1
|
Deng Y, Wang G, Hou D, Zhang L, Pei C, Yang G. MiR-146a-5p downregulated TRAF6/NF-κB p65 pathway to attenuate the injury of HT-22 cells induced by oxygen-glucose deprivation/reoxygenation. In Vitro Cell Dev Biol Anim 2024:10.1007/s11626-024-00986-0. [PMID: 39644419 DOI: 10.1007/s11626-024-00986-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/30/2024] [Indexed: 12/09/2024]
Abstract
MicroRNA-146a-5p (miR-146a-5p) actively participates in the process of cerebral ischemia-reperfusion (CI/R) injury. Dysregulation of the tumor necrosis factor receptor-associated factor 6 (TRAF6)/nuclear factor kappa-B (NF-κB) p65 axis is closely associated with inflammatory response. This study aimed to investigate the potential involvement of miR-146a-5p and TRAF6/NF-κB p65 in mediating CI/R progression in vitro. HT-22 cells were challenged with oxygen-glucose deprivation/reoxygenation (OGD/R) to simulate CI/R in vitro. HT-22 cells were transfected with miR-146a-5p mimics or TRAF6 overexpression constructs. The impact of miR-146a-5p on apoptosis, inflammation, and TRAF6/NF-κB p65 activation were investigated. OGD/R inhibited HT-22 cell viability, induced apoptosis, reduced miR-146a-5p levels and activated the TRAF6/NF-κB p65 pathway. MiR-146a-5p mimics reduced pro-inflammatory factor release, limited apoptosis-related protein expression, and inactivated the TRAF6/NF-κB p65 pathway in OGD/R-challenged HT-22 cells. Mechanistically, miR-146a-5p was verified to bind to TRAF6 3'UTR. TRAF6 overexpression reversed the beneficial effects of miR-146a-5p mimics on apoptosis, inflammation, and TRAF6/NF-κB p65 activation. This work revealed that miR-146a-5p targeted TRAF6 and suppressed the TRAF6/NF-κB p65 pathway, thereby reducing OGD/R-induced inflammation and apoptosis in HT-22 cells. These findings suggest the potential of the miR-146a-5p/TRAF6/NF-κB p65 axis in the treatment of CI/R.
Collapse
Affiliation(s)
- Yuan Deng
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
| | - Ganlan Wang
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
| | - Dan Hou
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
| | - Lei Zhang
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
| | - Chaoying Pei
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
| | - Guoshuai Yang
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China.
| |
Collapse
|
2
|
Ji H, Lu Y, Liu G, Zhao X, Xu M, Chen M. Role of Decreased Expression of miR-155 and miR-146a in Peripheral Blood of Type 2 Diabetes Mellitus Patients with Diabetic Peripheral Neuropathy. Diabetes Metab Syndr Obes 2024; 17:2747-2760. [PMID: 39072343 PMCID: PMC11283243 DOI: 10.2147/dmso.s467409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024] Open
Abstract
Objective To Study the Correlations of microRNA-155 (miR-155) and microRNA-146a (miR-146a) Expression in Peripheral Blood of Type 2 Diabetes Mellitus (T2DM) Patients with Diabetic Peripheral Neuropathy (DPN), and Explore the Clinical Value of miR-155 and miR-146a in the Diagnosis and Treatment Outcomes of DPN. Methods The study included 51 T2DM patients without DPN (T2DM group), 49 T2DM patients with DPN (DPN group), and 50 normal controls (NC group). Quantitative real-time PCR was utilized to determine the expression levels of miR-155 and miR-146a. Clinical features and risk factors for DPN were assessed. Multivariate stepwise logistic regression analysis was conducted to confirm whether the expressions of miR-155 and miR-146a could independently predict the risk of DPN. ROC curve analysis evaluated their diagnostic value. Results The T2DM group exhibited significantly lower expression levels of miR-155 and miR-146a compared to the NC group (P < 0.05). Moreover, the DPN group exhibited a significantly decreased expression level of miR-155 and miR-146a compared to the T2DM group (P < 0.01). Multivariate logistic regression analysis indicated that higher levels of miR-155 and miR-146a might serve as protective factors against DPN development. ROC curve analysis revealed that miR-155 (sensitivity 91.8%, specificity 37.3%, AUC 0.641,) and miR-146a (sensitivity 57.1%, specificity 84.3%, AUC 0.722) possess a strong ability to discriminate between T2DM and DPN. Their combined use further enhanced the diagnostic potential of DPN (sensitivity 83.7%, specificity 60.8%, AUC 0.775). A multi-index combination can improve DPN diagnostic efficiency. Conclusion The decreased expression of miR-155 and miR-146a in the peripheral blood of T2DM patients is closely related to the occurrence of DPN, highlighting their potential as valuable biomarkers for diagnosing and prognosticating DPN.
Collapse
Affiliation(s)
- Hua Ji
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, People’s Republic of China
| | - YaTing Lu
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, People’s Republic of China
| | - Gui Liu
- Department of Endocrinology, The Second People’s Hospital of Lu’an City, Lu’an City, Anhui Province, People’s Republic of China
| | - Xiaotong Zhao
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, People’s Republic of China
| | - Murong Xu
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, People’s Republic of China
| | - Mingwei Chen
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, People’s Republic of China
| |
Collapse
|
3
|
Engin A. Reappraisal of Adipose Tissue Inflammation in Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:297-327. [PMID: 39287856 DOI: 10.1007/978-3-031-63657-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Chronic low-grade inflammation is a central component in the pathogenesis of obesity-related expansion of adipose tissue and complications in other metabolic tissues. Five different signaling pathways are defined as dominant determinants of adipose tissue inflammation: These are increased circulating endotoxin due to dysregulation in the microbiota-gut-brain axis, systemic oxidative stress, macrophage accumulation, and adipocyte death. Finally, the nucleotide-binding and oligomerization domain (NOD) leucine-rich repeat family pyrin domain-containing 3 (NLRP3) inflammasome pathway is noted to be a key regulator of metabolic inflammation. The NLRP3 inflammasome and associated metabolic inflammation play an important role in the relationships among fatty acids and obesity. Several highly active molecules, including primarily leptin, resistin, adiponectin, visfatin, and classical cytokines, are abundantly released from adipocytes. The most important cytokines that are released by inflammatory cells infiltrating obese adipose tissue are tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), monocyte chemoattractant protein 1 (MCP-1) (CCL-2), and IL-1. All these molecules mentioned above act on immune cells, causing local and then general inflammation. Three metabolic pathways are noteworthy in the development of adipose tissue inflammation: toll-like receptor 4 (TLR4)/phosphatidylinositol-3'-kinase (PI3K)/Protein kinase B (Akt) signaling pathway, endoplasmic reticulum (ER) stress-derived unfolded protein response (UPR), and inhibitor of nuclear factor kappa-B kinase beta (IKKβ)-nuclear factor kappa B (NF-κB) pathway. In fact, adipose tissue inflammation is an adaptive response that contributes to a visceral depot barrier that effectively filters gut-derived endotoxin. Excessive fatty acid release worsens adipose tissue inflammation and contributes to insulin resistance. However, suppression of adipose inflammation in obesity with anti-inflammatory drugs is not a rational solution and paradoxically promotes insulin resistance, despite beneficial effects on weight gain. Inflammatory pathways in adipocytes are indeed indispensable for maintaining systemic insulin sensitivity. Cannabinoid type 1 receptor (CB1R) is important in obesity-induced pro-inflammatory response; however, blockade of CB1R, contrary to anti-inflammatory drugs, breaks the links between insulin resistance and adipose tissue inflammation. Obesity, however, could be decreased by improving leptin signaling, white adipose tissue browning, gut microbiota interactions, and alleviating inflammation. Furthermore, capsaicin synthesized by chilies is thought to be a new and promising therapeutic option in obesity, as it prevents metabolic endotoxemia and systemic chronic low-grade inflammation caused by high-fat diet.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
4
|
Liu AB, Li SJ, Yu YY, Zhang JF, Ma L. Current insight on the mechanisms of programmed cell death in sepsis-induced myocardial dysfunction. Front Cell Dev Biol 2023; 11:1309719. [PMID: 38161332 PMCID: PMC10754983 DOI: 10.3389/fcell.2023.1309719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
Sepsis is a clinical syndrome characterized by a dysregulated host response to infection, leading to life-threatening organ dysfunction. It is a high-fatality condition associated with a complex interplay of immune and inflammatory responses that can cause severe harm to vital organs. Sepsis-induced myocardial injury (SIMI), as a severe complication of sepsis, significantly affects the prognosis of septic patients and shortens their survival time. For the sake of better administrating hospitalized patients with sepsis, it is necessary to understand the specific mechanisms of SIMI. To date, multiple studies have shown that programmed cell death (PCD) may play an essential role in myocardial injury in sepsis, offering new strategies and insights for the therapeutic aspects of SIMI. This review aims to elucidate the role of cardiomyocyte's programmed death in the pathophysiological mechanisms of SIMI, with a particular focus on the classical pathways, key molecules, and signaling transduction of PCD. It will explore the role of the cross-interaction between different patterns of PCD in SIMI, providing a new theoretical basis for multi-target treatments for SIMI.
Collapse
Affiliation(s)
- An-Bu Liu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Shu-Jing Li
- Department of Pediatrics Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yuan-Yuan Yu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jun-Fei Zhang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Lei Ma
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
5
|
Farsi NR, Naghipour B, Shahabi P, Safaralizadeh R, Hajiasgharzadeh K, Dastmalchi N, Alipour MR. The role of microRNAs in hepatocellular carcinoma: Therapeutic targeting of tumor suppressor and oncogenic genes. Clin Exp Hepatol 2023; 9:307-319. [PMID: 38774201 PMCID: PMC11103798 DOI: 10.5114/ceh.2023.131669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/31/2023] [Indexed: 05/24/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a severe malignant liver cancer with a poor prognosis and a high mortality rate. This carcinoma is a multistage process that begins with chronic hepatitis and progresses to cirrhosis, dysplastic nodules, and eventually HCC. However, the exact molecular etiology remains unclear. MicroRNAs (miRs) are small non-coding RNAs that modulate the expression of numerous genes. These molecules have become significant participants in several functions, including cell proliferation, differentiation, development, and tumorrelated properties. They have a pivotal role in carcinogenesis as oncogenes or tumor suppressor genes. Furthermore, some investigations have shown that particular miRs might be used as predictive or diagnostic markers and therapeutic targets in HCC therapy. This review study summarizes the current level of knowledge on the role of miRs in the initiation and progression of HCC.
Collapse
Affiliation(s)
- Nasim Rahimi Farsi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biology, University College of Nabi Akram, Tabriz, Iran
| | - Bahman Naghipour
- Department of Anesthesiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Shahabi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Narges Dastmalchi
- Department of Biology, University College of Nabi Akram, Tabriz, Iran
| | - Mohammad Reza Alipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Wang Y, Liu W, Geng P, Du W, Guo C, Wang Q, Zheng GQ, Jin X. Role of Crosstalk between Glial Cells and Immune Cells in Blood-Brain Barrier Damage and Protection after Acute Ischemic Stroke. Aging Dis 2023; 15:2507-2525. [PMID: 37962453 PMCID: PMC11567273 DOI: 10.14336/ad.2023.1010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/10/2023] [Indexed: 11/15/2023] Open
Abstract
Blood-brain barrier (BBB) damage is the main pathological basis for acute ischemic stroke (AIS)-induced cerebral vasogenic edema and hemorrhagic transformation (HT). Glial cells, including microglia, astrocytes, and oligodendrocyte precursor cells (OPCs)/oligodendrocytes (OLs) play critical roles in BBB damage and protection. Recent evidence indicates that immune cells also have an important role in BBB damage, vasogenic edema and HT. Therefore, regulating the crosstalk between glial cells and immune cells would hold the promise to alleviate AIS-induced BBB damage. In this review, we first introduce the roles of glia cells, pericytes, and crosstalk between glial cells in the damage and protection of BBB after AIS, emphasizing the polarization, inflammatory response and crosstalk between microglia, astrocytes, and other glia cells. We then describe the role of glial cell-derived exosomes in the damage and protection of BBB after AIS. Next, we specifically discuss the crosstalk between glial cells and immune cells after AIS. Finally, we propose that glial cells could be a potential target for alleviating BBB damage after AIS and we discuss some molecular targets and potential strategies to alleviate BBB damage by regulating glial cells after AIS.
Collapse
Affiliation(s)
- Yihui Wang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| | - Wencao Liu
- Shanxi Provincial People's Hospital, Taiyuan 030001, China.
| | - Panpan Geng
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| | - Weihong Du
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| | - Chun Guo
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield, UK.
| | - Qian Wang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| | - Guo-qing Zheng
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Xinchun Jin
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
7
|
Shao JL, Wang LJ, Xiao J, Yang JF. Non-coding RNAs: The potential biomarker or therapeutic target in hepatic ischemia-reperfusion injury. World J Gastroenterol 2023; 29:4927-4941. [PMID: 37731999 PMCID: PMC10507504 DOI: 10.3748/wjg.v29.i33.4927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/22/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023] Open
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is the major complication of liver surgery and liver transplantation, that may increase the postoperative morbidity, mortality, tumor progression, and metastasis. The underlying mechanisms have been extensively investigated in recent years. Among these, oxidative stress, inflammatory responses, immunoreactions, and cell death are the most studied. Non-coding RNAs (ncRNAs) are defined as the RNAs that do not encode proteins, but can regulate gene expressions. In recent years, ncRNAs have emerged as research hotspots for various diseases. During the progression of HIRI, ncRNAs are differentially expressed, while these dysregulations of ncRNAs, in turn, have been verified to be related to the above pathological processes involved in HIRI. ncRNAs mainly contain microRNAs, long ncRNAs, and circular RNAs, some of which have been reported as biomarkers for early diagnosis or assessment of liver damage severity, and as therapeutic targets to attenuate HIRI. Here, we briefly summarize the common pathophysiology of HIRI, describe the current knowledge of ncRNAs involved in HIRI in animal and human studies, and discuss the potential of ncRNA-targeted therapeutic strategies. Given the scarcity of clinical trials, there is still a long way to go from pre-clinical to clinical application, and further studies are needed to uncover their potential as therapeutic targets.
Collapse
Affiliation(s)
- Jia-Li Shao
- Department of Anesthesiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Li-Juan Wang
- Department of Anesthesiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Ji Xiao
- Department of Anesthesiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Jin-Feng Yang
- Department of Anesthesiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
8
|
Li K, Ma L, Lu Z, Yan L, Chen W, Wang B, Xu H, Asemi Z. Apoptosis and heart failure: The role of non-coding RNAs and exosomal non-coding RNAs. Pathol Res Pract 2023; 248:154669. [PMID: 37422971 DOI: 10.1016/j.prp.2023.154669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/11/2023]
Abstract
Heart failure is a condition that affects the cardio vascular system and occurs if the heart cannot adequately pump the oxygen and blood to the body. Myocardial infarction, reperfusion injury, and this disease is the only a few examples of the numerous cardiovascular illnesses that are impacted by the closely controlled cell deletion process known as apoptosis. Attention has been paid to the creation of alternative diagnostic and treatment modalities for the condition. Recent evidences have shown that some non-coding RNAs (ncRNAs) influence the stability of proteins, control of transcription factors, and HF apoptosis through a variety of methods. Exosomes make a significant paracrine contribution to the regulation of illnesses as well as to the communication between nearby and distant organs. However, it has not yet been determined whether exosomes regulate the cardiomyocyte-tumor cell interaction in ischemia HF to limit the vulnerability of malignancy to ferroptosis. Here, we list the numerous ncRNAs in HF that are connected to apoptosis. In addition, we emphasize the significance of exosomal ncRNAs in the HF.
Collapse
Affiliation(s)
- Ketao Li
- Department of cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310022, China
| | - Liping Ma
- Department of cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310022, China
| | - Zhiwei Lu
- Hangzhou Heyunjia Hospital, Hangzhou, Zhe'jiang 310000, China
| | - Laixing Yan
- Department of cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310022, China
| | - Wan Chen
- Department of Cardiology, Jiulongpo First People's Hospital, Chongqing 400051, China
| | - Bing Wang
- Department of cardiology, Zouping People's Hospital, Zouping, Shandong 256299, China
| | - Huiju Xu
- Department of cardiology, Hangzhou Mingzhou Hospital, Hangzhou, Zhe'jiang 311215, China.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
9
|
Jiang W, Kong L, Ni Q, Lu Y, Ding W, Liu G, Pu L, Tang W, Kong L. Correction: miR-146a Ameliorates Liver Ischemia/Reperfusion Injury by Suppressing IRAK1 and TRAF6. PLoS One 2023; 18:e0288672. [PMID: 37432933 DOI: 10.1371/journal.pone.0288672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pone.0101530.].
Collapse
|
10
|
Xu Y, Chen Y, Yao M, You Y, Nie B, Zeng M, Jiang H. MicroRNA-146a Improved Acute Lung Injury Induced by hepatic Ischemia-reperfusion Injury by Inhibiting PRDX1. Dose Response 2023; 21:15593258231169805. [PMID: 37063344 PMCID: PMC10103257 DOI: 10.1177/15593258231169805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/27/2023] [Indexed: 04/18/2023] Open
Abstract
Hepatic ischemia-reperfusion injury (HIRI)-induced acute lung injury (ALI) is characterized by high incidence and poor prognosis. The regulatory role of microRNA-146a (miR-146a) in HIRI has been reported, but if miR-146a could affect the progression of HIRI-induced ALI has not been reported. The mice HIRI model was established by ligating left hepatic portal vein and hepatic artery for 60 minutes and then treating with reperfusion for 4 hours. Hypoxia-reoxygenation (HR) was performed to establish cell model. The binding site between miR-146a and Peroxidase 1 (PRDX1) was predicted and validated. The levels of inflammation factors and redox markers were detected with commercial kits. Significant lower expression of miR-146a and higher expression of PRDX1 in HIRI animal model were observed. miR-146a inhibited the liver injury after HIRI induction through targeting PRDX1. miR-146a inhibited the lung injury caused by HIRI via regulating PRDX1. The inhibition of cell apoptosis and inflammation factors by miR-146a were reversed by pcDNA-PRDX1. This research demonstrated that miR-146a improved ALI caused by HIRI by inhibiting apoptosis, inflammation, oxidative condition through targeting PRDX1. This study might provide a novel thought for the prevention and treatment of ALI caused by HIRI by regulating miR-146a/PRDX1 axis.
Collapse
Affiliation(s)
- Yiping Xu
- Department of Anesthesiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Yili Chen
- Department of Anesthesiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Mengxia Yao
- Department of Anesthesiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Yisheng You
- Department of Anesthesiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Bin Nie
- Department of Anesthesiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Meina Zeng
- Department of Anesthesiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Hui Jiang
- Department of Anesthesiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Hui Jiang, Department of Anesthesiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No 420 Fuma Road, 350014, Fuzhou, Fujian Province, China.
| |
Collapse
|
11
|
Ma T, Zhang H, Li T, Bai J, Wu Z, Cai T, Chen Y, Xia X, Du Y, Fu W. Protective effect of pinocembrin from Penthorum chinense Pursh on hepatic ischemia reperfusion injury via regulating HMGB1/TLR4 signal pathway. Phytother Res 2023; 37:181-194. [PMID: 36097366 DOI: 10.1002/ptr.7605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 01/19/2023]
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is of common occurrence during liver surgery and transplantation. Pinocembrin (PIN) is a kind of flavonoid monomer extracted from the local traditional Chinese medicine Penthorum chinense Pursh (P. chinense). However, the effect of PIN on HIRI has not determined. We investigated the protective effect and potential mechanism of PIN against HIRI. Model mice were subjected to partial liver ischemia for 60 min, experimental mice were pretreated with PIN orally for 7 days, and H2 O2 -induced oxidative damage model in AML12 hepatic cells was established in vitro. Histopathologic analysis and serum biochemical levels revealed that PIN had hepatoprotective activities against HIRI. The variation of GSH, SOD, MDA, and ROS levels indicated that PIN treatments attenuated oxidative stress in tissue. PIN pretreatment obviously ameliorated apoptosis, and restrained the expression of HMGB1 and TLR4 in vivo. In vitro, compared with H2 O2 group, the contents of ROS, mitochondrial membrane potential, apoptotic cells, and Bcl-2 protein were decreased, while the Bax protein expression was increased. Moreover, HMGB-1 small interfering RNA test and western blotting showed that PIN pretreatment reduced HMGB1 and TLR4 protein levels. In conclusion, PIN pretreatment effectively protected hepatocytes from HIRI and inhibited the HMGB1/TLR4 signaling pathway.
Collapse
Affiliation(s)
- Tingting Ma
- Clinical Research Center, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hao Zhang
- Department of General Surgery (Hepatopancreatobiliary Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Hepatobiliary Surgery, West China Hospital of Sichuan University Meishan Hospital, Meishan People's Hospital, Meishan, China
| | - Tongxi Li
- Department of General Surgery (Hepatopancreatobiliary Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Junjie Bai
- Department of General Surgery (Hepatopancreatobiliary Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ziming Wu
- Department of General Surgery (Hepatopancreatobiliary Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Tianying Cai
- Department of General Surgery (Hepatopancreatobiliary Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yifan Chen
- Department of General Surgery (Hepatopancreatobiliary Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xianming Xia
- Department of General Surgery (Hepatopancreatobiliary Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, China.,Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yichao Du
- Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wenguang Fu
- Department of General Surgery (Hepatopancreatobiliary Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, China.,Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
12
|
Pretzsch E, Nieß H, Khaled NB, Bösch F, Guba M, Werner J, Angele M, Chaudry IH. Molecular Mechanisms of Ischaemia-Reperfusion Injury and Regeneration in the Liver-Shock and Surgery-Associated Changes. Int J Mol Sci 2022; 23:12942. [PMID: 36361725 PMCID: PMC9657004 DOI: 10.3390/ijms232112942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 09/01/2023] Open
Abstract
Hepatic ischemia-reperfusion injury (IRI) represents a major challenge during liver surgery, liver preservation for transplantation, and can cause hemorrhagic shock with severe hypoxemia and trauma. The reduction of blood supply with a concomitant deficit in oxygen delivery initiates various molecular mechanisms involving the innate and adaptive immune response, alterations in gene transcription, induction of cell death programs, and changes in metabolic state and vascular function. Hepatic IRI is a major cause of morbidity and mortality, and is associated with an increased risk for tumor growth and recurrence after oncologic surgery for primary and secondary hepatobiliary malignancies. Therapeutic strategies to prevent or treat hepatic IRI have been investigated in animal models but, for the most part, have failed to provide a protective effect in a clinical setting. This review focuses on the molecular mechanisms underlying hepatic IRI and regeneration, as well as its clinical implications. A better understanding of this complex and highly dynamic process may allow for the development of innovative therapeutic approaches and optimize patient outcomes.
Collapse
Affiliation(s)
- Elise Pretzsch
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Hanno Nieß
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Najib Ben Khaled
- Department of Medicine II, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Florian Bösch
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Markus Guba
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Jens Werner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Martin Angele
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Irshad H. Chaudry
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
13
|
Xin W, Qin Y, Lei P, Zhang J, Yang X, Wang Z. From cerebral ischemia towards myocardial, renal, and hepatic ischemia: Exosomal miRNAs as a general concept of intercellular communication in ischemia-reperfusion injury. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:900-922. [PMID: 36159596 PMCID: PMC9464648 DOI: 10.1016/j.omtn.2022.08.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
He T, Yang GY, Zhang Z. Crosstalk of Astrocytes and Other Cells during Ischemic Stroke. LIFE (BASEL, SWITZERLAND) 2022; 12:life12060910. [PMID: 35743941 PMCID: PMC9228674 DOI: 10.3390/life12060910] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 12/27/2022]
Abstract
Stroke is a leading cause of death and long-term disability worldwide. Astrocytes structurally compose tripartite synapses, blood–brain barrier, and the neurovascular unit and perform multiple functions through cell-to-cell signaling of neurons, glial cells, and vasculature. The crosstalk of astrocytes and other cells is complicated and incompletely understood. Here we review the role of astrocytes in response to ischemic stroke, both beneficial and detrimental, from a cell–cell interaction perspective. Reactive astrocytes provide neuroprotection through antioxidation and antiexcitatory effects and metabolic support; they also contribute to neurorestoration involving neurogenesis, synaptogenesis, angiogenesis, and oligodendrogenesis by crosstalk with stem cells and cell lineage. In the meantime, reactive astrocytes also play a vital role in neuroinflammation and brain edema. Glial scar formation in the chronic phase hinders functional recovery. We further discuss astrocyte enriched microRNAs and exosomes in the regulation of ischemic stroke. In addition, the latest notion of reactive astrocyte subsets and astrocytic activity revealed by optogenetics is mentioned. This review discusses the current understanding of the intimate molecular conversation between astrocytes and other cells and outlines its potential implications after ischemic stroke. “Neurocentric” strategies may not be sufficient for neurological protection and recovery; future therapeutic strategies could target reactive astrocytes.
Collapse
Affiliation(s)
- Tingting He
- Department of Neurology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai 200072, China;
- Neuroscience and Neuroengineering Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Guo-Yuan Yang
- Neuroscience and Neuroengineering Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
- Correspondence: (G.-Y.Y.); (Z.Z.); Tel.: +86-21-62933186 (G.-Y.Y.); Fax: +86-21-62932302 (G.-Y.Y.)
| | - Zhijun Zhang
- Neuroscience and Neuroengineering Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
- Correspondence: (G.-Y.Y.); (Z.Z.); Tel.: +86-21-62933186 (G.-Y.Y.); Fax: +86-21-62932302 (G.-Y.Y.)
| |
Collapse
|
15
|
Li T, Chen Q, Dai J, Huang Z, Luo Y, Mou T, Pu J, Yang H, Wei X, Wu Z. MicroRNA-141-3p attenuates oxidative stress-induced hepatic ischemia reperfusion injury via Keap1/Nrf2 pathway. Mol Biol Rep 2022; 49:7575-7585. [DOI: 10.1007/s11033-022-07570-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 05/05/2022] [Indexed: 11/30/2022]
|
16
|
Chen Y, He Y, Zhao S, He X, Xue D, Xia Y. Hypoxic/Ischemic Inflammation, MicroRNAs and δ-Opioid Receptors: Hypoxia/Ischemia-Sensitive Versus-Insensitive Organs. Front Aging Neurosci 2022; 14:847374. [PMID: 35615595 PMCID: PMC9124822 DOI: 10.3389/fnagi.2022.847374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/21/2022] [Indexed: 11/15/2022] Open
Abstract
Hypoxia and ischemia cause inflammatory injury and critically participate in the pathogenesis of various diseases in various organs. However, the protective strategies against hypoxic and ischemic insults are very limited in clinical settings up to date. It is of utmost importance to improve our understanding of hypoxic/ischemic (H/I) inflammation and find novel therapies for better prevention/treatment of H/I injury. Recent studies provide strong evidence that the expression of microRNAs (miRNAs), which regulate gene expression and affect H/I inflammation through post-transcriptional mechanisms, are differentially altered in response to H/I stress, while δ-opioid receptors (DOR) play a protective role against H/I insults in different organs, including both H/I-sensitive organs (e.g., brain, kidney, and heart) and H/I-insensitive organs (e.g., liver and muscle). Indeed, many studies have demonstrated the crucial role of the DOR-mediated cyto-protection against H/I injury by several molecular pathways, including NLRP3 inflammasome modulated by miRNAs. In this review, we summarize our recent studies along with those of others worldwide, and compare the effects of DOR on H/I expression of miRNAs in H/I-sensitive and -insensitive organs. The alternation in miRNA expression profiles upon DOR activation and the potential impact on inflammatory injury in different organs under normoxic and hypoxic conditions are discussed at molecular and cellular levels. More in-depth investigations into this field may provide novel clues for new protective strategies against H/I inflammation in different types of organs.
Collapse
Affiliation(s)
- Yimeng Chen
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yichen He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Shuchen Zhao
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiaozhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Dong Xue
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
- *Correspondence: Dong Xue,
| | - Ying Xia
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
- Ying Xia,
| |
Collapse
|
17
|
Inducible MicroRNA-132 Inhibits the Production of Inflammatory Cytokines by Targeting TRAF6, TAK1, and TAB1 in Teleost Fish. Infect Immun 2022; 90:e0012022. [PMID: 35416706 DOI: 10.1128/iai.00120-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The innate immune response is the first line of defense against pathogen infection. Eradication of pathogen infection requires appropriate immune and inflammatory responses, but excessive inflammation may cause inflammatory and autoimmune diseases. MicroRNAs (miRNAs) are a group of small noncoding RNAs, and accumulating evidence has shown that in mammals, they can act as negative regulators that participate in the regulation of inflammation and immune responses. However, the miRNA-mediated immune regulation networks in the inflammatory responses of lower vertebrates are largely unknown. In this study, we report an miRNA, miR-132, identified from miiuy croaker, that acts as a negative regulator in the host's bacterium-induced inflammatory response. We found that miR-132 expression was dramatically increased upon infection by the Gram-negative bacterium Vibrio harveyi and lipopolysaccharide (LPS). Inducible miR-132 inhibits the production of inflammatory cytokines by targeting tumor necrosis factor receptor-associated factor 6 (TRAF6), transforming growth factor-activated protein kinase 1 (TAK1), and TAK1 binding protein 1 (TAB1), thus avoiding an excessive inflammatory response. Furthermore, we demonstrate that miR-132 modulates the inflammatory response through a TRAF6-, TAK1-, and TAB1-mediated NF-κB signaling pathway. These results collectively reveal that miR-132 plays a negative regulatory role in the host antibacterial immune response, which will help to gain insight into the intricate network of host resistance to pathogen infection in lower vertebrates.
Collapse
|
18
|
MicroRNAs: Novel Targets in Hepatic Ischemia–Reperfusion Injury. Biomedicines 2022; 10:biomedicines10040791. [PMID: 35453542 PMCID: PMC9028838 DOI: 10.3390/biomedicines10040791] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 02/04/2023] Open
Abstract
Hepatic ischemia–reperfusion injury (IRI) is one of the main factors for early allograft dysfunction (EAD), which may lead to graft rejection, graft loss, or shortened graft life in liver transplantation. Hepatic IRI appears to be inevitable during the majority of liver procurement and transportation of donor organs, resulting in a cascade of biological changes. The activation of signaling pathways during IRI results in the up- and downregulation of genes and microRNAs (miRNAs). miRNAs are ~21 nucleotides in length and well-characterized for their role in gene regulations; they have recently been used for therapeutic approaches in addition to their role as biomarkers for many diseases. miRNAs that are associated with hepatic IRI in in vitro and in vivo animal models are comprehensively summarized in this review. In those studies, the manipulation of miRNAs has been shown for the inhibition of aggravated immune response, reduction of apoptosis, stimulation of tissue repair, and enhancement of cell recovery to attenuate liver damage. Therefore, the utilization of liver-specific miRNA holds great potential as a therapeutic agent to improve early allograft dysfunction, hepatic injury, and patient outcome.
Collapse
|
19
|
miR-146a contributes to atherosclerotic plaque stability by regulating the expression of TRAF6 and IRAK-1. Mol Biol Rep 2022; 49:4205-4216. [PMID: 35195809 DOI: 10.1007/s11033-022-07253-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 02/09/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Atherosclerosis is a chronic inflammatory disease. The vulnerable plaque of atherosclerotic can lead to the development of many diseases including acute coronary syndrome and coronary heart disease. It is well known that miR-146a is the key brake miRNA of the inflammatory signal transduction pathway. However, the effect of miR-146a on the stability of atherosclerotic plaque remains to be elucidated. METHODS AND RESULTS We constructed animal models of atherosclerosis and foam cell models, and overexpressed and knocked-down miR-146a in models. After staining with Hematoxylin-Eosin (HE), Oil Red O, immunocytochemistry (IHC) and Sirius Red, we used the proportion of (Lipids area + Macrophage area) and (SMCs area + collagen area) to evaluate atherosclerotic plaque stability. TUNEL and flow cytometry were performed to detect the apoptosis level of macrophages. Levels of inflammatory factors were detected via ELISA assay. The results showed that miR-146a, IRAK1 and TRAF6 were abnormally expressed in plaques of atherosclerotic animals. Overexpression of miR-146a contributed to the stability of plaques that inhibited plaque formation, macrophage apoptosis and levels of pro-inflammatory factors. The Dual-luciferase reporter gene assay, IF and FISH were used to verify the regulatory mechanism of miR-146a on IRAK1 and TRAF6. We found that IRAK1 and TRAF6 promoted lipid uptake, apoptosis, and release of pro-inflammatory factors of RAW264.7 macrophages, whereas miR-146a restored RAW264.7 macrophages phenotype by inhibiting IRAK1 and TRAF6 expression. CONCLUSIONS We display for the first time that miR-146a inhibits the formation of foam cells, RAW264.7 macrophage apoptosis and pro-inflammatory reaction through negative regulation of IRAK1 and TRAF6 expression, thereby enhancing the stability of atherosclerotic plaques.
Collapse
|
20
|
Lu Z, Yun Y, Zhang Y, Ou Y, Wang M. Promotion of microRNA-146a by histone deacetylase 4 silencing contributes to radiosensitization of esophageal carcinoma. J Transl Med 2022; 20:101. [PMID: 35193602 PMCID: PMC8862391 DOI: 10.1186/s12967-021-03171-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 11/27/2021] [Indexed: 11/30/2022] Open
Abstract
Background Histone deacetylases (HDACs) have been identified to be implicated in the carcinogenesis and cancer progression. The present study was performed to probe into the effect of HDAC4 on radioresistance of esophageal carcinoma (EC). Methods The expression of HDAC4 in responders and non-responders to radiotherapy was characterized by RT-qPCR, immunohistochemistry, and Western blot analysis. EC cells were exposed to continuous fractionated X-ray irradiation, and their proliferation and apoptosis were evaluated by means of colony formation assay and flow cytometry based Annexin V-FITC/PI apoptosis assay in response to HDAC4 overexpression or silencing. Mechanistic investigation was conducted by means of in silico analysis and dual-luciferase reporter gene assay. Tumor xenografts derived from radioresistant EC cells were exposed to local X-ray irradiation in vivo for validation. Results High expression of HDAC4 was detected in either tumor tissues derived from radiotherapy responders or radioresistant EC cells. Loss of HDAC4 contributed to suppressed proliferation and enhanced apoptosis of radioresistant EC cells. Moreover, our findings revealed that HDAC4 conferred radioresistance of EC by downregulating microRNA-146a (miR-146a). Interleukin-1 receptor-associated kinase 1 (IRAK1) was a target of miR-146a, and its knockdown promoted radiosensitivity. Silencing of HDAC4 radiosensitized EC cells both in vitro and in vivo via the miR-146a/IRAK1 axis. Conclusion Hence, loss of HDAC4 upregulated miR-146a to limit radioresistance. This study aids in the better understanding about mechanism responsible for radioresistance of EC. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03171-z.
Collapse
Affiliation(s)
- Zhonghua Lu
- Department of Radiotherapy, Changzhou Tumor Hospital, Soochow University, Changzhou, 213000, China
| | - Yifei Yun
- Department of Radiotherapy, Changzhou Tumor Hospital, Soochow University, Changzhou, 213000, China
| | - Yutong Zhang
- Department of Radiotherapy, Changzhou Tumor Hospital, Soochow University, Changzhou, 213000, China
| | - Yao Ou
- Department of Radiotherapy, Changzhou Tumor Hospital, Soochow University, Changzhou, 213000, China
| | - Meihua Wang
- Department of Pathology, Changzhou Tumor Hospital, Soochow University, No. 68, Honghe Road, Xinbei District, Changzhou, 213000, Jiangsu, China.
| |
Collapse
|
21
|
Wu X, Xu M, Liu Z, Zhang Z, Liu Y, Luo S, Zheng X, Little PJ, Xu S, Weng J. Pharmacological inhibition of IRAK1 and IRAK4 prevents endothelial inflammation and atherosclerosis in ApoE -/- mice. Pharmacol Res 2022; 175:106043. [PMID: 34954030 DOI: 10.1016/j.phrs.2021.106043] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 02/08/2023]
Abstract
Inflammation associated endothelial dysfunction represents a pivotal contributor to atherosclerosis. Increasingly, evidence has demonstrated that interleukin 1 receptor (IL1-R) / toll-like receptor (TLR) signaling participates in the development of atherosclerosis. Recent large-scale clinical trials have supported the therapeutic potential of anti-inflammatory therapies targeting IL-1β and IL-6 in reducing atherosclerosis. The present study examined the pharmacological effects of IL-1R-associated kinase 1 and 4 inhibitors (IRAK1/4i) in regulating inflammation of the endothelium and atherosclerosis. We demonstrate that dual pharmacological inhibition of IRAK1 and IRAK4 by an IRAK1/4i is more effective against LPS induced endothelial inflammation, compared with IRAK1 inhibitor or IRAK4 inhibitor monotherapy. IRAK1/4i showed little endothelial cell toxicity at concentrations from 1 μM up to 10 μM. Inhibition of IRAK1/4 reduced endothelial activation induced by LPS in vitro as evidenced by attenuated monocyte adhesion to the endothelium. Mechanistically, blockade of IRAK1/4 ameliorated the transcriptional activity of NF-κB. To assess the pharmacological effects of IRAK1/4i on atherosclerosis in vivo, ApoE-/- mice were orally administered IRAK1/4i (20 mg/kg/d) for 8 weeks. We show that IRAK1/4i reduced atherosclerotic lesion size in the aortic sinus and increased hepatic LDLR protein levels as well as lowered LDL-C level, without affecting other lipid parameters or glucose tolerance. Taken together, our findings demonstrate that dual pharmacological inhibition of IRAK1 and IRAK4 attenuates endothelial inflammation, lowers LDL-C levels and reduces atherosclerosis. Our study reinforces the evolving standing of anti-inflammatory approaches in cardiovascular therapeutics.
Collapse
Affiliation(s)
- Xiumei Wu
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, 510000 Guangzhou, China
| | - Mengyun Xu
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Zhenghong Liu
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Zhidan Zhang
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Yujie Liu
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Sihui Luo
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Xueying Zheng
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Peter J Little
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, Australia
| | - Suowen Xu
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China.
| | - Jianping Weng
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, 510000 Guangzhou, China; Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
22
|
Gedefaw L, Ullah S, Lee TMH, Yip SP, Huang CL. Targeting Inflammasome Activation in COVID-19: Delivery of RNA Interference-Based Therapeutic Molecules. Biomedicines 2021; 9:1823. [PMID: 34944639 PMCID: PMC8698532 DOI: 10.3390/biomedicines9121823] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
Mortality and morbidity associated with COVID-19 continue to be significantly high worldwide, owing to the absence of effective treatment strategies. The emergence of different variants of SARS-CoV-2 is also a considerable source of concern and has led to challenges in the development of better prevention and treatment strategies, including vaccines. Immune dysregulation due to pro-inflammatory mediators has worsened the situation in COVID-19 patients. Inflammasomes play a critical role in modulating pro-inflammatory cytokines in the pathogenesis of COVID-19 and their activation is associated with poor clinical outcomes. Numerous preclinical and clinical trials for COVID-19 treatment using different approaches are currently underway. Targeting different inflammasomes to reduce the cytokine storm, and its associated complications, in COVID-19 patients is a new area of research. Non-coding RNAs, targeting inflammasome activation, may serve as an effective treatment strategy. However, the efficacy of these therapeutic agents is highly dependent on the delivery system. MicroRNAs and long non-coding RNAs, in conjunction with an efficient delivery vehicle, present a potential strategy for regulating NLRP3 activity through various RNA interference (RNAi) mechanisms. In this regard, the use of nanomaterials and other vehicle types for the delivery of RNAi-based therapeutic molecules for COVID-19 may serve as a novel approach for enhancing drug efficacy. The present review briefly summarizes immune dysregulation and its consequences, the roles of different non-coding RNAs in regulating the NLRP3 inflammasome, distinct types of vectors for their delivery, and potential therapeutic targets of microRNA for treatment of COVID-19.
Collapse
Affiliation(s)
- Lealem Gedefaw
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (L.G.); (S.U.)
| | - Sami Ullah
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (L.G.); (S.U.)
| | - Thomas M. H. Lee
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China;
| | - Shea Ping Yip
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (L.G.); (S.U.)
| | - Chien-Ling Huang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (L.G.); (S.U.)
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
23
|
Chen H, Liu Q, Liu X, Jin J. Berberine attenuates septic cardiomyopathy by inhibiting TLR4/NF-κB signalling in rats. PHARMACEUTICAL BIOLOGY 2021; 59:121-128. [PMID: 33539718 PMCID: PMC8871679 DOI: 10.1080/13880209.2021.1877736] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
CONTEXT Berberine (Ber) can increase the survival rate of septic mice and inhibit inflammation, but whether it has a protective effect on septic cardiomyopathy (SCM) is unclear. OBJECTIVE To investigate whether Ber ameliorates SCM in a rat model and its potential mechanism. MATERIALS AND METHODS Male SD rats were randomly divided into three groups: control (Con, n = 6) (DD H2O, 2 mL/100 g, ig, qd × 3 d, then saline, 10 mg/kg, ip); sepsis [LPS (lipopolysaccharide), n = 18] (LPS 10 mg/kg instead of saline, ip); and berberine intervention (Ber, n = 18) (Ber, 50 mg/kg instead of DD H2O, ig, qd × 3 d, LPS instead of saline, ip). Hemodynamics, HE staining, ELISA and western blot were performed at 6, 24, and 48 h after intraperitoneal injection of LPS to evaluate the effect of berberine in septic rats. RESULT Berberine could recover myocardial injury by partially increased ± dp/dt max (1151, 445 mmHg/s) and LVEDP levels (1.49 mmHg) with LPS-induced rats, as well as an ameliorated increase of cTnT (217.53 pg/mL) in the Ber group compared with that in the LPS group (at 24 h). In addition, HE staining results showed that berberine attenuated the myocardial cell swelling induced by LPS. In contrast to the LPS group, the up-regulation of TLR4, p65 TNF-α, and IL-1β were attenuated in the Ber group. DISCUSSION AND CONCLUSIONS Berberine showed a protective effect on septic cardiomyopathy rats possibly through inhibiting the activation of TLR4/NF-κB signalling pathway. Whether it improves SCM through other mechanisms is our ongoing research.
Collapse
Affiliation(s)
- Huiqi Chen
- Department of Ultrasonography, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Qian Liu
- Department of Cardiology, The Second Affiliated Hospital, University of South, Hengyang, China
| | - Xiangqi Liu
- Department of Critical Care Medicine, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jinlan Jin
- Department of Critical Care Medicine, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
- CONTACT Jinlan Jin Department of Critical Care Medicine, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, 6001 North ring road, Shenzhen, China
| |
Collapse
|
24
|
Albeltagy RS, Mumtaz F, Abdel Moneim AE, El-Habit OH. N-Acetylcysteine Reduces miR-146a and NF-κB p65 Inflammatory Signaling Following Cadmium Hepatotoxicity in Rats. Biol Trace Elem Res 2021; 199:4657-4665. [PMID: 33454892 DOI: 10.1007/s12011-021-02591-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/10/2021] [Indexed: 10/22/2022]
Abstract
We performed a thorough screening and analysis of the impact of cadmium chloride (CdCl2) and N-acetylcysteine (NAC) on the miR146a/NF-κB p65 inflammatory pathway and mitochondrial biogenesis dysfunction in male albino rats. A total of 24 male albino rats were divided into three groups: a control group, a CdCl2-treated group (3 mg/kg, orally), and a CdCl2 + NAC-treated group (200 mg/kg of NAC, 1 h after CdCl2 treatment), for 60 consecutive days. Real-time quantitative PCR was used to analyze the expression of miR146a, Irak1, Traf6, Nrf1, Nfe2l2, Pparg, Prkaa, Stat3, Tfam, Tnfa, and Il1b, whereas tumor necrosis factor-α, interleukin-1β, and cyclooxygenase-2 protein levels were assessed using ELISA, and NF-κB p65 was detected using western blotting. A significant restoration of homeostatic inflammatory processes as well as mitochondrial biogenesis was observed after NAC and CdCl2 treatment. Decreased miR146a and NF-κB p65 were also found after treatment with NAC and CdCl2 compared with CdCl2 treatment alone. Collectively, our findings demonstrate that CdCl2 caused mtDNA release because of Tfam loss, leading to NF-κB p65 activation. Co-treatment with NAC could alleviate Cd-induced genotoxicity in liver tissue. We concluded that adding NAC to CdCl2 resulted in a decreased signaling of the NF-κB p65 signaling pathway.
Collapse
Affiliation(s)
- Rasha S Albeltagy
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Farah Mumtaz
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.
| | - Ola H El-Habit
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
25
|
Plicosepalus acacia Extract and Its Major Constituents, Methyl Gallate and Quercetin, Potentiate Therapeutic Angiogenesis in Diabetic Hind Limb Ischemia: HPTLC Quantification and LC-MS/MS Metabolic Profiling. Antioxidants (Basel) 2021; 10:antiox10111701. [PMID: 34829572 PMCID: PMC8614836 DOI: 10.3390/antiox10111701] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022] Open
Abstract
Plicosepalus acacia (Fam. Loranthaceae) has been reported to possess hypoglycemic, antioxidant, antimicrobial, and anti-inflammatory effects. Liquid chromatography combined with tandem mass spectrometry (LC-MS/MS) analysis revealed the presence of a high content of polyphenolic compounds that are attributed to the therapeutic effects of the crude extract. In addition, methyl gallate and quercetin were detected as major phytomedicinal agents at concentrations of 1.7% and 0.062 g%, respectively, using high-performance thin layer chromatography (HPTLC). The present study investigated the effect of the P. acacia extract and its isolated compounds, methyl gallate and quercetin, on hind limb ischemia induced in type 1 diabetic rats. Histopathological examination revealed that treatment with P. acacia extract, methyl gallate, and quercetin decreased degenerative changes and inflammation in the ischemic muscle. Further biochemical assessment of the hind limb tissue showed decreased oxidative stress, increased levels of nitric oxide and endothelial nitric oxide synthase (eNOS), and enhancement of the levels of heme oxygenase-1 (HO-1) and vascular endothelial growth factor (VEGF) in the groups treated with methyl gallate and quercetin. Expression levels of hypoxia inducible factor-1 alpha (HIF-1α), VEGF, fibroblast growth factor-2 (FGF-2), and miR-146a were upregulated in the muscle tissue of methyl gallate- and quercetin-treated groups along with downregulation of nuclear factor kappa B (NF-κB). In conclusion, P. acacia extract and its isolated compounds, methyl gallate and quercetin, mediated therapeutic angiogenesis in diabetic hind limb ischemia.
Collapse
|
26
|
Attia H, Finocchi F, Orciani M, Mehdi M, Zidi Jrah I, Lazzarini R, Balercia G, Mattioli Belmonte M. Pro-inflammatory cytokines and microRNAs in male infertility. Mol Biol Rep 2021; 48:5935-5942. [PMID: 34319544 PMCID: PMC8376712 DOI: 10.1007/s11033-021-06593-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/23/2021] [Indexed: 12/26/2022]
Abstract
Background Male infertility is a problem that affects 10–15% of men of reproductive age. In particular, gametogenesis is a complex process in which inflammation may play a central role through the secretion of cytokines and the expression of microRNAs. We assessed the potential role of proinflammatory cytokines (TNF-α, IL-6 and IL-1α) and microRNAs (miR-146a-5p, miR-34a-5p and miR-23a-3p) in the seminal plasma of infertile men compared to controls, evaluating their correlation with seminal and biochemical parameters. Methods and results Expression of cytokines and microRNAs was analyzed by ELISA and q-PCR. Our data shows that IL-1α was significantly increased in the azoospermic group compared to controls, TNF-α mRNA was more expressed in the oligozoospermic group than controls. There were no significant differences in miRNAs expression among the three groups. The correlations between sperm parameters and inflammatory markers were evaluated, however no significance was highlighted. Conclusions The determination of each inflammatory marker separately in the seminal plasma of subfertile men, despite some significant differences, does not have a diagnostic value in male infertility even if an assay of selective pro-inflammatory cytokines and microRNAs in the semen may improve the diagnosis of male infertility.
Collapse
Affiliation(s)
- Hana Attia
- Department of Histology Embryology and Cytogenetic, Faculty of Medicine, University of Monastir, Monastir, Tunisia
- Laboratory of Cytogenetics and Reproductive Biology, Center of Maternity and Neonatology, Fattouma Bourguiba University Teaching Hospital, Monastir, Tunisia
- Laboratory of Histology, Department of Clinical and Molecular Science, Polytechnic University of Marche, Ancona, Italy
| | - Federica Finocchi
- Division of Endocrinology, Department of Clinical and Molecular Science (DISCLIMO), Polytechnic University of Marche, Ancona, Italy
| | - Monia Orciani
- Laboratory of Histology, Department of Clinical and Molecular Science, Polytechnic University of Marche, Ancona, Italy.
| | - Meriem Mehdi
- Department of Histology Embryology and Cytogenetic, Faculty of Medicine, University of Monastir, Monastir, Tunisia
- Laboratory of Cytogenetics and Reproductive Biology, Center of Maternity and Neonatology, Fattouma Bourguiba University Teaching Hospital, Monastir, Tunisia
| | - Ines Zidi Jrah
- Laboratory of Cytogenetics and Reproductive Biology, Center of Maternity and Neonatology, Fattouma Bourguiba University Teaching Hospital, Monastir, Tunisia
| | - Raffaella Lazzarini
- Division of Endocrinology, Department of Clinical and Molecular Science (DISCLIMO), Polytechnic University of Marche, Ancona, Italy
| | - Giancarlo Balercia
- Division of Endocrinology, Department of Clinical and Molecular Science (DISCLIMO), Polytechnic University of Marche, Ancona, Italy
| | - Monica Mattioli Belmonte
- Laboratory of Histology, Department of Clinical and Molecular Science, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
27
|
Zhang C. The Roles of Different Stem Cells in Premature Ovarian Failure. Curr Stem Cell Res Ther 2021; 15:473-481. [PMID: 30868961 DOI: 10.2174/1574888x14666190314123006] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 02/07/2023]
Abstract
Premature ovarian failure (POF) is characterized by amenorrhea, hypergonadotropism and hypoestrogenism before the age of 40, which affects 1% of women in the general population. POF is complex and heterogeneous due to its pathogenetic mechanisms. It is one of the significant causes of female infertility. Although many treatments are available for POF, these therapies are less efficient and trigger many side effects. Therefore, to find effective therapeutics for POF is urgently required. Due to stem cells having self-renewal and regeneration potential, they may be effective for the treatment of ovarian failure and consequently infertility. Recent studies have found that stem cells therapy may be able to restore the ovarian structure and function in animal models of POF and provide an effective treatment method. The present review summarizes the biological roles and the possible signaling mechanisms of the different stem cells in POF ovary. Further study on the precise mechanisms of stem cells on POF may provide novel insights into the female reproduction, which not only enhances the understanding of the physiological roles but also supports effective therapy for recovering ovarian functions against infertility.
Collapse
Affiliation(s)
- Cheng Zhang
- College of Life Science, Capital Normal University, Beijing 100048, China
| |
Collapse
|
28
|
Ghafouri-Fard S, Abak A, Shoorei H, Talebi SF, Mohaqiq M, Sarabi P, Taheri M, Mokhtari M. Interaction between non-coding RNAs and Toll-like receptors. Biomed Pharmacother 2021; 140:111784. [PMID: 34087695 DOI: 10.1016/j.biopha.2021.111784] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022] Open
Abstract
Toll-like receptors (TLRs) are a large group of pattern recognition receptors which are involved in the regulation of innate immune responses. Based on the interplay between TLRs and adapter molecules, two distinctive signaling cascades, namely the MyD88-dependent and TRIF-dependent pathways have been recognized. TLRs are involved in the development of a wide variety of diseases including cancer and autoimmune disorders. A large body of evidence has shown interaction between two classes of non-coding RNAs, namely microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). These interactions have prominent roles in the pathogenesis of several disorders including infectious disorders, autoimmune conditions and neoplastic disorders. This review aims at description of the interaction between these non-coding RNAs and TLRs.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Mahdi Mohaqiq
- School of Advancement, Centennial College, Ashtonbee Campus, Toronto, ON, Canada
| | - Parisa Sarabi
- Deputy for Research & Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Majid Mokhtari
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Wang Y, Ma XM, Wang X, Sun X, Wang LJ, Li XQ, Liu XY, Yu HS. Emerging Insights Into the Role of Epigenetics and Gut Microbiome in the Pathogenesis of Graves' Ophthalmopathy. Front Endocrinol (Lausanne) 2021; 12:788535. [PMID: 35069441 PMCID: PMC8766297 DOI: 10.3389/fendo.2021.788535] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Graves' Ophthalmopathy (GO) is an organ-specific autoimmune disease that is often characterized by infiltration of orbital tissues and is considered as the most common extra-thyroid manifestation of Graves' disease (GD). Although genetic susceptibility has been found to be critical for the phenotype of GO, the associated risk alleles in a single gene are generally insufficient to cause the disease. Accruing evidence has shown that epigenetic disorders can act as the potentially missing link between genetic risk and clinically significant disease development. Abnormal epigenetic modifications can lead to pro-inflammatory cascades and activation of orbital fibroblasts (OFs) by promoting the various inflammatory response pathways and regulating the diverse signaling molecules that are involved in the fibrogenesis and adipogenesis, thereby leading to the significant expansion of orbital tissues, fibrosis and inflammation infiltration. Additionally, emerging evidence has shown that the gut microbiome can possibly drive the pathogenesis of GO by influencing the secretion of Thyrotropin receptor antibody (TRAb) and T-helper 17 (Th17)/regulatory T cells (Treg) imbalance. This paper describes the latest epigenetic research evidence and progress made in comprehending the mechanisms of GO development, such as DNA methylation, histone modification, non-coding RNAs, and the gut microbiome.
Collapse
Affiliation(s)
- Yan Wang
- Department of Immunology, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Xiao-Min Ma
- Department of Immunology, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Xin Wang
- School of Basic Medical Sciences, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Xin Sun
- School of Basic Medical Sciences, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Ling-Jun Wang
- School of Basic Medical Sciences, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Xin-Qi Li
- School of Basic Medical Sciences, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Xiao-Yan Liu
- School of Basic Medical Sciences, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Hong-Song Yu
- Department of Immunology, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, China
- *Correspondence: Hong-Song Yu,
| |
Collapse
|
30
|
Sabet Sarvestani F, Azarpira N, Al-Abdullah IH, Tamaddon AM. microRNAs in liver and kidney ischemia reperfusion injury: insight to improve transplantation outcome. Biomed Pharmacother 2020; 133:110944. [PMID: 33227704 DOI: 10.1016/j.biopha.2020.110944] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/03/2020] [Accepted: 10/25/2020] [Indexed: 12/26/2022] Open
Abstract
Ischemia reperfusion injury (IRI) is a condition that occurs wherever blood flow and oxygen is reduced or absent, such as trauma, vascular disease, stroke, and solid organ transplantation. This condition can lead to tissue damage, especially during organ transplantation. Under such circumstances, some signaling pathways are activated, leading to up- or down- regulation of several genes such as microRNAs (miRNAs) that might attenuate or ameliorate this status. Therefore, by manipulating miRNAs level, they can be used as a biomarker for early diagnosis of IRI or suggestive to be therapeutic agents in clinical situation in future.
Collapse
Affiliation(s)
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ismail H Al-Abdullah
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, USA.
| | - Ali-Mohammad Tamaddon
- Department of Pharmaceutics and Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
31
|
Zhou W, Lin D, Zhong Z, Ye Q. Roles of TRAFs in Ischemia-Reperfusion Injury. Front Cell Dev Biol 2020; 8:586487. [PMID: 33224951 PMCID: PMC7674171 DOI: 10.3389/fcell.2020.586487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
Tumor necrosis factor receptor-associated factor (TRAF) proteins are a family of signaling molecules that function downstream of multiple receptor signaling pathways, and they play a pivotal role in the regulation of intracellular biological progresses. These TRAF-dependent signaling pathways and physiological functions have been involved in the occurrence and progression of ischemia-reperfusion injury (IRI), which is a common pathophysiological process that occurs in a wide variety of clinical events, including ischemic shock, organ transplantation, and thrombolytic therapy, resulting in a poor prognosis and high mortality. IRI occurs in multiple organs, including liver, kidney, heart, lung, brain, intestine, and retina. In recent years, mounting compelling evidence has confirmed that the genetic alterations of TRAFs can cause subversive phenotype changes during IRI of those organs. In this review, based on current knowledge, we summarized and analyzed the regulatory effect of TRAFs on the IRI of various organs, providing clear direction and a firm theoretical basis for the development of treatment strategies to manipulate TRAF proteins or TRAF-dependent signaling pathways in IRI-related diseases.
Collapse
Affiliation(s)
- Wei Zhou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China
| | - Danni Lin
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China.,The First Affiliated Hospital, Zhejiang University School of Medicine, Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Zibiao Zhong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China.,The Third Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha, China
| |
Collapse
|
32
|
Akbari G. Emerging roles of microRNAs in intestinal ischemia/reperfusion-induced injury: a review. J Physiol Biochem 2020; 76:525-537. [PMID: 33140255 DOI: 10.1007/s13105-020-00772-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023]
Abstract
Intestinal ischemia/reperfusion (II/R) injury is a serious pathological phenomenon in underlying hemorrhagic shock, trauma, strangulated intestinal obstruction, and acute mesenteric ischemia which associated with high morbidity and mortality. MicroRNAs (miRNAs, miRs) are endogenous non-coding RNAs that regulate post-transcriptionally target mRNA translation via degrading it and/or suppressing protein synthesis. This review discusses on the role of some miRNAs in underlying II/R injury. Some of these miRNAs can have protective action through agomiR or specific antagomiR, and others can have destructive effects in the basal level of II/R insult. Based on these literature reviews, II/R injury affects several miRNAs and their specific target genes. Some miRNAs upregulate under condition of II/R injury, and multiple miRNAs downregulate following II/R damage. Data of this review have been collected from the scientific articles published in databases such as Science Direct, Scopus, PubMed, Web of Science, and Scientific Information Database from 2000 to 2020. It is shown a correlation between changes in the expression of miRNAs and autophagy, inflammation, oxidative stress, apoptosis, and epithelial barrier function. Taken together, agomiR or antagomiR of some miRNAs can be considered as one new target for the research and development of innovative drugs to the prevention or treatment of II/R damage.
Collapse
Affiliation(s)
- Ghaidafeh Akbari
- Medicinal Plants Research Center, Department of Physiology, School of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran.
| |
Collapse
|
33
|
Afrose SS, Junaid M, Akter Y, Tania M, Zheng M, Khan MA. Targeting kinases with thymoquinone: a molecular approach to cancer therapeutics. Drug Discov Today 2020; 25:2294-2306. [PMID: 32721537 DOI: 10.1016/j.drudis.2020.07.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 06/01/2020] [Accepted: 07/20/2020] [Indexed: 01/02/2023]
Abstract
Kinases are enzymes that are important for cellular functions, but their overexpression has strong connections with carcinogenesis, rendering them important targets for anticancer drugs. Thymoquinone (TQ) is a natural compound with proven anticancer activities, at least in preclinical studies. TQ can target several kinases, including phosphoinositide 3-kinase (PI3K), mitogen-activated protein kinase (MAPK), Janus kinase/signal transducers and activators of transcription (JAK/STAT), polo-like kinase 1 (PLK1), and tyrosine kinase in different cancer cells and animal models. Inhibiting the activity of kinases or suppressing their expression might be among the mechanisms of TQ anticancer activity. In this review, we discuss the role of TQ in kinase regulation in different cancer models.
Collapse
Affiliation(s)
| | - Md Junaid
- Molecular Modeling Drug-design and Discovery Laboratory, Pharmacology Research Division, Bangladesh Council of Scientific and Industrial Research, Chattogram, Bangladesh
| | - Yeasmin Akter
- Department of Biotechnology and Genetic Engineering, Noakhali Science & Technology University, Noakhali, Bangladesh
| | - Mousumi Tania
- Division of Molecular Cancer, Red Green Research Center, Dhaka, Bangladesh
| | - Meiling Zheng
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Md Asaduzzaman Khan
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China.
| |
Collapse
|
34
|
Li X, Liao J, Su X, Li W, Bi Z, Wang J, Su Q, Huang H, Wei Y, Gao Y, Li J, Liu L, Wang C. Human urine-derived stem cells protect against renal ischemia/reperfusion injury in a rat model via exosomal miR-146a-5p which targets IRAK1. Theranostics 2020; 10:9561-9578. [PMID: 32863945 PMCID: PMC7449916 DOI: 10.7150/thno.42153] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 07/16/2020] [Indexed: 02/06/2023] Open
Abstract
Rationale: Ischemia/reperfusion injury (IRI) is a major cause of acute kidney injury (AKI) that is associated with high morbidity and mortality, and for which specific treatments are lacking. In this study, we investigated the protective effect of human urine-derived stem cells (USCs) and their exosomes against IRI-induced AKI to explore the potential of these cells as a new therapeutic strategy. Methods: USCs were derived from fresh human urine. Cell surface marker expression was analyzed by flow cytometry to determine the characteristics of the stem cells. Adult male Sprague-Dawley rats were used to generate a lethal renal IRI model. One dose of USCs (2×106 cells/ml) or exosomes (20 µg/1 ml) in the experimental groups or saline (1 ml) in the control group was administered intravenously immediately after blood reperfusion. Blood was drawn every other day for measurement of serum creatinine (sCr) and blood urea nitrogen (BUN) levels. The kidneys were harvested for RNA and protein extraction to examine the levels of apoptosis and tubule injury. In vitro, the hypoxia-reoxygenation (H/R) model in human kidney cortex/proximal tubule cells (HK2) was used to analyze the protective ability of USC-derived exosomes (USC-Exo). Quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR), western blotting, superoxide dismutase activity, and malonaldehyde content analyses were used to evaluate oxidative stress in HK2 cells treated with USC-Exo after H/R. Exosomal microRNA sequencing techniques and bioinformatics analysis were used to search for enriched miRNAs in the exosomes and interacting genes. The interaction between miRNAs and the 3' untranslated region of the target gene was detected using a dual luciferase reporting system. The miRNA mimic and inhibitor were used to regulate the miRNA level in HK2 cells. Results: Treatment with USCs led to reductions in the levels of sCr, BUN, and renal tubular cell apoptosis; inhibited the infiltration of inflammatory cells; and protected renal function in the rat IRI model. Additionally, USC-derived exosomes protected against IRI-induced renal damage. miR-146a-5p was the most abundant miRNA in exosomes obtained from the conditioned medium (CM) of USCs. miR-146a-5p targeted and degraded the 3'UTR of interleukin-1 receptor-associated kinase 1 (IRAK1) mRNA, subsequently inhibited the activation of nuclear factor (NF)-κB signaling, and protected HK2 cells from H/R injury. USC transplantation also upregulated miR-146a-5p expression, downregulated IRAK1 expression and inhibited nuclear translocation of NF-κB p65 in the kidney of the rat IRI model. Conclusions: According to our experimental results, USCs could protect against renal IRI via exosomal miR-146a-5p, which could target the 3'UTR of IRAK1 and subsequently inhibit the activation of NF-κB signaling and infiltration of inflammatory cells to protect renal function. As a novel cell source, USCs represent a promising non-invasive approach for the treatment of IRI.
Collapse
|
35
|
Di Stefano AB, Pappalardo M, Moschella F, Cordova A, Toia F. MicroRNAs in solid organ and vascularized composite allotransplantation: Potential biomarkers for diagnosis and therapeutic use. Transplant Rev (Orlando) 2020; 34:100566. [PMID: 32682704 DOI: 10.1016/j.trre.2020.100566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/23/2020] [Accepted: 06/30/2020] [Indexed: 12/24/2022]
Abstract
Nowadays, solid organ transplantation (SOT) is an established treatment for patients with end-organ dysfunction, which dramatically improves the quality-of-life. Vascularized composite allotransplants (VCAs) including hand and face have been reported worldwide over the last 20 years. However, VCAs, differently to SOT, are life-enhancing instead of life-saving and are not routinely performed due to the risk of immune rejection and the adverse effects of immunosuppression. Over the past decade, although considerable improvements in short-term outcomes after allotransplantation have been registered, these results have not been translated into major progress in long-term allograft acceptance and patient survival. Recently active researches in the field of biomarker discovery have been conducted to develop individualized therapies for allograft recipients. MicroRNAs (miRNAs) are a small noncoding RNAs functioning as critical regulators of gene and protein expression by RNA interference. They have been connected in numerous biological processes and diseases. Due to their immunomodulatory functions, miRNAs have been amended as potential diagnostic and prognostic biomarker for the detection of rejection in allotransplantation. Due to their specific circulating expression profile, they could act as noninvasive predictive tools for rejection that may help clinicians in an early adjustment of the immunosuppression protocol during acute rejections episodes. Indeed, specific anti-sense oligonucleotides suppressing miRNAs expressed in rejection could reduce the rejection rate in allografts and decrease the use of immunosuppressants. We present a literature review of the immunomodulatory properties and characteristics of miRNAs. We will summarize the current knowledge on miRNAs as potential biomarkers for allograft rejection and possible application in allotransplantation monitoring. Finally, we will discuss the advances in preclinical miRNA-based therapies for immunosuppression.
Collapse
Affiliation(s)
- Anna Barbara Di Stefano
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy.
| | - Marco Pappalardo
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy.
| | - Francesco Moschella
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy.
| | - Adriana Cordova
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; Plastic and Reconstructive Surgery Section, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; Plastic and Reconstructive Unit, Department of Oncology, Azienda Ospedaliera Universitaria Policlinico "Paolo Giaccone", 90127 Palermo, Italy.
| | - Francesca Toia
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; Plastic and Reconstructive Surgery Section, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; Plastic and Reconstructive Unit, Department of Oncology, Azienda Ospedaliera Universitaria Policlinico "Paolo Giaccone", 90127 Palermo, Italy.
| |
Collapse
|
36
|
Yuan F, Zhang S, Xie W, Yang S, Lin T, Chen X. Effect and mechanism of miR-146a on malignant biological behaviors of lung adenocarcinoma cell line. Oncol Lett 2020; 19:3643-3652. [PMID: 32382320 PMCID: PMC7202298 DOI: 10.3892/ol.2020.11474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 06/28/2019] [Indexed: 12/28/2022] Open
Abstract
The aim of the present study was to assess the expression of microRNA-146a (miR-146a) in human lung adenocarcinoma cells, its effect on cellular behaviors, and the underlying molecular mechanisms. Reverse transcription-quantitative PCR (RT-qPCR) was used to measure miR-146a expression in the human normal lung epithelial cell line, BEAS-2B, and human lung adenocarcinoma cell lines, A549, PC-9 and H1299, to determine whether miR-146a acts as an oncogene or anti-oncogene. miR-146a mimics were transfected into target cells to observe the proliferation, apoptosis, invasion and migration of human lung adenocarcinoma cells. The target genes of miR-146a were predicted using bioinformatics analysis, and binding sites were validated by dual-luciferase reporter assay. Target gene expression at the mRNA and protein levels was measured by RT-qPCR and western blot analysis, respectively. The expression levels of miR-146a in human lung adenocarcinoma cell lines were lower than its expression in BEAS-2B (P<0.01). A549 cell line is a EGFR wild-type lung adenocarcinoma cell line, which is also the most widely studied in NSCLC, and therefore this was chosen as the target cell line for further investigation. Overexpression of miR-146a in A549 cells can inhibit cell proliferation (P<0.05), promote apoptosis (P<0.05), and reduce the cells' migratory ability (P<0.01). Bioinformatics prediction indicated that interleukin-1 receptor-associated kinase 1 (IRAK1) and TNF receptor associated factor 6 (TRAF6) are the target genes of miR-146a. Dual-luciferase reporter assay showed that miR-146a could specifically bind to 3′-untranslated regions of IRAK1 and TRAF6. The protein and mRNA levels of IRAK1 and TRAF6 were significantly downregulated after miR-146a overexpression in A549 cells (P<0.01). The results of this study demonstrated that the expression of miR-146a in human lung adenocarcinoma cells was significantly lower than in normal lung epithelial cells, indicating that miR-146a acts as an anti-oncogene. miR-146a suppresses the proliferation and migration of human lung adenocarcinoma cells by downregulating the expression of IRAK1 and TRAF6.
Collapse
Affiliation(s)
- Fang Yuan
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China.,Department of Respiratory, The First Hospital of Jiujiang City, Jiujiang, Jiangxi 332000, P.R. China
| | - Suyun Zhang
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Wenying Xie
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Sheng Yang
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Tingyan Lin
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Xiangqi Chen
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
37
|
Gu Q, Wang B, Zhao H, Wang W, Wang P, Deng Y. LncRNA promoted inflammatory response in ischemic heart failure through regulation of miR-455-3p/TRAF6 axis. Inflamm Res 2020; 69:667-681. [PMID: 32350569 DOI: 10.1007/s00011-020-01348-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/14/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Ischemic heart failure (IHF) is the most common cause of death globally. Growing evidence shows abnormal expression of long non-coding RNAs in heart failure patients. This study aims to investigate the effect of sex-determining region Y-box 2 (SOX2) overlapping transcript (SOX2-OT) on the regulation of the inflammatory response in ischemic heart failure. METHODS IHF rat and oxygen and glucose deprivation (OGD) cell models were established. qRT-PCR was employed to investigate the expression of SOX2-OT. ELISA, western blot and cell viability/apoptosis assays were performed to assess the effects of SOX2-OT. Online software program was used to identify miRNAs that target SOX2-OT, followed by validation using RNA pull-down. Potential targets of miRNAs were searched, and examined by immunoblotting, qRT-PCR and luciferase reporter assay. RESULTS SOX2-OT was up-regulated in IHF and OGD. Knockdown of SOX2-OT promoted cell proliferation, decreased apoptosis rate and cell oxidative damage, and ameliorated inflammatory response. SOX2-OT contains binding sites for miR-455-3p, miR-5586-3p and miR-1252-5p. RNA pull-down confirmed the binding ability between SOX2-OT and miR-455-3p. TRAF6 is a direct target of miR-455-3p. Moreover, the regulatory activity of SOX2-OT on inflammatory response was partially through its negative regulation of miR-455-3p, which directly regulates TRAF6. Down-regulation of SOX2-OT improved myocardial dysfunction in IHF rat. CONCLUSIONS Our results reveal that SOX2-OT may be a driver of IHF through repression of miR-455-3p, and miR-455-3p alleviates IHF by targeting TRAF6. Therefore, SOX2-OT/miR-455-3p/TRAF6 may be a potential target for advanced therapeutic strategy for IHF.
Collapse
Affiliation(s)
- Qianqian Gu
- Department of Geriatrics, Cangzhou Central Hospital, 16 Xinhua West Road, Cangzhou, 061000, Hebei, China.
| | - Bin Wang
- Department of Otorhinolaryngology, Cangzhou Central Hospital, Cangzhou, 061000, Hebei, China
| | - Hongying Zhao
- Department of Geriatrics, Cangzhou Central Hospital, 16 Xinhua West Road, Cangzhou, 061000, Hebei, China
| | - Wenjuan Wang
- Department of Geriatrics, Cangzhou Central Hospital, 16 Xinhua West Road, Cangzhou, 061000, Hebei, China
| | - Pengsheng Wang
- Department of Geriatrics, Cangzhou Central Hospital, 16 Xinhua West Road, Cangzhou, 061000, Hebei, China
| | - Yu Deng
- Department of Geriatrics, Cangzhou Central Hospital, 16 Xinhua West Road, Cangzhou, 061000, Hebei, China
| |
Collapse
|
38
|
Osei ET, Brandsma CA, Timens W, Heijink IH, Hackett TL. Current perspectives on the role of interleukin-1 signalling in the pathogenesis of asthma and COPD. Eur Respir J 2020; 55:13993003.00563-2019. [PMID: 31727692 DOI: 10.1183/13993003.00563-2019] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/05/2019] [Indexed: 12/12/2022]
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) cause significant morbidity and mortality worldwide. In the context of disease pathogenesis, both asthma and COPD involve chronic inflammation of the lung and are characterised by the abnormal release of inflammatory cytokines, dysregulated immune cell activity and remodelling of the airways. To date, current treatments still only manage symptoms and do not reverse the primary disease processes. In recent work, interleukin (IL)-1α and IL-1β have been suggested to play important roles in both asthma and COPD. In this review, we summarise overwhelming pre-clinical evidence for dysregulated signalling of IL-1α and IL-1β contributing to disease pathogenesis and discuss the paradox of IL-1 therapeutic studies in asthma and COPD. This is particularly important given recent completed and ongoing clinical trials with IL-1 biologics that have had varying degrees of failure and success as therapeutics for disease modification in asthma and COPD.
Collapse
Affiliation(s)
- Emmanuel T Osei
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada .,Dept of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Corry-Anke Brandsma
- Dept of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute of Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Wim Timens
- Dept of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute of Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Irene H Heijink
- Dept of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute of Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Dept of Pulmonology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Tillie-Louise Hackett
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada.,Dept of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
39
|
Lawson KS, Prasad A, Groopman JE. Methamphetamine Enhances HIV-1 Replication in CD4 + T-Cells via a Novel IL-1β Auto-Regulatory Loop. Front Immunol 2020; 11:136. [PMID: 32117283 PMCID: PMC7025468 DOI: 10.3389/fimmu.2020.00136] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/20/2020] [Indexed: 12/19/2022] Open
Abstract
Methamphetamine (Meth) abuse is a worldwide public health problem and contributes to HIV-1 pathobiology and poor adherence to anti-retroviral therapies. Specifically, Meth is posited to alter molecular mechanisms to provide a more conducive environment for HIV-1 replication and spread. Enhanced expression of inflammatory cytokines, such as Interleukin-1β (IL-1β), has been shown to be important for HIV-1 pathobiology. In addition, microRNAs (miRNAs) play integral roles in fine-tuning the innate immune response. Notably, the effects of Meth abuse on miRNA expression are largely unknown. We studied the effects of Meth on IL-1β and miR-146a, a well-characterized member of the innate immune signaling network. We found that Meth induces miR-146a and triggers an IL-1β auto-regulatory loop to modulate innate immune signaling in CD4+ T-cells. We also found that Meth enhances HIV-1 replication via IL-1 signaling. Our results indicate that Meth activates an IL-1β feedback loop to alter innate immune pathways and favor HIV-1 replication. These observations offer a framework for designing targeted therapies in HIV-infected, Meth using hosts.
Collapse
Affiliation(s)
- Kaycie S Lawson
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Anil Prasad
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Jerome E Groopman
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
40
|
The lncRNA ROR/miR-124-3p/TRAF6 axis regulated the ischaemia reperfusion injury-induced inflammatory response in human cardiac myocytes. J Bioenerg Biomembr 2019; 51:381-392. [PMID: 31768721 DOI: 10.1007/s10863-019-09812-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 10/09/2019] [Indexed: 12/19/2022]
Abstract
Myocardial ischaemia reperfusion injury (MIRI) is considered the primary cause of death in patients with cardiovascular diseases. Recently, long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have been found to be involved in the pathogenesis of MIRI. However, whether lncRNA ROR and miR-124-3p play roles in MIRI and the underlying mechanism remain undetermined. HCMs were exposed to hypoxic conditions for 2 h followed by re-oxygenation (H/R) treatment. Expression of miR-124-3p and lncRNA ROR in HCMs was measured by qRT-PCR. TRAF6 expression was evaluated by qRT-PCR and western blotting. ELISA and qRT-PCR were conducted to assess the production of TNF-α, IL-6, and IL-1β. The interaction between miR-124-3p and TRAF6, as well as between miR-124-3p and lncRNA ROR, was verified by dual-luciferase reporter assay. Cell apoptosis was detected by flow cytometry analysis. Our data revealed that miR-124-3p was significantly downregulated, while TRAF6 and lncRNA ROR were upregulated in both MIRI rat model and H/R treated HCMs. Overexpression of miR-124-3p reversed the H/R-induced cell apoptosis and upregulation of TNF-α, IL-6, and IL-1β. Mechanistically, miR-124-3p bound and negatively regulated TRAF6 expression in HCMs. Moreover, TRAF6 overexpression significantly blocked the effects of miR-124-3p mimics on cell apoptosis and inflammatory response of HCMs, which involved the NF-κB pathway. Further analysis showed that lncRNA ROR sponged and negatively regulated miR-124-3p in HCMs. Overexpression of IL-1β was demonstrated to promote H/R induced cell apoptosis in HCMs. In addition, overexpression of ROR further enhanced the H/R-induced inflammation and cell apoptosis through its action on miR-124-3p. The lncRNA ROR/miR-124-3p/TRAF6 axis regulated the H/R-induced cell apoptosis and inflammatory response of HCMs.
Collapse
|
41
|
Zhang X, Guo Y, Xu X, Tang T, Sun L, Wang H, Zhou W, Fang L, Li Q, Xie P. miR-146a promotes Borna disease virus 1 replication through IRAK1/TRAF6/NF-κB signaling pathway. Virus Res 2019; 271:197671. [PMID: 31330207 DOI: 10.1016/j.virusres.2019.197671] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/19/2019] [Accepted: 07/17/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND/AIMS Borna disease virus 1 (BoDV-1) is a negative single-stranded RNA virus that is highly neurotropic. BoDV-1 infection can damage the central nervous system and cause inflammation. To survive in host cells, BoDV-1 must evade the host innate immune response. A previous study showed that miR-146a expression increased in neonatal rats infected with BoDV-1. miR-146a is a microRNA suggested to negatively regulate innate immune and inflammatory responses and antiviral pathways. Many groups have reported that its overexpression facilitates viral replication. However, it is unclear whether miR-146a is involved in escape from the host immune response during BoDV-1 infection. METHODS In this study, BoDV-1 was used to infect neonatal rats within 24 h of birth intracranially, as well as to infect human microglial cells (HMC3). miR-146a expression was analyzed by RT-qPCR. The TargetScanHuman database was used to find the target genes of miR-146a. A search of the binding sites of miR-146a and its target gene's 3'-untranslated region (3'UTR) was also performed using RNAhybrid software. The binding sites of miR-146a and the target gene's 3'UTR were detected by dual luciferase reporter assays. Overexpression and suppression studies of miR-146a were performed to determine its effect on BoDV-1 replication. The relative protein expression of members of the IRAK1/TRAF6/NF-κB signaling pathway was also evaluated by western blotting in HMC3. RESULTS After BoDV-1 infection of neurons in vivo and of HMC3 cells, miR-146a expression was significantly upregulated. miR-146a overexpression in HMC3 cells promoted viral replication, while its inhibition inhibited it. Through the TargetScanHuman database, we identified the target genes of anti-inflammatory miR-146a: IRAK1 and TRAF6. We also found that BoDV-1 could inhibit IRAK1 and TRAF6 expression in HMC3 cells. Moreover, we showed that the inhibition of IRAK1 and TRAF6 also led to decreases in the expression of P65 and phosphorylated P65 in the downstream NF-κB pathway. Subsequently, we confirmed the interaction of miR-146a with IRAK1 and TRAF6 by luciferase assay. CONCLUSION Our results suggest that miR-146a inhibits the IRAK1/TRAF6/NF-κB signaling pathway to facilitate BoDV-1 survival in host cells.
Collapse
Affiliation(s)
- Xiong Zhang
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
| | - Yujie Guo
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
| | - Xiaoyan Xu
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
| | - Tian Tang
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
| | - Lin Sun
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China; Department of Pain, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haiyang Wang
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
| | - Wei Zhou
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
| | - Liang Fang
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Qi Li
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China; Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
42
|
Xie J, Zhang L, Fan X, Dong X, Zhang Z, Fan W. MicroRNA-146a improves sepsis-induced cardiomyopathy by regulating the TLR-4/NF-κB signaling pathway. Exp Ther Med 2019; 18:779-785. [PMID: 31281454 PMCID: PMC6591494 DOI: 10.3892/etm.2019.7657] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 05/03/2019] [Indexed: 12/22/2022] Open
Abstract
The aim of the current study was to investigate the regulatory effect of miR-146a on the toll-like receptor 4 (TLR-4)/NF-κB pathway and therefore inflammation in septic cardiomyopathy. A total of 60 healthy male Sprague Dawley rats were equally divided into a control, LPS, miR-146a agonist and miR-146a inhibitor group. Blood samples were collected from rats 24 h after intraperitoneal lipopolysaccharide injection and myocardial tissues were subsequently collected. After hematoxylin and eosin staining of rat myocardial tissues, the degree of inflammatory cell infiltration and myocardial damage was observed. The content of certain myocardial injury markers were also observed, including cardiac troponin I (cTnI), B-type natriuretic peptide (BNP), creatine kinase myocardial bound (CK-MB) and myoglobin (Mb). Western blot analysis was performed to detect the expression of NF-κB/TLR-4, tumor necrosis factor (TNF-α) and intercellular adhesion molecule-1 (ICAM-1) in myocardial tissues. Reverse transcription-quantitative (RT-q) PCR was used to detect the expression of miR-146a, TNF-α, interleukin (IL)-1α and IL-1β mRNA in myocardial tissues. In the LPS group, myocardial interstitial tissue edema occurred, with enlarged and loosely arranged cardiomyocytes. Compared with the sepsis model group, myocardial interstitial tissue edema was relieved in the miR-146a agonist group, but was aggravated in the miR-146a inhibition group. The serum levels of cTnI, BNP, CK-MB, Mb, NF-κB, TLR-4, TNF-α and ICAM-1 in the sepsis model group were higher than those in the control group. In the miR-146a agonist group, levels of myocardial injury markers were lower than those in the sepsis model group, but were higher in the miR-146a inhibition group. The results of RT-qPCR demonstrated that the expression of miR-146a, TNF-α, IL-1α and IL-1β in the sepsis model group were upregulated compared with the control group. In addition, miR-146a expression in the miR-146a agonist group and the miR-146a inhibition group was increased, but TNF-α, IL-1α and IL-1β mRNA was downregulated. miR-146a may regulate the TLR-4/NF-κB signaling pathway via negative feedback mechanisms, leading to the improvement of the inflammatory response and cardiac dysfunction in sepsis-induced cardiomyopathy.
Collapse
Affiliation(s)
- Jin Xie
- Department of Emergency, Zhangqiu District People's Hospital, Jinan, Shandong 250200, P.R. China
| | - Lina Zhang
- Department of Emergency, Zhangqiu District People's Hospital, Jinan, Shandong 250200, P.R. China
| | - Xiaoyan Fan
- Department of Obstetrics, Zhangqiu District People's Hospital, Jinan, Shandong 250200, P.R. China
| | - Xiaoqing Dong
- Department of Emergency, Zhangqiu District People's Hospital, Jinan, Shandong 250200, P.R. China
| | - Zhe Zhang
- Department of Emergency, Zhangqiu District People's Hospital, Jinan, Shandong 250200, P.R. China
| | - Wenxing Fan
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
43
|
Gao C, Fu Q, Yang N, Song L, Tan F, Zhu J, Li C. Identification and expression profiling analysis of microRNAs in Nile tilapia (Oreochromis niloticus) in response to Streptococcus agalactiae infection. FISH & SHELLFISH IMMUNOLOGY 2019; 87:333-345. [PMID: 30648624 DOI: 10.1016/j.fsi.2019.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/07/2019] [Accepted: 01/11/2019] [Indexed: 06/09/2023]
Abstract
MicroRNAs (miRNAs) play vital regulatory roles in various biological processes, including in immune responses. Nile tilapia (Oreochromis niloticus) is an important commercial fish species in China. To identify immune-related miRNAs of O. niloticus, 4 libraries from liver during S. agalactiae infection (0 h, 5 h, 50 h, and 7 d) were sequenced by high-throughput sequencing technology in tilapia. We obtained 10,703,531, 11,507,163, 11,180,179 and 13,408,414 clean reads per library, respectively. In our results, a total of 482 miRNAs were identified through bioinformatic analysis, including 220 conserved miRNAs and 262 putative novel miRNAs. Moreover, 21 (4.36%), 50 (10.37%), and 46 (9.54%) miRNAs were significantly differentially expressed at 5 h, 50 h and 7 d, respectively. In addition, 6939 target genes regulated by these differentially expressed miRNAs were predicted, and their functional annotations were predicted by Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, which revealed that a majority of differentially expressed miRNAs were involved in apoptotic process, metabolic process, and immune responses. Finally, Real-time quantitative PCR experiments were performed for 7 miRNAs by stem-loop RT-PCR, and a general agreement was confirmed between the sequencing and RT-qPCR data. To our understanding, this is the first report of comprehensive identification of O. niloticus miRNAs being differentially regulated in liver related to S. agalactiae infection. This work provides an opportunity for further understanding of the molecular mechanisms of miRNA regulation in O. niloticus host-pathogen interactions, and genetic resources for molecular assistant selection for disease resistant breeding program.
Collapse
Affiliation(s)
- Chengbin Gao
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Qiang Fu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Ning Yang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Lin Song
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao, 266011, China
| | - Fenghua Tan
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Jiajie Zhu
- Guangxi Academy of Fishery Sciences, Guangxi, 530021, China.
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China.
| |
Collapse
|
44
|
Liang Q, Chen H, Xu X, Jiang W. miR-182-5p Attenuates High-Fat -Diet-Induced Nonalcoholic Steatohepatitis in Mice. Ann Hepatol 2019; 18:116-125. [PMID: 31113580 DOI: 10.5604/01.3001.0012.7902] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/29/2018] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND AIM Patients with NASH have increased risk for sepsis or cardiovascular disease after Liver transplantation. An important role of Toll-like receptor (TLR) 4 in the pathogenesis of nonalcoholic steatohepatitis (NASH) was demonstrated. Here, we study the role of miR-182-5p in TLR4 expression and high-fat-diet (HFD)-induced NASH in vitro and in vivo Material and methods. Following transfection with a miR-182-5p mimic, the effect of miR-182-5p on TLR4 in RAW264.7 and HepG2 cells was investigated. Following administration of the miR-182-5p mimic into the livers of HFD-induced NASH mice, we determined the in vivo expression of TLR4, TNFa, and IL-6 and assessed the histologic features of the livers. Results Following lipopolysaccharide (LPS) treatment of RAW264.7 cells, real-time RT-PCR and western blot results indicated decreases levels of TLR4 mRNA and protein in the miR-182-5p group as compared with levels observed in controls, with similar trends were observed in TNFa and IL-6 protein levels. Following oleic acid (OA) treatment of HepG2 cells, TLR4, TNFa, and IL-6 levels were significantly decreased in the miR-182-5p group as compared with levels observed in controls. Following miR-182-5p administration, TLR4 mRNA and protein levels decreased along with those of TNFa and IL-6 proteins, and the liver weight/body weight ratio of treated mice was less than that observed in controls. Furthermore, hematoxylin and eosin staining showed that the miR-182-5p-treated group exhibited low adiposecell cross-sectional areas, and Oil Red O staining showed decreases in the size of lipid droplets in the miR-182-5p-treated group. CONCLUSIONS miR-182-5p ameliorated HFD-induced NASH by suppressing TLR4.
Collapse
Affiliation(s)
- Qionghe Liang
- Department of Neonatal Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China; Department of Radiology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Huan Chen
- Department of Neonatal Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoqun Xu
- Department of Neonatal Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Weiwei Jiang
- Department of Neonatal Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China; Institute of Pediatric Research, Children's Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
45
|
Huang X, Zhu Z, Guo X, Kong X. The roles of microRNAs in the pathogenesis of chronic obstructive pulmonary disease. Int Immunopharmacol 2018; 67:335-347. [PMID: 30578969 DOI: 10.1016/j.intimp.2018.12.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/16/2018] [Accepted: 12/05/2018] [Indexed: 02/07/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by a progressive and irreversible airflow obstruction, with an abnormal lung function. The etiology of COPD correlates with complex interactions between environmental and genetic determinants. However, the exact pathogenesis of COPD is obscure although it involves multiple aspects including oxidative stress, imbalance between proteolytic and anti-proteolytic activity, immunity and inflammation, apoptosis, and repair and destruction in both airways and lungs. Many genes have been demonstrated to be involved in those pathogenic processes of this disease in patients exposed to harmful environmental factors. Previous reports have investigated promising microRNAs (miRNAs) to disclose the molecular mechanisms for COPD development induced by different environmental exposure and genetic predisposition encounter, and find some potential miRNA biomarkers for early diagnosis and treatment targets of COPD. In this review, we summarized the expression profiles of the reported miRNAs from studies of COPD associated with environmental risk factors including cigarette smoking and air pollution exposures, and provided an overview of roles of those miRNAs in the pathogenesis of the disease. We also highlighted the potential utility and limitations of miRNAs serving as diagnostic biomarkers and therapeutic targets for COPD.
Collapse
Affiliation(s)
- Xinwei Huang
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Zongxin Zhu
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Xiaoran Guo
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Xiangyang Kong
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China.
| |
Collapse
|
46
|
The Protective Effects of Levo-Tetrahydropalmatine on ConA-Induced Liver Injury Are via TRAF6/JNK Signaling. Mediators Inflamm 2018; 2018:4032484. [PMID: 30622431 PMCID: PMC6304924 DOI: 10.1155/2018/4032484] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/02/2018] [Accepted: 08/30/2018] [Indexed: 02/06/2023] Open
Abstract
Aims Levo-tetrahydropalmatine (L-THP) is an active ingredient of Corydalis yanhusuo W. T. Wang, which has many bioactive properties. Herein, we investigated the protective effects of L-THP on concanavalin A- (ConA-) induced hepatitis in mice and explored its possible mechanisms of these effects. Main Methods Balb/c mice were intravenously injected with 25 mg/kg ConA to generate a model of acute autoimmune hepatitis, and L-THP (20 or 40 mg/kg) was administered orally once daily for 5 d before the ConA injection. The liver enzyme levels, proinflammatory cytokine levels, and other marker protein levels were determined 2, 8, and 24 h after ConA injection. Results L-THP could decrease serum liver enzymes and pathological damage by reducing the release of inflammatory factors like IL-6 and TNF-α. The results of Western Blot and PCR indicated that L-THP could ameliorate liver cell apoptosis and autophagy. L-THP could suppress T lymphocyte proliferation and the production of TNF-α and IL-6 induced by ConA in a dose-dependent manner in vitro. Additionally, the protective functions of L-THP depended on downregulating TRAF6/JNK signaling. Conclusion. The present study indicated that L-THP attenuated acute liver injury in ConA-induced autoimmune hepatitis by inhibiting apoptosis and autophagy via the TRAF6/JNK pathway.
Collapse
|
47
|
Singer JW, Fleischman A, Al-Fayoumi S, Mascarenhas JO, Yu Q, Agarwal A. Inhibition of interleukin-1 receptor-associated kinase 1 (IRAK1) as a therapeutic strategy. Oncotarget 2018; 9:33416-33439. [PMID: 30279971 PMCID: PMC6161786 DOI: 10.18632/oncotarget.26058] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 08/15/2018] [Indexed: 02/06/2023] Open
Abstract
Interleukin-1 receptor-associated kinases (IRAK1, IRAK2, IRAK3 [IRAK-M], and IRAK4) are serine-threonine kinases involved in toll-like receptor and interleukin-1 signaling pathways, through which they regulate innate immunity and inflammation. Evidence exists that IRAKs play key roles in the pathophysiologies of cancers, and metabolic and inflammatory diseases, and that IRAK inhibition has potential therapeutic benefits. Molecules capable of selectively interfering with IRAK function and expression have been reported, paving the way for the clinical evaluation of IRAK inhibition. Herein, we focus on IRAK1, review its structure and physiological roles, and summarize emerging data for IRAK1 inhibitors in preclinical and clinical studies.
Collapse
Affiliation(s)
| | - Angela Fleischman
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | | | - John O Mascarenhas
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Qiang Yu
- Genome Institute of Singapore, Singapore, SG, Singapore
| | - Anupriya Agarwal
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
48
|
Tan L, Jiang W, Lu A, Cai H, Kong L. miR-155 Aggravates Liver Ischemia/reperfusion Injury by Suppressing SOCS1 in Mice. Transplant Proc 2018; 50:3831-3839. [PMID: 30577275 DOI: 10.1016/j.transproceed.2018.08.060] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 08/16/2018] [Indexed: 01/23/2023]
Abstract
Liver ischemia/reperfusion injury (IRI) occurs during partial liver resection and liver transplantation. Activation of Toll-like receptors (TLRs) is a key event triggered by a range of proinflammatory cytokines during liver I/R. Although it has been reported that miR-155 takes part in both innate and adaptive immune responses, the potential role of miR-155 in liver IRI remains unknown. In this study, we found that expression of miR-155 was upregulated during liver I/R by many inflammatory cytokines, and forced expression of miR-155 aggravated hepatocyte injury following liver I/R both in vivo and in vitro. Mice transfected with Ago-miR-155-a chemically modified miR-155-showed enhanced liver severity compared to those transfected with negative control miRNA by inhibiting the expression of SOCS1, the target of miR-155. Thus by the inhibition of SOCS1, the overexpression of miR-155 promoted activation of NF-κB, and elevating the production of proinflammatory cytokines, such TNF-α and IL-6. In conclusion, miR-155 aggravates liver I/R injury in vivo and hepatocyte hypoxia/reoxygenation injury by suppressing the expression of SOCS1.
Collapse
Affiliation(s)
- L Tan
- Surgical Intensive Care Unit, The First Affiliated Hospital School of Medicine, Zhejiang University, Hangzhou, China
| | - W Jiang
- Department of Neonatal Surgery, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - A Lu
- Surgical Intensive Care Unit, The First Affiliated Hospital School of Medicine, Zhejiang University, Hangzhou, China
| | - H Cai
- Surgical Intensive Care Unit, The First Affiliated Hospital School of Medicine, Zhejiang University, Hangzhou, China
| | - L Kong
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
49
|
Piotto C, Julier Z, Martino MM. Immune Regulation of Tissue Repair and Regeneration via miRNAs-New Therapeutic Target. Front Bioeng Biotechnol 2018; 6:98. [PMID: 30057898 PMCID: PMC6053520 DOI: 10.3389/fbioe.2018.00098] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 06/26/2018] [Indexed: 12/13/2022] Open
Abstract
The importance of immunity in tissue repair and regeneration is now evident. Thus, promoting tissue healing through immune modulation is a growing and promising field. Targeting microRNAs (miRNAs) is an appealing option since they regulate immunity through post-transcriptional gene fine-tuning in immune cells. Indeed, miRNAs are involved in inflammation as well as in its resolution by controlling immune cell phenotypes and functions. In this review, we first discuss the immunoregulatory role of miRNAs during the restoration of tissue homeostasis after injury, focusing mainly on neutrophils, macrophages and T lymphocytes. As tissue examples, we present the immunoregulatory function of miRNAs during the repair and regeneration of the heart, skeletal muscles, skin and liver. Secondly, we discuss recent technological advances for designing therapeutic strategies which target miRNAs. Specifically, we highlight the possible use of miRNAs and anti-miRNAs for promoting tissue regeneration via modulation of the immune system.
Collapse
Affiliation(s)
- Celeste Piotto
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Ziad Julier
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Mikaël M Martino
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
50
|
Effect of Heat Stress on Sperm DNA: Protamine Assessment in Ram Spermatozoa and Testicle. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5413056. [PMID: 29765499 PMCID: PMC5889875 DOI: 10.1155/2018/5413056] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/19/2017] [Accepted: 01/30/2018] [Indexed: 01/04/2023]
Abstract
Sperm DNA fragmentation is considered one of the main causes of male infertility. The most accepted causes of sperm DNA damage are deleterious actions of reactive oxygen species (ROS), defects in protamination, and apoptosis. Ram sperm are highly prone to those damages due to the high susceptibility to ROS and to oxidative stress caused by heat stress. We aimed to evaluate the effects of heat stress on the chromatin of ejaculated and epididymal sperm and the activation of apoptotic pathways in different cell types in ram testis. We observed higher percentages of ejaculated sperm with increased chromatin fragmentation in the heat stress group; a fact that was unexpectedly not observed in epididymal sperm. Heat stress group presented a higher percentage of spermatozoa with DNA fragmentation and increased number of mRNA copies of transitional protein 1. Epididymal sperm presented greater gene expression of protamine 1 on the 30th day of the spermatic cycle; however, no differences in protamine protein levels were observed in ejaculated sperm and testis. Localization of proapoptotic protein BAX or BCL2 in testis was not different. In conclusion, testicular heat stress increases ram sperm DNA fragmentation without changes in protamination and apoptotic patterns.
Collapse
|