1
|
Castillo-Rivera F, Ondo-Méndez A, Guglielmi J, Guigonis JM, Jing L, Lindenthal S, Gonzalez A, López D, Cambien B, Pourcher T. Tumor microenvironment affects exogenous sodium/iodide symporter expression. Transl Oncol 2021; 14:100937. [PMID: 33217645 PMCID: PMC7679261 DOI: 10.1016/j.tranon.2020.100937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 02/08/2023] Open
Abstract
For decades, sodium/iodide symporter NIS-mediated iodide uptake has played a crucial role in the radioactive ablation of thyroid cancer cells. NIS-based gene therapy has also become a promising tool for the treatment of tumors of extrathyroidal origin. But its applicability has been hampered by reduced expression of NIS, resulting in a moderated capacity to accumulate 131I and in inefficient ablation. Despite numerous preclinical enhancement strategies, the understanding of NIS expression within tumors remains limited. This study aims at a better understanding of the functional behavior of exogenous NIS expression in the context of malignant solid tumors that are characterized by rapid growth with an insufficient vasculature, leading to hypoxia and quiescence. Using subcutaneous HT29NIS and K7M2NIS tumors, we show that NIS-mediated uptake and NIS expression at the plasma membrane of cancer cells are impaired in the intratumoral regions. For a better understanding of the underlying molecular mechanisms induced by hypoxia and quiescence (separately and in combination), we performed experiments on HT29NIS cancer cells. Hypoxia and quiescence were both found to impair NIS-mediated uptake through mechanisms including NIS mis-localization. Modifications in the expression of proteins and metabolites involved in plasma membrane localization and in energy metabolism were found using untargeted proteomics and metabolomics approaches. In conclusion, our results provide evidence that hypoxia and quiescence impair NIS expression at the plasma membrane, and iodide uptake. Our study also shows that the tumor microenvironment is an important parameter for successful NIS-based cancer treatment.
Collapse
Affiliation(s)
- Fabio Castillo-Rivera
- Clinical Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogota DC, Colombia
| | - Alejandro Ondo-Méndez
- Clinical Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogota DC, Colombia
| | - Julien Guglielmi
- Transporters in Imaging and Radiotherapy in Oncology (TIRO), School of Medicine, Direction de la Recherche Fondamentale (DRF), Institut des sciences du vivant Fréderic Joliot, Commissariat à l'Energie Atomique et aux énergies alternatives (CEA), Université Côte d'Azur (UCA), 28 Avenue de Valombrose, 06107 Nice, France
| | - Jean-Marie Guigonis
- Transporters in Imaging and Radiotherapy in Oncology (TIRO), School of Medicine, Direction de la Recherche Fondamentale (DRF), Institut des sciences du vivant Fréderic Joliot, Commissariat à l'Energie Atomique et aux énergies alternatives (CEA), Université Côte d'Azur (UCA), 28 Avenue de Valombrose, 06107 Nice, France
| | - Lun Jing
- Transporters in Imaging and Radiotherapy in Oncology (TIRO), School of Medicine, Direction de la Recherche Fondamentale (DRF), Institut des sciences du vivant Fréderic Joliot, Commissariat à l'Energie Atomique et aux énergies alternatives (CEA), Université Côte d'Azur (UCA), 28 Avenue de Valombrose, 06107 Nice, France
| | - Sabine Lindenthal
- Transporters in Imaging and Radiotherapy in Oncology (TIRO), School of Medicine, Direction de la Recherche Fondamentale (DRF), Institut des sciences du vivant Fréderic Joliot, Commissariat à l'Energie Atomique et aux énergies alternatives (CEA), Université Côte d'Azur (UCA), 28 Avenue de Valombrose, 06107 Nice, France
| | - Andrea Gonzalez
- Centro de Bioinformática y Biología Computacional de Colombia-BIOS, Manizales, Colombia
| | - Diana López
- Centro de Bioinformática y Biología Computacional de Colombia-BIOS, Manizales, Colombia; Department of Biological Science, Faculty of Agricultural Sciences, Universidad Nacional de Colombia, Sede Palmira, Palmira, Colombia
| | - Béatrice Cambien
- Transporters in Imaging and Radiotherapy in Oncology (TIRO), School of Medicine, Direction de la Recherche Fondamentale (DRF), Institut des sciences du vivant Fréderic Joliot, Commissariat à l'Energie Atomique et aux énergies alternatives (CEA), Université Côte d'Azur (UCA), 28 Avenue de Valombrose, 06107 Nice, France
| | - Thierry Pourcher
- Transporters in Imaging and Radiotherapy in Oncology (TIRO), School of Medicine, Direction de la Recherche Fondamentale (DRF), Institut des sciences du vivant Fréderic Joliot, Commissariat à l'Energie Atomique et aux énergies alternatives (CEA), Université Côte d'Azur (UCA), 28 Avenue de Valombrose, 06107 Nice, France.
| |
Collapse
|
2
|
Shi S, Zhang M, Guo R, Miao Y, Li B. Bone Marrow-Derived Mesenchymal Stem Cell-Mediated Dual-Gene Therapy for Glioblastoma. Hum Gene Ther 2018; 30:106-117. [PMID: 29993289 DOI: 10.1089/hum.2018.092] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bone-marrow mesenchymal stem cells (BMSCs) have been used for systemic delivery of therapeutic genes to solid tumors. However, the optimal treatment time post-BMSC implantation and the assessment of the long-term fate of therapeutic BMSCs post-tumor treatment are critical if such promising therapies are to be translated into clinical practice. An efficient BMSC-based therapeutic strategy has been developed that simultaneously allows killing of tumor cells, inhibiting of tumor angiogenesis, and assessment and eradication of implanted BMSCs after treatment of glioblastoma. BMSCs were engineered to co-express the angiogenesis inhibitor kringle 5 (K5) of human plasminogen, under the control of the cytomegalovirus promoter (CMV) and the human sodium-iodide symporter (NIS), involved in uptake of radioisotopes, under the control of early growth response factor 1 (Egr1), a radiation-activated promoter. A significant decrease in tumor growth and tumor angiogenesis and a subsequent increase in survival were observed when mice bearing glioblastoma were treated with 188Re post-therapeutic intravenous BMSC implantation. Furthermore, the systemic administration of 188Re post-tumor treatment selectively eliminated therapeutic BMSCs expressing NIS, which was monitored in real time by 125I micro single photon emission computed tomography/computed tomography imaging. Meanwhile, the Egr1 promoter induced a 188Re radiation positive feedback effect absorbed by NIS. After intravenous BMSC implantation, BMSCs levels in the tumor and lung both peaked on day 10 and decreased to the lowest levels on days 24 and 17, respectively. These findings suggest that day 17 post-BMSC implantation could be an optimal time for 188Re treatment. These results provide a new adjuvant therapy mediated by BMSCs for glioblastoma treatment.
Collapse
Affiliation(s)
- Shuo Shi
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Min Zhang
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Rui Guo
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ying Miao
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Biao Li
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
3
|
Neyrinck K, Breuls N, Holvoet B, Oosterlinck W, Wolfs E, Vanbilloen H, Gheysens O, Duelen R, Gsell W, Lambrichts I, Himmelreich U, Verfaillie CM, Sampaolesi M, Deroose CM. The human somatostatin receptor type 2 as an imaging and suicide reporter gene for pluripotent stem cell-derived therapy of myocardial infarction. Am J Cancer Res 2018; 8:2799-2813. [PMID: 29774076 PMCID: PMC5957010 DOI: 10.7150/thno.22980] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/28/2018] [Indexed: 12/12/2022] Open
Abstract
Rationale: Pluripotent stem cells (PSCs) are being investigated as a cell source for regenerative medicine since they provide an infinitive pool of cells that are able to differentiate towards every cell type of the body. One possible therapeutic application involves the use of these cells to treat myocardial infarction (MI), a condition where billions of cardiomyocytes (CMs) are lost. Although several protocols have been developed to differentiate PSCs towards CMs, none of these provide a completely pure population, thereby still posing a risk for neoplastic teratoma formation. Therefore, we developed a strategy to (i) monitor cell behavior noninvasively via site-specific integration of firefly luciferase (Fluc) and the human positron emission tomography (PET) imaging reporter genes, sodium iodide symporter (hNIS) and somatostatin receptor type 2 (hSSTr2), and (ii) perform hSSTr2-mediated suicide gene therapy via the clinically used radiopharmacon 177Lu-DOTATATE. Methods: Human embryonic stem cells (ESCs) were gene-edited via zinc finger nucleases to express Fluc and either hNIS or hSSTr2 in the safe harbor locus, adeno-associated virus integration site 1. Firstly, these cells were exposed to 4.8 MBq 177Lu-DOTATATE in vitro and cell survival was monitored via bioluminescence imaging (BLI). Afterwards, hNIS+ and hSSTr2+ ESCs were transplanted subcutaneously and teratomas were allowed to form. At day 59, baseline 124I and 68Ga-DOTATATE PET and BLI scans were performed. The day after, animals received either saline or 55 MBq 177Lu-DOTATATE. Weekly BLI scans were performed, accompanied by 124I and 68Ga-DOTATATE PET scans at days 87 and 88, respectively. Finally, hSSTr2+ ESCs were differentiated towards CMs and transplanted intramyocardially in the border zone of an infarct that was induced by left anterior descending coronary artery ligation. After transplantation, the animals were monitored via BLI and PET, while global cardiac function was evaluated using cardiac magnetic resonance imaging. Results: Teratoma growth of both hNIS+ and hSSTr2+ ESCs could be followed noninvasively over time by both PET and BLI. After 177Lu-DOTATATE administration, successful cell killing of the hSSTr2+ ESCs was achieved both in vitro and in vivo, indicated by reductions in total tracer lesion uptake, BLI signal and teratoma volume. As undifferentiated hSSTr2+ ESCs are not therapeutically relevant, they were differentiated towards CMs and injected in immune-deficient mice with a MI. Long-term cell survival could be monitored without uncontrolled cell proliferation. However, no improvement in the left ventricular ejection fraction was observed. Conclusion: We developed isogenic hSSTr2-expressing ESCs that allow noninvasive cell monitoring in the context of PSC-derived regenerative therapy. Furthermore, we are the first to use the hSSTr2 not only as an imaging reporter gene, but also as a suicide mechanism for radionuclide therapy in the setting of PSC-derived cell treatment.
Collapse
|
4
|
Guo R, Xi Y, Zhang M, Miao Y, Zhang M, Li B. Human sodium iodide transporter gene-mediated imaging and therapy of mouse glioma, comparison between 188Re and 131I. Oncol Lett 2018; 15:3911-3917. [PMID: 29467904 DOI: 10.3892/ol.2018.7752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 11/16/2017] [Indexed: 01/26/2023] Open
Abstract
Novel treatment options are urgently required for patients with glioma who are not effectively treated through standard therapy. Human sodium iodide symporter (hNIS) is a molecular target of certain tumors types. Compared with 131I, 188Re possesses a higher energy and shorter half-life; therefore, the effects of 188Re and 131I were compared in hNIS-mediated gene imaging and therapy in the present study. Recombinant human brain glioma cell line U87 was transfected with a recombinant lentiviral vector containing hNIS (U87-hNIS). U87-0 cell line transfected with blank lentivirus was prepared as a control. In vitro, the 188Re and 131I uptake of U87-hNIS cells were 21.3-times and 25.9-times that of the control groups, however the excretion rate of the two nuclides was very rapid, and the half-life was only ~4 min. Sodium perchlorate inhibited hNIS-mediated 188Re and 131I uptake to levels observed in the control groups. 188Re and 131I were able to kill U87-hNIS cells selectively, with a survival of only 21.6 and 36.2%, respectively. U87-hNIS nude mice appeared to accumulate 188Re, with a ratio of radioactivity counts between tumor and non-tumor sites of ~13.5 compared with 10.3 of 131I 1 h after radionuclide injection. In contrast with in vitro studies, U87-hNIS cells demonstrated a notable increase in 188Re retention in vivo, even 24 h after 188Re injection. U87-hNIS cells also exhibited increased 131I retention in vivo; however, as the time increased, 131I was rapidly released with the tumor no longer able to be imaged 24 h after 131I injection. Following treatment, U87-hNIS tumors experienced a volume reduction of 24.1%, whereas U87-0 cells demonstrated an increase of 28.8%. 188Re and 131I were revealed to be effective at decreasing tumor volume compared with the control. However, 188Re was significantly more potent compared with 131I (P<0.01). The present study indicated that the U87-hNIS cell line is sufficient to induce specific 188Re and 131I uptake, which may kill cells in vitro and in vivo. 188Re exhibited an increased retention time in vivo compared with 131I, which facilitates the imaging and therapy of U87-hNIS tumors.
Collapse
Affiliation(s)
- Rui Guo
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, P.R. China
| | - Yun Xi
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, P.R. China
| | - Min Zhang
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, P.R. China
| | - Ying Miao
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, P.R. China
| | - Miao Zhang
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, P.R. China
| | - Biao Li
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, P.R. China
| |
Collapse
|
5
|
Cikankowitz A, Clavreul A, Tétaud C, Lemaire L, Rousseau A, Lepareur N, Dabli D, Bouchet F, Garcion E, Menei P, Couturier O, Hindré F. Characterization of the distribution, retention, and efficacy of internal radiation of 188Re-lipid nanocapsules in an immunocompromised human glioblastoma model. J Neurooncol 2016; 131:49-58. [PMID: 27783195 DOI: 10.1007/s11060-016-2289-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 10/09/2016] [Indexed: 10/20/2022]
Abstract
Internal radiation strategies hold great promise for glioblastoma (GB) therapy. We previously developed a nanovectorized radiotherapy that consists of lipid nanocapsules loaded with a lipophilic complex of Rhenium-188 (LNC188Re-SSS). This approach resulted in an 83 % cure rate in the 9L rat glioma model, showing great promise. The efficacy of LNC188Re-SSS treatment was optimized through the induction of a T-cell immune response in this model, as it is highly immunogenic. However, this is not representative of the human situation where T-cell suppression is usually encountered in GB patients. Thus, in this study, we investigated the efficacy of LNC188Re-SSS in a human GB model implanted in T-cell deficient nude mice. We also analyzed the distribution and tissue retention of LNC188Re-SSS. We observed that intratumoral infusion of LNCs by CED led to their complete distribution throughout the tumor and peritumoral space without leakage into the contralateral hemisphere except when large volumes were used. Seventy percent of the 188Re-SSS activity was present in the tumor region 24 h after LNC188Re-SSS injection and no toxicity was observed in the healthy brain. Double fractionated internal radiotherapy with LNC188Re-SSS triggered survival responses in the immunocompromised human GB model with a cure rate of 50 %, which was not observed with external radiotherapy. In conclusion, LNC188Re-SSS can induce long-term survival in an immunosuppressive environment, highlighting its potential for GB therapy.
Collapse
Affiliation(s)
- Annabelle Cikankowitz
- INSERM U1066 MINT (Micro et Nanomédecines Biomimétiques), Université d'Angers, Angers, France.,AMaROC, ONIRIS, Ecole Nationale Véterinaire de Nantes, Nantes, France.,PRIMEX (Plateforme de Radiobiologie et d'Imagerie Expérimentale), Université d'Angers, Angers, France
| | - Anne Clavreul
- INSERM U1066 MINT (Micro et Nanomédecines Biomimétiques), Université d'Angers, Angers, France. .,Service de Neurochirurgie, CHU d'Angers, Angers, France.
| | - Clément Tétaud
- INSERM U1066 MINT (Micro et Nanomédecines Biomimétiques), Université d'Angers, Angers, France.,PRIMEX (Plateforme de Radiobiologie et d'Imagerie Expérimentale), Université d'Angers, Angers, France
| | - Laurent Lemaire
- INSERM U1066 MINT (Micro et Nanomédecines Biomimétiques), Université d'Angers, Angers, France
| | - Audrey Rousseau
- Laboratoire de Pathologie Cellulaire et Tissulaire, CHU d'Angers, Angers, France
| | - Nicolas Lepareur
- Centre Régional de Lutte Contre le Cancer (CRLCC) Eugène Marquis, Rennes, France
| | - Djamel Dabli
- Médecine Nucléaire et Biophysique, CHU d'Angers, Angers, France
| | - Francis Bouchet
- Médecine Nucléaire et Biophysique, CHU d'Angers, Angers, France
| | - Emmanuel Garcion
- INSERM U1066 MINT (Micro et Nanomédecines Biomimétiques), Université d'Angers, Angers, France
| | - Philippe Menei
- INSERM U1066 MINT (Micro et Nanomédecines Biomimétiques), Université d'Angers, Angers, France.,Service de Neurochirurgie, CHU d'Angers, Angers, France
| | - Olivier Couturier
- INSERM U1066 MINT (Micro et Nanomédecines Biomimétiques), Université d'Angers, Angers, France.,Médecine Nucléaire et Biophysique, CHU d'Angers, Angers, France
| | - François Hindré
- INSERM U1066 MINT (Micro et Nanomédecines Biomimétiques), Université d'Angers, Angers, France.,PRIMEX (Plateforme de Radiobiologie et d'Imagerie Expérimentale), Université d'Angers, Angers, France
| |
Collapse
|
6
|
Use of rhenium-188 for in vivo imaging and treatment of human cervical cancer cells transfected with lentivirus expressing sodium iodide symporter. Oncol Rep 2016; 36:2289-97. [PMID: 27573304 DOI: 10.3892/or.2016.5034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 08/16/2016] [Indexed: 11/05/2022] Open
Abstract
Although survival rates for cervical cancer have improved, they need further improvement in patients with distant metastases. The sodium iodine symporter (NIS) gene has often been used in cancer therapy and imaging. We examined the therapeutic effects of rhenium-188 (188Re) in a cervical cancer xenograft model expressing the NIS gene under the control of the tumor-specific human telomerase reverse transcriptase (hTERT) promoter. We constructed two recombinant lentiviral vectors expressing enhanced green fluorescent protein (eGFP) or the NIS gene driven by the hTERT promoter. To determine the tumor-specific transcriptional activity of the hTERT promoter, the eGFP-expressing vector was stably transfected into tumor cells and normal cells. A cervical cancer HeLa cell line stably expressing NIS (HeLa-TERTNIS) was created and examined in a similar way. HeLa and HeLa-TERTNIS tumor xenografts were transplanted in nude mice, and in vivo 188Re distribution was measured using micro-SPECT/CT imaging. The therapeutic effects of 188Re were assessed over 21 days on the basis of tumor volume and the immunohistochemical findings of excised tumors. eGFP expression controlled by the hTERT promoter was substantially higher in the tumor cells than normal cells. Quantitative PCR and western blotting confirmed that HeLa-TERTNIS cells expressed high levels of NIS mRNA and protein, respectively. Further, 188Re uptake and accumulation were significantly higher in HeLa-TERTNIS cells and xenografts than HeLa cells and xenografts. In vitro and in vivo, 188Re significantly reduced the survival of HeLa-TERTNIS cells and inhibited the growth of HeLa-TERTNIS xenografts, respectively. Immunohistochemical staining showed that HeLa-TERTNIS xenograft tumors expressed higher levels of NIS and caspase-3 and lower levels of Ki-67 than HeLa xenograft tumors. Our findings indicated that hTERT promoter-driven expression of the NIS gene in HeLa cells led to 188Re uptake and therapeutic effects. Thus, NIS-based gene therapy and imaging using the hTERT promoter and 188Re may be possible.
Collapse
|
7
|
Chung T, Youn H, Yeom CJ, Kang KW, Chung JK. Glycosylation of Sodium/Iodide Symporter (NIS) Regulates Its Membrane Translocation and Radioiodine Uptake. PLoS One 2015; 10:e0142984. [PMID: 26599396 PMCID: PMC4658105 DOI: 10.1371/journal.pone.0142984] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/29/2015] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Human sodium/iodide symporter (hNIS) protein is a membrane glycoprotein that transports iodide ions into thyroid cells. The function of this membrane protein is closely regulated by post-translational glycosylation. In this study, we measured glycosylation-mediated changes in subcellular location of hNIS and its function of iodine uptake. METHODS HeLa cells were stably transfected with hNIS/tdTomato fusion gene in order to monitor the expression of hNIS. Cellular localization of hNIS was visualized by confocal microscopy of the red fluorescence of tdTomato. The expression of hNIS was evaluated by RT-PCR and immunoblot analysis. Functional activity of hNIS was estimated by radioiodine uptake. Cyclic AMP (cAMP) and tunicamycin were used to stimulate and inhibit glycosylation, respectively. In vivo images were obtained using a Maestro fluorescence imaging system. RESULTS cAMP-mediated Glycosylation of NIS resulted in increased expression of hNIS, stimulating membrane translocation, and enhanced radioiodine uptake. In contrast, inhibition of glycosylation by treatment with tunicamycin dramatically reduced membrane translocation of intracellular hNIS, resulting in reduced radioiodine uptake. In addition, our hNIS/tdTomato fusion reporter successfully visualized cAMP-induced hNIS expression in xenografted tumors from mouse model. CONCLUSIONS These findings clearly reveal that the membrane localization of hNIS and its function of iodine uptake are glycosylation-dependent, as our results highlight enhancement of NIS expression and glycosylation with subsequent membrane localization after cAMP treatment. Therefore, enhancing functional NIS by the increasing level of glycosylation may be suggested as a promising therapeutic strategy for cancer patients who show refractory response to conventional radioiodine treatment.
Collapse
Affiliation(s)
- Taemoon Chung
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
- Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hyewon Youn
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Tumor Microenvironment Global Core Research Center, Seoul National University, Seoul, Korea
- Cancer Imaging Center, Seoul National University Hospital, Seoul, Korea
- * E-mail: (HY); (JKC)
| | - Chan Joo Yeom
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Keon Wook Kang
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
- Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - June-Key Chung
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
- Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Tumor Microenvironment Global Core Research Center, Seoul National University, Seoul, Korea
- * E-mail: (HY); (JKC)
| |
Collapse
|
8
|
SHI SHUO, ZHANG MIN, GUO RUI, ZHANG MIAO, HU JIAJIA, XI YUN, MIAO YING, LI BIAO. 131I therapy mediated by sodium/iodide symporter combined with kringle 5 has a synergistic therapeutic effect on glioma. Oncol Rep 2015; 35:691-8. [DOI: 10.3892/or.2015.4420] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/14/2015] [Indexed: 11/05/2022] Open
|
9
|
Andrzejewska A, Nowakowski A, Janowski M, Bulte JWM, Gilad AA, Walczak P, Lukomska B. Pre- and postmortem imaging of transplanted cells. Int J Nanomedicine 2015; 10:5543-59. [PMID: 26366076 PMCID: PMC4562754 DOI: 10.2147/ijn.s83557] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Therapeutic interventions based on the transplantation of stem and progenitor cells have garnered increasing interest. This interest is fueled by successful preclinical studies for indications in many diseases, including the cardiovascular, central nervous, and musculoskeletal system. Further progress in this field is contingent upon access to techniques that facilitate an unambiguous identification and characterization of grafted cells. Such methods are invaluable for optimization of cell delivery, improvement of cell survival, and assessment of the functional integration of grafted cells. Following is a focused overview of the currently available cell detection and tracking methodologies that covers the entire spectrum from pre- to postmortem cell identification.
Collapse
Affiliation(s)
- Anna Andrzejewska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Adam Nowakowski
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Miroslaw Janowski
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
- Department of Neurosurgery, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
- RusselI H Morgan Department of Radiology and Radiological Science, Division of Magnetic Resonance Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeff WM Bulte
- RusselI H Morgan Department of Radiology and Radiological Science, Division of Magnetic Resonance Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical & Biomolecular Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Assaf A Gilad
- RusselI H Morgan Department of Radiology and Radiological Science, Division of Magnetic Resonance Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Piotr Walczak
- RusselI H Morgan Department of Radiology and Radiological Science, Division of Magnetic Resonance Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Radiology, Faculty of Medical Sciences, University of Warmia and Mazury, Olsztyn, Poland
| | - Barbara Lukomska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
10
|
Zhang M, Wang L, Guo R, Liang S, Jiang X, Zhang M, Li B. Molecular In Vivo Imaging Using a Noninvasive Cardiac-Specific MLC-2v Promoter Driven Dual-Gene Recombinant Lentivirus Monitoring System. PLoS One 2015; 10:e0133952. [PMID: 26230833 PMCID: PMC4521923 DOI: 10.1371/journal.pone.0133952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/03/2015] [Indexed: 12/01/2022] Open
Abstract
Background Our study aimed to demonstrate the feasibility of using the sodium/iodide symporter (NIS) to monitor vascular endothelial growth factor (VEGF165) expression in vivo. Methods We constructed a recombinant lentivirus plasmid with the MLC-2v promoter driving the sodium/iodide symporter (NIS) reporter gene linked to the VEGF165 gene. Expression of NIS and VEGF gene were identified by Western blot. On days 2 and 54, 99mTc-MIBI imaging was used to evaluate changes in myocardial ischemia. Noninvasive 125I micro-SPECT/CT imaging was used to assess the expression of NIS reporter gene dynamically over the next 2 months. Results Western blot analysis showed that both NIS and VEGF165 were highly expressed in rat cardiomyoblast H9C2 cells transduced with Lenti-MLC-2v-NIS--VEGF165. 125I micro-SPECT/CT reporter imaging showed higher uptake in mouse myocardium transduced with Lenti-MLC-2v-VEGF165-IRES-NIS. NIS expression peaked on day 1 after transduction followed by a progressive decline to negligible levels by day 21. On day 1, mean 125I activity value in group 1 was higher than that in group 2 (P<0.05). The mean 125I activity value in group 3 was statically lower than that in group 1 and 2 (P<0.01). On day 60, 125I uptakes in test and positive control groups became very low, and no significant differences in the mean 125I activity values were detected between group 1 and group 2 (P = 0.531 > 0.05). In group 1 (test group), 99mTc-MIBI SPECT/CT revealed improvements in perfusion and wall thickening in the apical anterior wall. Mean IOD values of NIS and CD34 were significantly higher in group 1 than group 3 (P<0.05). Our study proved mean I-125 uptake was significantly correlated with mean IOD value of NIS and CD34 (P<0.05). Conclusion This study demonstrates the feasibility of using the NIS gene to monitor VEGF165 expression in a mouse myocardial ischemia model.
Collapse
Affiliation(s)
- Miao Zhang
- Department of Nuclear Medicine, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lihua Wang
- Department of Nuclear Medicine, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Rui Guo
- Department of Nuclear Medicine, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sheng Liang
- Department of Nuclear Medicine, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xufeng Jiang
- Department of Nuclear Medicine, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Min Zhang
- Department of Nuclear Medicine, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Biao Li
- Department of Nuclear Medicine, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- * E-mail:
| |
Collapse
|