6 months post-procedure. There was a reported short-term improvement in anginal and heart failure symptoms and a modest reduction in the ischemic score as assessed by perfusion imaging. CONCLUSIONS Our phase 1 clinical study examining the combination therapy of targeted transmyocardial laser revascularization therapy and autologous CD133 + endothelial progenitor cells in patients with chronic ICM and no revascularization options demonstrates the feasibility and short-term safety of this combined approach and warrants future larger phase 2 randomized clinical studies.
Collapse
Affiliation(s)
- Ahmed Abdel-Latif
- Department of Cardiovascular Medicine, Division of Cardiology, University of Kentucky, Lexington, KY, USA
- Department of Cardiovascular Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Taha Ahmed
- Department of Cardiovascular Medicine, Division of Cardiology, University of Kentucky, Lexington, KY, USA
| | - Steve W Leung
- Department of Cardiovascular Medicine, Division of Cardiology, University of Kentucky, Lexington, KY, USA
| | - Talal Alnabelsi
- Department of Cardiovascular Medicine, Division of Cardiology, University of Kentucky, Lexington, KY, USA
| | - Wadea Tarhuni
- Department of Internal Medicine, Division of Cardiology, Canadian Cardiac Research Center, University of Saskatchewan, SK, Saskatoon, Canada
| | - Michael E Sekela
- Department of Cardiothoracic Surgery, University of Kentucky, Lexington, KY, USA.
- Heart Transplant, Division of Cardiothoracic Surgery, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
3
|
Mazini L, Rochette L, Amine M, Malka G. Regenerative Capacity of Adipose Derived Stem Cells (ADSCs), Comparison with Mesenchymal Stem Cells (MSCs). Int J Mol Sci 2019; 20:ijms20102523. [PMID: 31121953 PMCID: PMC6566837 DOI: 10.3390/ijms20102523] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 12/13/2022] Open
Abstract
Adipose tissue is now on the top one of stem cell sources regarding its accessibility, abundance, and less painful collection procedure when compared to other sources. The adipose derived stem cells (ADSCs) that it contains can be maintained and expanded in culture for long periods of time without losing their differentiation capacity, leading to large cell quantities being increasingly used in cell therapy purposes. Many reports showed that ADSCs-based cell therapy products demonstrated optimal efficacy and efficiency in some clinical indications for both autologous and allogeneic purposes, hence becoming considered as potential tools for replacing, repairing, and regenerating dead or damaged cells. In this review, we analyzed the therapeutic advancement of ADSCs in comparison to bone marrow (BM) and umbilical cord (UC)-mesenchymal stem cells (MSCs) and designed the specific requirements to their best clinical practices and safety. Our analysis was focused on the ADSCs, rather than the whole stromal vascular fraction (SVF) cell populations, to facilitate characterization that is related to their source of origins. Clinical outcomes improvement suggested that these cells hold great promise in stem cell-based therapies in neurodegenerative, cardiovascular, and auto-immunes diseases.
Collapse
Affiliation(s)
- Loubna Mazini
- Laboratoire Cellules Souches et Ingénierie Tissulaire, Centre Interface Applications Médicales CIAM, Université Mohammed VI polytechnique, Ben Guérir 43150, Morocco.
| | - Luc Rochette
- Equipe d'Accueil (EA 7460), Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne Franche Comté, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, 21000 Dijon, France.
| | - Mohamed Amine
- Laboratoire d'Epidémiologie et de Biostatique, Centre Interface Applications Médicales CIAM, Université Mohammed VI polytechnique, Ben Guérir 43150, Morocco.
- Département de Santé Publique et de Médecine Communautaire, Faculté de Médecine et de Pharmacie, Université Cadi Ayyad, Marrakech 40000, Morocco.
| | - Gabriel Malka
- Laboratoire Cellules Souches et Ingénierie Tissulaire, Centre Interface Applications Médicales CIAM, Université Mohammed VI polytechnique, Ben Guérir 43150, Morocco.
- Laboratoire d'Epidémiologie et de Biostatique, Centre Interface Applications Médicales CIAM, Université Mohammed VI polytechnique, Ben Guérir 43150, Morocco.
| |
Collapse
|
4
|
Mazini L, Rochette L, Amine M, Malka G. Regenerative Capacity of Adipose Derived Stem Cells (ADSCs), Comparison with Mesenchymal Stem Cells (MSCs). Int J Mol Sci 2019. [PMID: 31121953 DOI: 10.3390/ijms20102523.pmid:31121953;pmcid:pmc6566837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Adipose tissue is now on the top one of stem cell sources regarding its accessibility, abundance, and less painful collection procedure when compared to other sources. The adipose derived stem cells (ADSCs) that it contains can be maintained and expanded in culture for long periods of time without losing their differentiation capacity, leading to large cell quantities being increasingly used in cell therapy purposes. Many reports showed that ADSCs-based cell therapy products demonstrated optimal efficacy and efficiency in some clinical indications for both autologous and allogeneic purposes, hence becoming considered as potential tools for replacing, repairing, and regenerating dead or damaged cells. In this review, we analyzed the therapeutic advancement of ADSCs in comparison to bone marrow (BM) and umbilical cord (UC)-mesenchymal stem cells (MSCs) and designed the specific requirements to their best clinical practices and safety. Our analysis was focused on the ADSCs, rather than the whole stromal vascular fraction (SVF) cell populations, to facilitate characterization that is related to their source of origins. Clinical outcomes improvement suggested that these cells hold great promise in stem cell-based therapies in neurodegenerative, cardiovascular, and auto-immunes diseases.
Collapse
Affiliation(s)
- Loubna Mazini
- Laboratoire Cellules Souches et Ingénierie Tissulaire, Centre Interface Applications Médicales CIAM, Université Mohammed VI polytechnique, Ben Guérir 43150, Morocco.
| | - Luc Rochette
- Equipe d'Accueil (EA 7460), Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne Franche Comté, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, 21000 Dijon, France.
| | - Mohamed Amine
- Laboratoire d'Epidémiologie et de Biostatique, Centre Interface Applications Médicales CIAM, Université Mohammed VI polytechnique, Ben Guérir 43150, Morocco.
- Département de Santé Publique et de Médecine Communautaire, Faculté de Médecine et de Pharmacie, Université Cadi Ayyad, Marrakech 40000, Morocco.
| | - Gabriel Malka
- Laboratoire Cellules Souches et Ingénierie Tissulaire, Centre Interface Applications Médicales CIAM, Université Mohammed VI polytechnique, Ben Guérir 43150, Morocco.
- Laboratoire d'Epidémiologie et de Biostatique, Centre Interface Applications Médicales CIAM, Université Mohammed VI polytechnique, Ben Guérir 43150, Morocco.
| |
Collapse
|
5
|
Joly P, Schaus T, Sass A, Dienelt A, Cheung AS, Duda GN, Mooney DJ. Biophysical induction of cell release for minimally manipulative cell enrichment strategies. PLoS One 2017; 12:e0180568. [PMID: 28665971 PMCID: PMC5493423 DOI: 10.1371/journal.pone.0180568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 06/16/2017] [Indexed: 11/28/2022] Open
Abstract
The use of autologous cells harvested and subsequently transplanted in an intraoperative environment constitutes a new approach to promote regeneration. Usually cells are isolated by selection methods such as fluorescence- or magnetic- activated cell sorting with residual binding of the antibodies or beads. Thus, cell-based therapies would benefit from the development of new devices for cell isolation that minimally manipulate the target cell population. In the clinic, 5 to 10 percent of fractures do not heal properly and CD31+ cells have been identified as promising candidates to support bone regeneration. The aim of this project was to develop and prototype a simple system to facilitate the enrichment of CD31+ cells from whole blood. After validating the specificity of a commercially available aptamer for CD31, we combined this aptamer with traditional magnetic bead strategies, which led to enrichment of CD31+ cells with a purity of 91±10%. Subsequently, the aptamer was attached to agarose beads (Ø = 100–165 um) that were incorporated into a column-based system to enable capture and subsequent release of the CD31+ enriched cells. Different parameters were investigated to allow a biophysical-based cell release from beads, and a simple mixing was found sufficient to release initially bound cells from the optimized column without the need for any chemicals that promote disassociation. The system led to a significant enrichment of CD31+ cells (initial population: 63±9%, released: 87±3%) with excellent cell viability (released: 97±1%). The composition of the released CD31+ fraction indicated an enrichment of the monocyte population. The angiogenic and osteogenic potential of the released cell population were confirmed in vitro. These results and the simplicity of this system highlight the potential of such approach to enable cell enrichment strategies in intraoperative settings.
Collapse
Affiliation(s)
- Pascal Joly
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, United States of America.,Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Schaus
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, United States of America
| | - Andrea Sass
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-University Medicine, Berlin, Germany
| | - Anke Dienelt
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-University Medicine, Berlin, Germany
| | - Alexander S Cheung
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, United States of America.,School of Engineering and Applied Sciences, Harvard University, Cambridge, United States of America
| | - Georg N Duda
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, United States of America.,Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-University Medicine, Berlin, Germany
| | - David J Mooney
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, United States of America.,School of Engineering and Applied Sciences, Harvard University, Cambridge, United States of America
| |
Collapse
|
6
|
Gonzalez-Garza MT, Cruz-Vega DE. Regenerative capacity of autologous stem cell transplantation in elderly: a report of biomedical outcomes. Regen Med 2017; 12:169-178. [DOI: 10.2217/rme-2016-0038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The occurrence of chronic diseases such as neurological, metabolic and cardiovascular degenerative disorders increases with age. Cell therapy is an emerging approach to the treatment of these conditions. Of particular interest is the application of autologous stem cells because it eliminates post-transplantation immune rejection and there are less ethical concerns associated with their use. The regenerative capacity of stem cells harvested from elderly people is however controversial. In this review, we analyze if self-renewal potential, differentiation capability and expression of stemness genes in stem cells collected from elderly patients validate their application in clinical trials and examine the results.
Collapse
Affiliation(s)
| | - Delia Elva Cruz-Vega
- Tecnologico de Monterrey, Escuela Nacional de Medicina, Morones Prieto 3000 Pte, CP64710, Monterrey, Mexico
| |
Collapse
|
7
|
Fisher SA, Doree C, Mathur A, Taggart DP, Martin‐Rendon E. Stem cell therapy for chronic ischaemic heart disease and congestive heart failure. Cochrane Database Syst Rev 2016; 12:CD007888. [PMID: 28012165 PMCID: PMC6463978 DOI: 10.1002/14651858.cd007888.pub3] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND A promising approach to the treatment of chronic ischaemic heart disease and congestive heart failure is the use of stem cells. The last decade has seen a plethora of randomised controlled trials developed worldwide, which have generated conflicting results. OBJECTIVES The critical evaluation of clinical evidence on the safety and efficacy of autologous adult bone marrow-derived stem/progenitor cells as a treatment for chronic ischaemic heart disease and congestive heart failure. SEARCH METHODS We searched CENTRAL in the Cochrane Library, MEDLINE, Embase, CINAHL, LILACS, and four ongoing trial databases for relevant trials up to 14 December 2015. SELECTION CRITERIA Eligible studies were randomised controlled trials comparing autologous adult stem/progenitor cells with no cells in people with chronic ischaemic heart disease and congestive heart failure. We included co-interventions, such as primary angioplasty, surgery, or administration of stem cell mobilising agents, when administered to treatment and control arms equally. DATA COLLECTION AND ANALYSIS Two review authors independently screened all references for eligibility, assessed trial quality, and extracted data. We undertook a quantitative evaluation of data using random-effects meta-analyses. We evaluated heterogeneity using the I2 statistic and explored substantial heterogeneity (I2 greater than 50%) through subgroup analyses. We assessed the quality of the evidence using the GRADE approach. We created a 'Summary of findings' table using GRADEprofiler (GRADEpro), excluding studies with a high or unclear risk of selection bias. We focused our summary of findings on long-term follow-up of mortality, morbidity outcomes, and left ventricular ejection fraction measured by magnetic resonance imaging. MAIN RESULTS We included 38 randomised controlled trials involving 1907 participants (1114 cell therapy, 793 controls) in this review update. Twenty-three trials were at high or unclear risk of selection bias. Other sources of potential bias included lack of blinding of participants (12 trials) and full or partial commercial sponsorship (13 trials).Cell therapy reduced the incidence of long-term mortality (≥ 12 months) (risk ratio (RR) 0.42, 95% confidence interval (CI) 0.21 to 0.87; participants = 491; studies = 9; I2 = 0%; low-quality evidence). Periprocedural adverse events associated with the mapping or cell/placebo injection procedure were infrequent. Cell therapy was also associated with a long-term reduction in the incidence of non-fatal myocardial infarction (RR 0.38, 95% CI 0.15 to 0.97; participants = 345; studies = 5; I2 = 0%; low-quality evidence) and incidence of arrhythmias (RR 0.42, 95% CI 0.18 to 0.99; participants = 82; studies = 1; low-quality evidence). However, we found no evidence that cell therapy affects the risk of rehospitalisation for heart failure (RR 0.63, 95% CI 0.36 to 1.09; participants = 375; studies = 6; I2 = 0%; low-quality evidence) or composite incidence of mortality, non-fatal myocardial infarction, and/or rehospitalisation for heart failure (RR 0.64, 95% CI 0.38 to 1.08; participants = 141; studies = 3; I2 = 0%; low-quality evidence), or long-term left ventricular ejection fraction when measured by magnetic resonance imaging (mean difference -1.60, 95% CI -8.70 to 5.50; participants = 25; studies = 1; low-quality evidence). AUTHORS' CONCLUSIONS This systematic review and meta-analysis found low-quality evidence that treatment with bone marrow-derived stem/progenitor cells reduces mortality and improves left ventricular ejection fraction over short- and long-term follow-up and may reduce the incidence of non-fatal myocardial infarction and improve New York Heart Association (NYHA) Functional Classification in people with chronic ischaemic heart disease and congestive heart failure. These findings should be interpreted with caution, as event rates were generally low, leading to a lack of precision.
Collapse
Affiliation(s)
- Sheila A Fisher
- NHS Blood and TransplantSystematic Review InitiativeLevel 2, John Radcliffe HospitalHeadingtonOxfordOxonUKOX3 9BQ
| | - Carolyn Doree
- NHS Blood and TransplantSystematic Review InitiativeLevel 2, John Radcliffe HospitalHeadingtonOxfordOxonUKOX3 9BQ
| | - Anthony Mathur
- William Harvey Research InstituteDepartment of Clinical PharmacologyCharterhouse SquareLondonUKEC1M 6BQ
| | | | - Enca Martin‐Rendon
- Radcliffe Department of Medicine, University of OxfordSystematic Review InitiativeOxfordUK
| | | |
Collapse
|
8
|
Technology for Diagnosis, Treatment, and Prevention of Cardiometabolic Disease in India. Prog Cardiovasc Dis 2016; 58:620-9. [DOI: 10.1016/j.pcad.2016.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 02/28/2016] [Indexed: 12/26/2022]
|
9
|
Mohamadnejad M, Vosough M, Moossavi S, Nikfam S, Mardpour S, Akhlaghpoor S, Ashrafi M, Azimian V, Jarughi N, Hosseini SE, Moeininia F, Bagheri M, Sharafkhah M, Aghdami N, Malekzadeh R, Baharvand H. Intraportal Infusion of Bone Marrow Mononuclear or CD133+ Cells in Patients With Decompensated Cirrhosis: A Double-Blind Randomized Controlled Trial. Stem Cells Transl Med 2015; 5:87-94. [PMID: 26659833 DOI: 10.5966/sctm.2015-0004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 09/23/2015] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED The present study assessed the effects of intraportal infusions of autologous bone marrow-derived mononuclear cells (MNCs) and/or CD133+ cells on liver function in patients with decompensated cirrhosis. We randomly assigned 27 eligible patients to a placebo, MNCs, and/or CD133+ cells. Cell infusions were performed at baseline and month 3. We considered the absolute changes in the Model for End-Stage Liver Disease (MELD) scores at months 3 and 6 after infusion as the primary outcome. The participants and those who assessed the outcomes were unaware of the treatment intervention assignments. After 6 months, 9 patients were excluded because of liver transplantation (n=3), hepatocellular carcinoma (n=1), loss to follow-up (n=3), and death (n=2). The final analysis included 4 patients from the CD133+ group, 8 from the MNC group, and 6 from the placebo group. No improvement was seen in the MELD score at month 6 using either CD133+ cells or MNC infusions compared with placebo. However, at month 3 after infusion, a trend was seen toward a higher mean absolute change in the MELD score in patients who had received CD133+ cells compared with placebo (-2.00±1.87 vs. -0.13±1.46; p=.08). No significant adverse events occurred in the present study. A transient improvement in the MELD score was observed in subjects treated with CD133+ cells but not in the MNC or placebo group. Although the study was not powered to make definitive conclusions, the data justify further study of CD133+ therapy in cirrhotic patients. SIGNIFICANCE Cell therapy is a new approach in liver disease. Several clinical experiments have been reported on the safety of bone marrow-derived stem cells to treat liver disorders. However, the effectiveness of these approaches in the long-term follow-ups of patients initiated controversial discussions among the scientific community. A double-blind randomized controlled trial was designed to address this concern scientifically. A transient improvement in the patients' signs occurred; however, for a sustainable result, more work is needed. The results of multiple administrations of cells reported in the present study can be compared with the results from other single-injection studies.
Collapse
Affiliation(s)
- Mehdi Mohamadnejad
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran Digestive Diseases Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran, Iran
| | - Shirin Moossavi
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran Digestive Diseases Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Nikfam
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran Digestive Diseases Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Soura Mardpour
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran, Iran
| | | | - Mandana Ashrafi
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran Digestive Diseases Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Vajiheh Azimian
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran, Iran
| | - Neda Jarughi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran, Iran
| | - Seyedeh-Esmat Hosseini
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran, Iran
| | - Fatemeh Moeininia
- Department of Internal Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohamad Bagheri
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran Digestive Diseases Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Sharafkhah
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran Digestive Diseases Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasser Aghdami
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran, Iran
| | - Reza Malekzadeh
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran Digestive Diseases Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Baharvand
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran, Iran
| |
Collapse
|
10
|
The Clinical Status of Stem Cell Therapy for Ischemic Cardiomyopathy. Stem Cells Int 2015; 2015:135023. [PMID: 26101528 PMCID: PMC4460238 DOI: 10.1155/2015/135023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/06/2015] [Indexed: 12/14/2022] Open
Abstract
Ischemic cardiomyopathy (ICM) is becoming a leading cause of morbidity and mortality in the whole world. Stem cell-based therapy is emerging as a promising option for treatment of ICM. Several stem cell types including cardiac-derived stem cells (CSCs), bone marrow-derived stem cells, mesenchymal stem cells (MSCs), skeletal myoblasts (SMs), and CD34(+) and CD 133(+) stem cells have been applied in clinical researches. The clinical effect produced by stem cell administration in ICM mainly depends on the transdifferentiation and paracrine effect. One important issue is that low survival and residential rate of transferred stem cells in the infracted myocardium blocks the effective advances in cardiac improvement. Many other factors associated with the efficacy of cell replacement therapy for ICM mainly including the route of delivery, the type and number of stem cell infusion, the timing of injection, patient's physical condition, the particular microenvironment onto which the cells are delivered, and clinical condition remain to be addressed. Here we provide an overview of the pros and cons of these transferred cells and discuss the current state of their therapeutic potential. We believe that stem cell translation will be an ideal option for patients following ischemic heart disease in the future.
Collapse
|