1
|
Beattie UK, Estrada RS, Gormally BMG, Reed JM, McVey M, Romero LM. Investigating the effects of acute and chronic stress on DNA damage. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:256-263. [PMID: 38221843 DOI: 10.1002/jez.2778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 01/16/2024]
Abstract
A hallmark of the vertebrate stress response is a rapid increase in glucocorticoids and catecholamines; however, this does not mean that these mediators are the best, or should be the only, metric measured when studying stress. Instead, it is becoming increasingly clear that assaying a suite of downstream metrics is necessary in stress physiology. One component of this suite could be assessing double-stranded DNA damage (dsDNA damage), which has recently been shown to increase in blood with both acute and chronic stress in house sparrows (Passer domesticus). To further understand the relationship between stress and dsDNA damage, we designed two experiments to address the following questions: (1) how does dsDNA damage with chronic stress vary across tissues? (2) does the increase in dsDNA damage during acute stress come from one arm of the stress response or both? We found that (1) dsDNA damage affects tissues differently during chronic stress and (2) the hypothalamic-pituitary-adrenal axis influences dsDNA damage with acute stress, but the sympathetic-adreno-medullary system does not. Surprisingly, our data are not explained by studies on changes in hormone receptor levels with chronic stress, so the underlying mechanism remains unclear.
Collapse
Affiliation(s)
- Ursula K Beattie
- Department of Biology, Tufts University, Medford, Massachusetts, USA
| | - Rodolfo S Estrada
- Department of Biology, Tufts University, Medford, Massachusetts, USA
| | - Brenna M G Gormally
- Department of Biology, Tufts University, Medford, Massachusetts, USA
- Seventh College, University of California San Diego, San Diego, California, USA
| | - J Michael Reed
- Department of Biology, Tufts University, Medford, Massachusetts, USA
| | - Mitch McVey
- Department of Biology, Tufts University, Medford, Massachusetts, USA
| | - L Michael Romero
- Department of Biology, Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
2
|
Rohonczy J, O'Dwyer K, Rochette A, Robinson SA, Forbes MR. Meta-analysis shows environmental contaminants elevate cortisol levels in teleost fish - Effect sizes depend on contaminant class and duration of experimental exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149402. [PMID: 34399351 DOI: 10.1016/j.scitotenv.2021.149402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Glucocorticoid hormones (GCs) help vertebrates maintain homeostasis during and following challenging events. Short-term elevations in GC levels are necessary for survival, whereas longer-term changes can lead to reduced reproductive output and immunosuppression. Persistent environmental contaminants (ECs) are widespread globally. Experimental exposure of individuals to ECs is associated with varying GC responses, within, and across, species and contaminants. Individuals exposed to ECs over long durations are expected to have prolonged GC elevations, which likely affect their health. We conducted a meta-analysis to test for a relationship between fish GC levels and experimental exposure to ECs, and to explore potential moderators, including duration of exposure, that could help explain the variation in effect sizes within and between studies. We report almost exclusively on cortisol responses of teleost fish to ECs. Although there was much variation in effect sizes, captive-bred fish exposed to ECs had baseline GC levels 1.5× higher than unexposed fish, and fish exposed to pharmaceuticals (estradiols and stimulants being mainly considered) had baseline GC levels approximately 2.5× higher than unexposed fish. We found that captive-bred and wild-caught fish did not differ in GC levels after exposure to the same classes of ECs - studies on captive bred fish may thus enable inferences about GC responses to ECs for wild species. Furthermore, effect sizes did not differ between baseline and challenge-induced GC measures. In different analyses, duration of exposure was negatively correlated to effect size, suggesting that the GC response may acclimate after chronic exposure to some ECs which could potentially alter the GC response of EC-exposed fish to novel stressors. Future studies should explore the effect of multiple stressors on the fish GC response and perform tests on a broader array of contaminant types and vertebrate classes.
Collapse
Affiliation(s)
- Jillian Rohonczy
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Katie O'Dwyer
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Galway, Ireland
| | - Alicia Rochette
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Stacey A Robinson
- National Wildlife Research Centre, Environment and Climate Change Canada, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| | - Mark R Forbes
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
3
|
Takeshita R, Bursian SJ, Colegrove KM, Collier TK, Deak K, Dean KM, De Guise S, DiPinto LM, Elferink CJ, Esbaugh AJ, Griffitt RJ, Grosell M, Harr KE, Incardona JP, Kwok RK, Lipton J, Mitchelmore CL, Morris JM, Peters ES, Roberts AP, Rowles TK, Rusiecki JA, Schwacke LH, Smith CR, Wetzel DL, Ziccardi MH, Hall AJ. A review of the toxicology of oil in vertebrates: what we have learned following the Deepwater Horizon oil spill. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2021; 24:355-394. [PMID: 34542016 DOI: 10.1080/10937404.2021.1975182] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the wake of the Deepwater Horizon (DWH) oil spill, a number of government agencies, academic institutions, consultants, and nonprofit organizations conducted lab- and field-based research to understand the toxic effects of the oil. Lab testing was performed with a variety of fish, birds, turtles, and vertebrate cell lines (as well as invertebrates); field biologists conducted observations on fish, birds, turtles, and marine mammals; and epidemiologists carried out observational studies in humans. Eight years after the spill, scientists and resource managers held a workshop to summarize the similarities and differences in the effects of DWH oil on vertebrate taxa and to identify remaining gaps in our understanding of oil toxicity in wildlife and humans, building upon the cross-taxonomic synthesis initiated during the Natural Resource Damage Assessment. Across the studies, consistency was found in the types of toxic response observed in the different organisms. Impairment of stress responses and adrenal gland function, cardiotoxicity, immune system dysfunction, disruption of blood cells and their function, effects on locomotion, and oxidative damage were observed across taxa. This consistency suggests conservation in the mechanisms of action and disease pathogenesis. From a toxicological perspective, a logical progression of impacts was noted: from molecular and cellular effects that manifest as organ dysfunction, to systemic effects that compromise fitness, growth, reproductive potential, and survival. From a clinical perspective, adverse health effects from DWH oil spill exposure formed a suite of signs/symptomatic responses that at the highest doses/concentrations resulted in multi-organ system failure.
Collapse
Affiliation(s)
- Ryan Takeshita
- Conservation Medicine, National Marine Mammal Foundation, San Diego, California, United States
| | - Steven J Bursian
- Department of Animal Science, Michigan State University, East Lansing, Michigan, United States
| | - Kathleen M Colegrove
- College of Veterinary Medicine, Illinois at Urbana-Champaign, Brookfield, Illinois, United States
| | - Tracy K Collier
- Zoological Pathology Program, Huxley College of the Environment, Western Washington University, Bellingham, Washington, United States
| | - Kristina Deak
- College of Marine Sciences, University of South Florida, St. Petersburg, Florida, United States
| | | | - Sylvain De Guise
- Department of Pathobiology and Veterinary Sciences, University of Connecticut, Storrs, Connecticut, United States
| | - Lisa M DiPinto
- Office of Response and Restoration, NOAA, Silver Spring, Maryland, United States
| | - Cornelis J Elferink
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States
| | - Andrew J Esbaugh
- Marine Science Institute, University of Texas at Austin, Port Aransas, Texas, United States
| | - Robert J Griffitt
- Division of Coastal Sciences, School of Ocean Science and Engineering, University of Southern Mississippi, Gulfport, Mississippi, United States
| | - Martin Grosell
- RSMAS, University of Miami, Miami, Florida, United States
| | | | - John P Incardona
- NOAA Environmental Conservation Division, Northwest Fisheries Science Center, Seattle, Washington, United States
| | - Richard K Kwok
- Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, North Carolina, United States
| | | | - Carys L Mitchelmore
- University of Maryland Center of Environmental Science, Chesapeake Biological Laboratory, Solomons, Maryland, United States
| | - Jeffrey M Morris
- Health and Environment Division, Abt Associates, Boulder, Colorado, United States
| | - Edward S Peters
- Department of Epidemiology, LSU School of Public Health, New Orleans, Louisiana, United States
| | - Aaron P Roberts
- Advanced Environmental Research Institute and Department of Biological Sciences, University of North Texas, Denton, Texas, United States
| | - Teresa K Rowles
- NOAA Office of Protected Resources, National Marine Fisheries Service, Silver Spring, Maryland, United States
| | - Jennifer A Rusiecki
- Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, Maryland, United States
| | - Lori H Schwacke
- Conservation Medicine, National Marine Mammal Foundation, San Diego, California, United States
| | - Cynthia R Smith
- Conservation Medicine, National Marine Mammal Foundation, San Diego, California, United States
| | - Dana L Wetzel
- Environmental Laboratory of Forensics, Mote Marine Laboratory, Sarasota, Florida, United States
| | - Michael H Ziccardi
- School of Veterinary Medicine, One Health Institute, University of California, Davis, California, United States
| | - Ailsa J Hall
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, UK
| |
Collapse
|
4
|
Refsnider JM, Garcia JA, Holliker B, Hulbert AC, Nunez A, Streby HM. Effects of harmful algal blooms on stress levels and immune functioning in wetland-associated songbirds and reptiles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147790. [PMID: 34034177 DOI: 10.1016/j.scitotenv.2021.147790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
Harmful algal blooms (HABs), caused primarily by nutrient input from agricultural runoff, are a threat to freshwater systems worldwide, and are further predicted to increase in size, frequency, and intensity due to climate change. HABs occur annually in the Western Basin of Lake Erie (Ohio, USA), and these blooms become toxic when dominated by cyanobacteria that produce the liver toxin microcystin. Although we are making substantial inroads toward understanding how microcystin affects human health, less is known about effects of microcystin on wildlife exposed to HABs. Wetland-associated songbirds (barn swallows, Hirundo rustica, and red-winged blackbirds, Agelaius phoeniceus) and reptiles (Northern watersnakes, Nerodia sipedon, and painted turtles, Chrysemys picta) were sampled from wetlands exposed to chronically high microcystin levels due to a prolonged HAB event, and from unexposed, control wetlands. Physiological stress levels and several measures of immune functioning were compared between the HAB-exposed and control populations. Physiological stress levels, measured as heterophil:lymphocyte ratios, were higher in barn swallows, red-winged blackbirds, and Northern watersnakes exposed to a chronic HAB compared to unexposed, control individuals, but painted turtles did not differ in physiological stress levels between HAB-exposed and control individuals. Neither barn swallows nor red-winged blackbirds differed in immune functioning between populations, but HAB-exposed watersnakes had higher bactericidal capacity than control snakes, and HAB-exposed painted turtles had lower bactericidal capacity than control turtles. These results suggest that even when HABs do not cause direct mortality of exposed wildlife, they can potentially act as a physiological stressor across several taxa, and furthermore may compromise immune functioning in some species.
Collapse
Affiliation(s)
- Jeanine M Refsnider
- Department of Environmental Sciences, University of Toledo, Wolfe Hall Room 1235, 3050 West Towerview Blvd., Toledo, OH 43606-3390, USA.
| | - Jessica A Garcia
- Department of Environmental Sciences, University of Toledo, Wolfe Hall Room 1235, 3050 West Towerview Blvd., Toledo, OH 43606-3390, USA
| | - Brittany Holliker
- Department of Environmental Sciences, University of Toledo, Wolfe Hall Room 1235, 3050 West Towerview Blvd., Toledo, OH 43606-3390, USA
| | - Austin C Hulbert
- Department of Environmental Sciences, University of Toledo, Wolfe Hall Room 1235, 3050 West Towerview Blvd., Toledo, OH 43606-3390, USA
| | - Ashley Nunez
- Department of Environmental Sciences, University of Toledo, Wolfe Hall Room 1235, 3050 West Towerview Blvd., Toledo, OH 43606-3390, USA; Department of Biology, Ursinus College, 601 East Main St., Collegeville, PA 19426-1000, USA
| | - Henry M Streby
- Department of Environmental Sciences, University of Toledo, Wolfe Hall Room 1235, 3050 West Towerview Blvd., Toledo, OH 43606-3390, USA
| |
Collapse
|
5
|
Parolini M, Sturini M, Maraschi F, Profumo A, Costanzo A, Caprioli M, Rubolini D, Ambrosini R, Canova L. Trace elements fingerprint of feathers differs between breeding and non-breeding areas in an Afro-Palearctic migratory bird, the barn swallow (Hirundo rustica). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:15828-15837. [PMID: 33244688 PMCID: PMC7969698 DOI: 10.1007/s11356-020-11597-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 11/09/2020] [Indexed: 05/11/2023]
Abstract
Trace elements are widespread contaminants that can potentially threaten ecosystems and human health. Considering their distribution and toxicity, monitoring their presence in animals represents a priority in environmental risk assessment. Migratory birds have been suggested to be useful biomonitors for trace elements because they can provide information on contaminants even from remote areas that they may exploit during their life cycle. The aim of this study was to analyse the contamination fingerprint of trace elements of African non-breeding staging grounds and European breeding areas in a long-distance migratory passerine bird, the barn swallow (Hirundo rustica). We collected feathers grown in the African non-breeding grounds and those grown in the breeding areas of Northern Italy and measured the levels of 12 trace elements (Al, As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se and Zn) by DRC-ICP-MS. Multivariate analysis showed that elemental profiles of feathers grown in African non-breeding areas and in the Italian breeding ones clearly differed, with feathers grown in Africa showing higher concentrations of Al, Cu, Fe, Mn and Ni, but lower concentrations of As, Se and Zn, compared to those grown in Italy. In addition, levels of trace elements were age-dependent, with higher levels in older individuals than in younger ones. Our results add to the growing evidence that feathers of long-distance migratory birds are useful tools to monitor trace elements contamination profiles across continents.
Collapse
Affiliation(s)
- Marco Parolini
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133, Milan, Italy
| | - Michela Sturini
- Department of Chemistry, University of Pavia, via Taramelli 12, I-27100, Pavia, Italy
| | - Federica Maraschi
- Department of Chemistry, University of Pavia, via Taramelli 12, I-27100, Pavia, Italy
| | - Antonella Profumo
- Department of Chemistry, University of Pavia, via Taramelli 12, I-27100, Pavia, Italy
| | - Alessandra Costanzo
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133, Milan, Italy
| | - Manuela Caprioli
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133, Milan, Italy
| | - Diego Rubolini
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133, Milan, Italy
| | - Roberto Ambrosini
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133, Milan, Italy.
| | - Luca Canova
- Department of Chemistry, University of Pavia, via Taramelli 12, I-27100, Pavia, Italy
| |
Collapse
|
6
|
King MD, Elliott JE, Williams TD. Effects of petroleum exposure on birds: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142834. [PMID: 33109373 DOI: 10.1016/j.scitotenv.2020.142834] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/14/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
Birds are vulnerable to petroleum pollution, and exposure has a range of negative effects resulting from plumage fouling, systemic toxicity, and embryotoxicity. Recent research has not been synthesized since Leighton's 1993 review despite the continued discharge of conventional petroleum, including high-volume oil spills and chronic oil pollution, as well as the emergence of understudied unconventional crude oil types. To address this, we reviewed the individual-level effects of crude oil and refined fuel exposure in avifauna with peer-reviewed articles published 1993-2020 to provide a critical synthesis of the state of the science. We also sought to answer how unconventional crude petroleum effects compare with conventional crude oil. Relevant knowledge gaps and research challenges were identified. The resulting review examines avian exposure to petroleum and synthesizes advances regarding the physical effects of oil hydrocarbons on feather structure and function, as well the toxic effects of inhaled or ingested oil, embryotoxicity, and how exposure affects broader scale endpoints related to behavior, reproduction, and survival. Another outcome of the review was the knowledge gaps and challenges identified. The first finding was a paucity of oil ingestion rate estimates in birds. Characterizing environmentally realistic exposure and ingestion rates is a higher research priority than additional conventional oral dosing experiments. Second, there is an absence of toxicity data for unconventional crude petroleum. Although the effects of air and water contamination in the Canadian oil sands region have received attention, toxicity data for direct exposure to unrefined bitumen produced there in high volumes and other such unconventional oil types are needed. Third, we encountered barriers to the interpretation, replication, broad relevance, and comparability of studies. We therefore propose best practices and promising technological advancements for researchers. This review consolidates our understanding of petroleum's effects on birds and points a way forward for researchers and resource managers.
Collapse
Affiliation(s)
- Mason D King
- Simon Fraser University, Department of Biological Sciences, 8888 University Drive, Burnaby, BC V5A 1S6, Canada.
| | - John E Elliott
- Simon Fraser University, Department of Biological Sciences, 8888 University Drive, Burnaby, BC V5A 1S6, Canada; Environment and Climate Change Canada, Science and Technology Division, 5421 Robertson Road, Delta, BC V4K 3N2, Canada.
| | - Tony D Williams
- Simon Fraser University, Department of Biological Sciences, 8888 University Drive, Burnaby, BC V5A 1S6, Canada.
| |
Collapse
|
7
|
Abstract
Millions of tons of oil are spilled in aquatic environments every decade, and this oil has the potential to greatly impact fish populations. Here, we review available information on the physiological effects of oil and polycyclic aromatic hydrocarbons on fish. Oil toxicity affects multiple biological systems, including cardiac function, cholesterol biosynthesis, peripheral and central nervous system function, the stress response, and osmoregulatory and acid-base balance processes. We propose that cholesterol depletion may be a significant contributor to impacts on cardiac, neuronal, and synaptic function as well as reduced cortisol production and release. Furthermore, it is possible that intracellular calcium homeostasis-a part of cardiotoxic and neuronal function that is affected by oil exposure-may be related to cholesterol depletion. A detailed understanding of oil impacts and affected physiological processes is emerging, but knowledge of their combined effects on fish in natural habitats is largely lacking. We identify key areas deserving attention in future research.
Collapse
Affiliation(s)
- Martin Grosell
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida 33149, USA; ,
| | - Christina Pasparakis
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida 33149, USA; ,
| |
Collapse
|
8
|
Goodchild CG, Love AC, Krall JB, DuRant SE. Weathered Mississippi Canyon 252 crude oil ingestion alters cytokine signaling, lowers heterophil:lymphocyte ratio, and induces sickness behavior in zebra finches (Taeniopygia guttata). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115302. [PMID: 33254636 DOI: 10.1016/j.envpol.2020.115302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 07/11/2020] [Accepted: 07/17/2020] [Indexed: 06/12/2023]
Abstract
The Deepwater Horizon (DWH) oil spill caused an estimated 100,000 bird mortalities. However, mortality estimates are often based on the number of visibly oiled birds and likely underestimate the true damage to avian populations as they do not include toxic effects from crude oil ingestion. Elevated susceptibility to disease has been postulated to be a significant barrier to recovery for birds that have ingested crude oil. Effective defense against pathogens involves integration of physiological and behavioral traits, which are regulated in-part by cytokine signaling pathways. In this study, we tested whether crude oil ingestion altered behavioral and physiological aspects of disease defense in birds. To do so, we used artificially weathered Mississippi Canyon 242 crude oil to orally dose zebra finches (Taeniopygia guttata) with 3.3 mL/kg or 10 mL/kg of crude oil or a control (peanut oil) for 14 days. We measured expression of cytokines (interleukin [IL]-1β, IL-6, IL-10) and proinflammatory pathways (NF-κB, COX-2) in the intestine, liver, and spleen (tissues that exhibit pathology in oil-exposed birds). We also measured heterophil:lymphocyte (H:L) ratio and complement system activity, and video-recorded birds to analyze sickness behavior. Finches that ingested crude oil exhibited tissue-specific changes in cytokine mRNA expression. Proinflammatory cytokine expression decreased in the intestine but increased in the liver and spleen. Birds exposed to crude oil had lower H:L ratios compared to the control on day 14, but there were no differences in complement activity among treatments. Additionally, birds exposed to 10 mL/kg crude oil had reduced activity, indicative of sickness behavior. Our results suggest cytokines play a role in mediating physiological and behavioral responses to crude oil ingestion. Although most avian population damage assessments focus on mortality caused by external oiling, crude oil ingestion may also indirectly affect survival by altering physiological and behavioral traits important for disease defense.
Collapse
Affiliation(s)
- Christopher G Goodchild
- Oklahoma State University, Department of Integrative Biology, 501 Life Sciences West, Stillwater, OK, 74078, USA; Virginia Tech, Biological Sciences, 926 West Campus Dr., Blacksburg, VA, 24061, USA.
| | - Ashley C Love
- Oklahoma State University, Department of Integrative Biology, 501 Life Sciences West, Stillwater, OK, 74078, USA; University of Arkansas, Department of Biological Sciences, 601 Science and Engineering, Fayetteville, AR, 72701, USA
| | - Jeffrey B Krall
- Oklahoma State University, Department of Integrative Biology, 501 Life Sciences West, Stillwater, OK, 74078, USA
| | - Sarah E DuRant
- University of Arkansas, Department of Biological Sciences, 601 Science and Engineering, Fayetteville, AR, 72701, USA
| |
Collapse
|
9
|
Finger JW, Hamilton MT, Kelley MD, Stacy NI, Glenn TC, Tuberville TD. Examining the Effects of Chronic Selenium Exposure on Traditionally Used Stress Parameters in Juvenile American Alligators (Alligator mississippiensis). ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 77:14-21. [PMID: 30976886 DOI: 10.1007/s00244-019-00626-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
Environmental contaminants, such as the trace element selenium (Se), are a continuing concern to species worldwide due to their potential pathophysiological effects, including their influence on the stress response mediated through glucocorticoids (GCs; stress hormones). Environmental concentrations of Se are increasing due to anthropogenic activities, including the incomplete combustion of coal and subsequent disposal of coal combustion wastes. However, most studies examining how Se affects GCs have been focused on lower trophic organisms. The objectives of this study were to investigate the effects of long-term Se exposure on traditionally used stress parameters and to identify which of these parameters best indicate Se accumulation in liver and kidney of the American alligator (Alligator mississippiensis), a top trophic carnivore found in the southeastern United States and known to inhabit Se-containing areas. Alligators were divided into three dietary treatments and fed prey spiked with 1000 or 2000 ppm of selenomethionine (SeMet) or deionized water (control treatment) for 7 weeks. Following the 7-week treatment protocol, blood and tissue samples were obtained to measure plasma corticosterone (CORT; the main crocodilian GC), tail scute CORT, the ratio of peripheral blood heterophils (H) to lymphocytes (L) as H/L ratio, and body condition. To evaluate which parameter best indicated Se accumulation in the liver and kidney, principal component and discriminant analyses were performed. The only parameter significantly correlated with liver and kidney Se concentrations was scute CORT. Our results suggest that measurement of CORT in tail scutes compared with plasma CORT, H/L ratios, and body condition is the best indicator of Se-exposure and accumulation in crocodilians.
Collapse
Affiliation(s)
- John W Finger
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA.
- Department of Environmental Health Science, University of Georgia, Athens, GA, 30602, USA.
- Savannah River Ecology Laboratory, University of Georgia, PO Drawer E, Aiken, SC, 29802, USA.
| | - Matthew T Hamilton
- Savannah River Ecology Laboratory, University of Georgia, PO Drawer E, Aiken, SC, 29802, USA
| | - Meghan D Kelley
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Nicole I Stacy
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Travis C Glenn
- Department of Environmental Health Science, University of Georgia, Athens, GA, 30602, USA
| | - Tracey D Tuberville
- Savannah River Ecology Laboratory, University of Georgia, PO Drawer E, Aiken, SC, 29802, USA
| |
Collapse
|
10
|
Andrew SC, Taylor MP, Lundregan S, Lien S, Jensen H, Griffith SC. Signs of adaptation to trace metal contamination in a common urban bird. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:679-686. [PMID: 30212697 DOI: 10.1016/j.scitotenv.2018.09.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 06/08/2023]
Abstract
Metals and metalloids at elevated concentrations can be toxic to both humans and wildlife. In particular, lead exposure can act as a stressor to wildlife and cause negative effects on fitness. Any ability to adapt to stress caused by the negative effects of trace metal exposure would be beneficial for species living in contaminated environments. However, mechanisms for responding adaptively to metal contamination are not fully understood in free-living organisms. The Australian populations of the house sparrow (Passer domesticus) provides an excellent opportunity to study potential adaptation to environmental lead contamination because they have a commensal relationship with humans and are distributed broadly across Australian settlements including many long-term mining and smelting communities. To examine the potential for an evolutionary response to long-term lead exposure, we collected genomic SNP data using the house sparrow 200 K SNP array, from 11 localities across the Australian distribution including two mining sites (Broken Hill and Mount Isa, which are two genetically independent populations) that have well-established elevated levels of lead contamination as well as trace metals and metalloids. We contrast these known contaminated locations to other lesser-contaminated environments. Using an ecological association genome scan method to identify genomic differentiation associated with estimates of lead contamination we identified 60 outlier loci across three tests. A total of 39 genes were found to be physically linked (within 20 kbps) of all outliers in the house sparrow reference genome. The linked candidate genes included 12 genes relevant to lead exposure, such as two metal transporters that can transport metals including lead and zinc across cell membranes. These candidate genes provide targets for follow up experiments comparing resilience to lead exposure between populations exposed to varied levels of lead contamination.
Collapse
Affiliation(s)
- Samuel C Andrew
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Mark Patrick Taylor
- Department of Environmental Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Sarah Lundregan
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Sigbjørn Lien
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, NO-1432 Ås, Norway
| | - Henrik Jensen
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Simon C Griffith
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
11
|
Edwards KL, Edes AN, Brown JL. Stress, Well-Being and Reproductive Success. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1200:91-162. [PMID: 31471796 DOI: 10.1007/978-3-030-23633-5_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Dean KM, Bursian SJ, Cacela D, Carney MW, Cunningham FL, Dorr B, Hanson-Dorr KC, Healy KA, Horak KE, Link JE, Lipton I, McFadden AK, McKernan MA, Harr KE. Changes in white cell estimates and plasma chemistry measurements following oral or external dosing of double-crested cormorants, Phalacocorax auritus, with artificially weathered MC252 oil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 146:40-51. [PMID: 28844686 DOI: 10.1016/j.ecoenv.2017.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 07/31/2017] [Accepted: 08/02/2017] [Indexed: 06/07/2023]
Abstract
Scoping studies were designed whereby double-crested cormorants (Phalacocorax auritus) were dosed with artificially weathered Deepwater Horizon (DWH) oil either daily through oil injected feeder fish, or by application of oil directly to feathers every three days. Preening results in oil ingestion, and may be an effective means of orally dosing birds with toxicant to improve our understanding of the full range of physiological effects of oral oil ingestion on birds. Blood samples collected every 5-6 days were analyzed for a number of clinical endpoints including white blood cell (WBC) estimates and differential cell counts. Plasma biochemical evaluations were performed for changes associated with oil toxicity. Oral dosing and application of oil to feathers resulted in clinical signs and statistically significant changes in a number of biochemical endpoints consistent with petroleum exposure. In orally dosed birds there were statistically significant decreases in aspartate amino transferase (AST) and gamma glutamyl transferase (GGT) activities, calcium, chloride, cholesterol, glucose, and total protein concentrations, and increases in plasma urea, uric acid, and phosphorus concentrations. Plasma electrophoresis endpoints (pre-albumin, albumin, alpha-2 globulin, beta globulin, and gamma globulin concentrations and albumin: globulin ratios) were decreased in orally dosed birds. Birds with external oil had increases in urea, creatinine, uric acid, creatine kinase (CK), glutamate dehydrogenase (GLDH), phosphorus, calcium, chloride, potassium, albumin, alpha-1 globulin and alpha-2 globulin. Decreases were observed in AST, beta globulin and glucose. WBC also differed between treatments; however, this was in part driven by monocytosis present in the externally oiled birds prior to oil treatment.
Collapse
Affiliation(s)
- Karen M Dean
- Abt Associates, 1811 Ninth St., Suite 201, Boulder, CO 80302, USA.
| | - Steven J Bursian
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Dave Cacela
- Abt Associates, 1811 Ninth St., Suite 201, Boulder, CO 80302, USA
| | - Michael W Carney
- Abt Associates, 1811 Ninth St., Suite 201, Boulder, CO 80302, USA
| | - Fred L Cunningham
- USDA/APHIS/WS/NWRC-MS Field Station, MS State University, P.O. Box 6099, Starkville, MS 39762, USA
| | - Brian Dorr
- USDA/APHIS/WS/NWRC-MS Field Station, MS State University, P.O. Box 6099, Starkville, MS 39762, USA
| | - Katie C Hanson-Dorr
- USDA/APHIS/WS/NWRC-MS Field Station, MS State University, P.O. Box 6099, Starkville, MS 39762, USA
| | - Kate A Healy
- US Fish and Wildlife Service, Deepwater Horizon NRDAR Field Office, Fairhope, AL, USA
| | | | - Jane E Link
- US Fish and Wildlife Service, Ecological Services, Falls Church, VA, USA
| | - Ian Lipton
- Abt Associates, 1811 Ninth St., Suite 201, Boulder, CO 80302, USA
| | | | | | - Kendal E Harr
- Urika Pathology LLC, 8712 53rd Pl W., Mukilteo, WA 98275, USA
| |
Collapse
|
13
|
Feather corticosterone during non-breeding correlates with multiple measures of physiology during subsequent breeding in a migratory seabird. Comp Biochem Physiol A Mol Integr Physiol 2017; 208:1-13. [DOI: 10.1016/j.cbpa.2017.02.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 02/21/2017] [Accepted: 02/23/2017] [Indexed: 11/21/2022]
|
14
|
Harris CM, Madliger CL, Love OP. An evaluation of feather corticosterone as a biomarker of fitness and an ecologically relevant stressor during breeding in the wild. Oecologia 2017; 183:987-996. [PMID: 28214946 DOI: 10.1007/s00442-017-3836-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 02/07/2017] [Indexed: 11/24/2022]
Abstract
Feather corticosterone (CORT) levels are increasingly employed as biomarkers of environmental stress. However, it is unclear if feather CORT levels reflect stress and/or workload in the wild. We investigated whether feather CORT represents a biomarker of environmental stress and reproductive effort in tree swallows (Tachycineta bicolor). Specifically, we examined whether individual state and investment during reproduction could predict feather CORT levels in subsequently moulted feathers and whether those levels could predict future survival and reproductive success. Through a manipulation of flight cost during breeding, we also investigated whether an increase in stress level would be reflected in subsequently grown feathers, and whether those levels could predict future success. We found that CORT levels of feathers grown during moult did not (1) reflect past breeding experience (n = 29), (2) predict reproductive output (n = 18), or (3) respond to a manipulation of flight effort during reproduction (10 experimental, 14 control females). While higher feather CORT levels predicted higher return rate (a proxy for survival), they did so only in the manipulated group (n = 36), and this relationship was opposite to expected. Overall, our results add to the mixed literature reporting that feather CORT levels can be positively, negatively, or not related to proxies of within-season and longer-term fitness (i.e., carryover effects). In addition, our results indicate that CORT levels or disturbances experienced during one time (e.g., breeding) may not carry over to subsequent stages (e.g., moult). We, therefore, petition for directed research investigating whether feather CORT represents exposure to chronic stress in feathers grown during moult.
Collapse
Affiliation(s)
- Christopher M Harris
- Department of Biological Sciences and the Great Lakes Institute for Environmental Research (GLIER), University of Windsor, Windsor, ON, Canada.
| | - Christine L Madliger
- Department of Biological Sciences and the Great Lakes Institute for Environmental Research (GLIER), University of Windsor, Windsor, ON, Canada
| | - Oliver P Love
- Department of Biological Sciences and the Great Lakes Institute for Environmental Research (GLIER), University of Windsor, Windsor, ON, Canada
| |
Collapse
|
15
|
Mitchelmore CL, Bishop CA, Collier TK. Toxicological estimation of mortality of oceanic sea turtles oiled during the Deepwater Horizon oil spill. ENDANGER SPECIES RES 2017. [DOI: 10.3354/esr00758] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
16
|
Ming-Ch'eng Adams CI, Baker JE, Kjellerup BV. Toxicological effects of polychlorinated biphenyls (PCBs) on freshwater turtles in the United States. CHEMOSPHERE 2016; 154:148-154. [PMID: 27043381 DOI: 10.1016/j.chemosphere.2016.03.102] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/15/2015] [Accepted: 03/22/2016] [Indexed: 05/18/2023]
Abstract
Prediction of vertebrate health effects originating from persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) has remained a challenge for decades thus making the identification of bioindicators difficult. POPs are predominantly present in soil and sediment, where they adhere to particles due to their hydrophobic characteristics. Animals inhabiting soil and sediment can be exposed to PCBs via dermal exposure while others may obtain PCBs through contaminated trophic interaction. Freshwater turtles can serve as bioindicators due to their strong site fidelity, longevity and varied diet. Previous research observed the health effects of PCBs on turtles such as decreased bone mass, changed sexual development and decreased immune responses through studying both contaminated sites along with laboratory experimentation. Higher deformity rates in juveniles, increased mortality and slower growth have also been observed. Toxicological effects of PCBs vary between species of freshwater turtles and depend on the concertation and configuration of PCB congeners. Evaluation of ecotoxicological effects of PCBs in non-endangered turtles could provide important knowledge about the health effects of endangered turtle species thus inform the design of remediation strategies. In this review, the PCB presence in freshwater turtle habitats and the ecotoxicological effects were investigated with the aim of utilizing the health status to identify areas of focus for freshwater turtle conservation.
Collapse
Affiliation(s)
- Clare Isabel Ming-Ch'eng Adams
- Iowa State University, 353 Bessey Hall, Department of Ecology, Evolution, and Organismal Biology, Ames, IA 50011-1020, USA
| | - Joel E Baker
- University of Washington Tacoma, The Center for Urban Waters, 1900 Commerce Street, Tacoma, WA 98402-3100, USA
| | - Birthe V Kjellerup
- University of Maryland at College Park, A. James Clark School of Engineering, Department of Civil and Environmental Engineering, 1147 Glenn L. Martin Hall, College Park, MD 20742, USA.
| |
Collapse
|
17
|
Polich RL. Stress hormone levels in a freshwater turtle from sites differing in human activity. CONSERVATION PHYSIOLOGY 2016; 4:cow016. [PMID: 27293763 PMCID: PMC4892809 DOI: 10.1093/conphys/cow016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 02/14/2016] [Accepted: 04/09/2016] [Indexed: 05/26/2023]
Abstract
Glucocorticoids, such as corticosterone (CORT), commonly serve as a measure of stress levels in vertebrate populations. These hormones have been implicated in regulation of feeding behaviour, locomotor activity, body mass, lipid metabolism and other crucial behaviours and physiological processes. Thus, understanding how glucocorticoids fluctuate seasonally and in response to specific stressors can yield insight into organismal health and the overall health of populations. I compared circulating CORT concentrations between two similar populations of painted turtle, Chrysemys picta, which differed primarily in the level of exposure to human recreational activities. I measured basal CORT concentrations as well as the CORT stress response and did not find any substantive difference between the two populations. This similarity may indicate that painted turtles are not stressed by the presence of humans during the nesting season. The results of this study contribute to our understanding of CORT concentrations in freshwater reptiles, a group that is historically under-represented in studies of circulating hormone concentrations; specifically, studies that seek to use circulating concentrations of stress hormones, such as CORT, as a measure of the effect of human activities on wild populations. They also give insight into how these species as a whole may respond to human recreational activities during crucial life-history stages, such as the nesting season. Although there was no discernable difference between circulating CORT concentrations between the urban and rural populations studied, I did find a significant difference in circulating CORT concentrations between male and female C. picta. This important finding provides better understanding of the sex differences between male and female painted turtles and adds to our understanding of this species and other species of freshwater turtle.
Collapse
Affiliation(s)
- Rebecca L. Polich
- Corresponding author: Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA. Tel: +1 818 585 9763.
| |
Collapse
|
18
|
Bowden JA, Cantu TM, Chapman RW, Somerville SE, Guillette MP, Botha H, Hoffman A, Luus-Powell WJ, Smit WJ, Lebepe J, Myburgh J, Govender D, Tucker J, Boggs ASP, Guillette LJ. Predictive Blood Chemistry Parameters for Pansteatitis-Affected Mozambique Tilapia (Oreochromis mossambicus). PLoS One 2016; 11:e0153874. [PMID: 27115488 PMCID: PMC4846142 DOI: 10.1371/journal.pone.0153874] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 04/05/2016] [Indexed: 11/19/2022] Open
Abstract
One of the largest river systems in South Africa, the Olifants River, has experienced significant changes in water quality due to anthropogenic activities. Since 2005, there have been various “outbreaks” of the inflammatory disease pansteatitis in several vertebrate species. Large-scale pansteatitis-related mortality events have decimated the crocodile population at Lake Loskop and decreased the population at Kruger National Park. Most pansteatitis-related diagnoses within the region are conducted post-mortem by either gross pathology or histology. The application of a non-lethal approach to assess the prevalence and pervasiveness of pansteatitis in the Olifants River region would be of great importance for the development of a management plan for this disease. In this study, several plasma-based biomarkers accurately classified pansteatitis in Mozambique tilapia (Oreochromis mossambicus) collected from Lake Loskop using a commercially available benchtop blood chemistry analyzer combined with data interpretation via artificial neural network analysis. According to the model, four blood chemistry parameters (calcium, sodium, total protein and albumin), in combination with total length, diagnose pansteatitis to a predictive accuracy of 92 percent. In addition, several morphometric traits (total length, age, weight) were also associated with pansteatitis. On-going research will focus on further evaluating the use of blood chemistry to classify pansteatitis across different species, trophic levels, and within different sites along the Olifants River.
Collapse
Affiliation(s)
- John A. Bowden
- National Institute of Standards and Technology (NIST), Material Measurement Laboratory, Chemical Sciences Division, Environmental Chemical Sciences Group, Hollings Marine Laboratory, Charleston, South Carolina, United States of America
- * E-mail:
| | - Theresa M. Cantu
- Departments of Obstetrics and Gynecology, Medical University of South Carolina (MUSC), Charleston, South Carolina, United States of America
| | - Robert W. Chapman
- Marine Resources Research Institute, South Carolina Department of Natural Resources, Hollings Marine Laboratory, Charleston, South Carolina, United States of America
| | - Stephen E. Somerville
- Departments of Obstetrics and Gynecology, Medical University of South Carolina (MUSC), Charleston, South Carolina, United States of America
| | - Matthew P. Guillette
- Departments of Obstetrics and Gynecology, Medical University of South Carolina (MUSC), Charleston, South Carolina, United States of America
| | - Hannes Botha
- Scientific Services, Mpumalanga Tourism and Parks Agency, Nelspruit, South Africa
- Department of Biodiversity, University of Limpopo, Sovenga, South Africa
| | - Andre Hoffman
- Scientific Services, Mpumalanga Tourism and Parks Agency, Nelspruit, South Africa
| | | | - Willem J. Smit
- Department of Biodiversity, University of Limpopo, Sovenga, South Africa
| | - Jeffrey Lebepe
- Department of Biodiversity, University of Limpopo, Sovenga, South Africa
| | - Jan Myburgh
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Danny Govender
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
- Scientific Services, South African National Parks, Skukuza, South Africa
| | - Jonathan Tucker
- Marine Resources Research Institute, South Carolina Department of Natural Resources, Hollings Marine Laboratory, Charleston, South Carolina, United States of America
| | - Ashley S. P. Boggs
- National Institute of Standards and Technology (NIST), Material Measurement Laboratory, Chemical Sciences Division, Environmental Chemical Sciences Group, Hollings Marine Laboratory, Charleston, South Carolina, United States of America
| | - Louis J. Guillette
- Departments of Obstetrics and Gynecology, Medical University of South Carolina (MUSC), Charleston, South Carolina, United States of America
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| |
Collapse
|
19
|
Luo W, Fang M, Xu H, Xing H, Nie Q. Transcriptome comparison in the pituitary-adrenal axis between Beagle and Chinese Field dogs after chronic stress exposure. Anim Genet 2015; 46:522-34. [DOI: 10.1111/age.12325] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2015] [Indexed: 01/04/2023]
Affiliation(s)
- Wei Luo
- Department of Animal Genetics, Breeding and Reproduction; College of Animal Science; South China Agricultural University; Guangzhou Guangdong 510642 China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction; Ministry of Agriculture; Guangzhou Guangdong 510642 China
| | - Meixia Fang
- Department of Laboratory Animal Science; Medical College of Jinan University; Guangzhou Guangdong 510632 China
| | - Haiping Xu
- Department of Animal Genetics, Breeding and Reproduction; College of Animal Science; South China Agricultural University; Guangzhou Guangdong 510642 China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction; Ministry of Agriculture; Guangzhou Guangdong 510642 China
| | - Huijie Xing
- Department of Laboratory Animal Science; Medical College of Jinan University; Guangzhou Guangdong 510632 China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction; College of Animal Science; South China Agricultural University; Guangzhou Guangdong 510642 China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction; Ministry of Agriculture; Guangzhou Guangdong 510642 China
| |
Collapse
|
20
|
Venn-Watson S, Colegrove KM, Litz J, Kinsel M, Terio K, Saliki J, Fire S, Carmichael R, Chevis C, Hatchett W, Pitchford J, Tumlin M, Field C, Smith S, Ewing R, Fauquier D, Lovewell G, Whitehead H, Rotstein D, McFee W, Fougeres E, Rowles T. Adrenal Gland and Lung Lesions in Gulf of Mexico Common Bottlenose Dolphins (Tursiops truncatus) Found Dead following the Deepwater Horizon Oil Spill. PLoS One 2015; 10:e0126538. [PMID: 25992681 PMCID: PMC4439104 DOI: 10.1371/journal.pone.0126538] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/30/2015] [Indexed: 12/31/2022] Open
Abstract
A northern Gulf of Mexico (GoM) cetacean unusual mortality event (UME) involving primarily bottlenose dolphins (Tursiops truncatus) in Louisiana, Mississippi, and Alabama began in February 2010 and continued into 2014. Overlapping in time and space with this UME was the Deepwater Horizon (DWH) oil spill, which was proposed as a contributing cause of adrenal disease, lung disease, and poor health in live dolphins examined during 2011 in Barataria Bay, Louisiana. To assess potential contributing factors and causes of deaths for stranded UME dolphins from June 2010 through December 2012, lung and adrenal gland tissues were histologically evaluated from 46 fresh dead non-perinatal carcasses that stranded in Louisiana (including 22 from Barataria Bay), Mississippi, and Alabama. UME dolphins were tested for evidence of biotoxicosis, morbillivirus infection, and brucellosis. Results were compared to up to 106 fresh dead stranded dolphins from outside the UME area or prior to the DWH spill. UME dolphins were more likely to have primary bacterial pneumonia (22% compared to 2% in non-UME dolphins, P = .003) and thin adrenal cortices (33% compared to 7% in non-UME dolphins, P = .003). In 70% of UME dolphins with primary bacterial pneumonia, the condition either caused or contributed significantly to death. Brucellosis and morbillivirus infections were detected in 7% and 11% of UME dolphins, respectively, and biotoxin levels were low or below the detection limit, indicating that these were not primary causes of the current UME. The rare, life-threatening, and chronic adrenal gland and lung diseases identified in stranded UME dolphins are consistent with exposure to petroleum compounds as seen in other mammals. Exposure of dolphins to elevated petroleum compounds present in coastal GoM waters during and after the DWH oil spill is proposed as a cause of adrenal and lung disease and as a contributor to increased dolphin deaths.
Collapse
Affiliation(s)
- Stephanie Venn-Watson
- National Marine Mammal Foundation, San Diego, California, United States of America
- * E-mail:
| | - Kathleen M. Colegrove
- University of Illinois, Zoological Pathology Program, Maywood, Illinois, United States of America
| | - Jenny Litz
- National Marine Fisheries Service, Southeast Fisheries Science Center, Miami, Florida, United States of America
| | - Michael Kinsel
- University of Illinois, Zoological Pathology Program, Maywood, Illinois, United States of America
| | - Karen Terio
- University of Illinois, Zoological Pathology Program, Maywood, Illinois, United States of America
| | - Jeremiah Saliki
- Athens Veterinary Diagnostic Laboratory College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Spencer Fire
- NOAA National Ocean Service, Marine Biotoxins Program, Charleston, South Carolina, United States of America
- Florida Institute of Technology Department of Biological Sciences, Melbourne, Florida, United States of America
| | - Ruth Carmichael
- Dauphin Island Sea Lab and University of South Alabama, Dauphin Island, Alabama, United States of America
| | - Connie Chevis
- Institute for Marine Mammal Studies, Gulfport, Mississippi, United States of America
| | - Wendy Hatchett
- Institute for Marine Mammal Studies, Gulfport, Mississippi, United States of America
| | - Jonathan Pitchford
- Institute for Marine Mammal Studies, Gulfport, Mississippi, United States of America
| | - Mandy Tumlin
- Louisiana Department of Wildlife and Fisheries, Baton Rouge, Louisiana, United States of America
| | - Cara Field
- Audubon Aquarium of the Americas, New Orleans, Louisiana, United States of America
| | - Suzanne Smith
- Audubon Aquarium of the Americas, New Orleans, Louisiana, United States of America
| | - Ruth Ewing
- National Marine Fisheries Service, Southeast Fisheries Science Center, Miami, Florida, United States of America
| | - Deborah Fauquier
- National Marine Fisheries Service, Office of Protected Resources, Silver Spring, Maryland, United States of America
| | | | - Heidi Whitehead
- Texas Marine Mammal Stranding Network, Galveston, Texas, United States of America
| | - David Rotstein
- Marine Mammal Pathology Services, Olney, Maryland, United States of America
| | - Wayne McFee
- National Centers for Coastal Ocean Science, National Ocean Service, Charleston, South Carolina, United States of America
| | - Erin Fougeres
- National Marine Fisheries Service, Southeast Regional Office, St. Petersburg, Florida, United States of America
| | - Teri Rowles
- National Marine Fisheries Service, Office of Protected Resources, Silver Spring, Maryland, United States of America
| |
Collapse
|
21
|
Strong RJ, Pereira MG, Shore RF, Henrys PA, Pottinger TG. Feather corticosterone content in predatory birds in relation to body condition and hepatic metal concentration. Gen Comp Endocrinol 2015; 214:47-55. [PMID: 25776461 DOI: 10.1016/j.ygcen.2015.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 02/27/2015] [Accepted: 03/06/2015] [Indexed: 11/18/2022]
Abstract
This study investigated the feasibility of measuring corticosterone in feathers from cryo-archived raptor specimens, in order to provide a retrospective assessment of the activity of the stress axis in relation to contaminant burden. Feather samples were taken from sparrowhawk Accipiter nisus, kestrel Falco tinnunculus, buzzard Buteo buteo, barn owl Tyto alba, and tawny owl Strix aluco and the variation in feather CORT concentrations with respect to species, age, sex, feather position, and body condition was assessed. In sparrowhawks only, variation in feather CORT content was compared with hepatic metal concentrations. For individuals, CORT concentration (pgmm(-1)) in adjacent primary flight feathers (P5 and P6), and left and right wing primaries (P5), was statistically indistinguishable. The lowest concentrations of CORT were found in sparrowhawk feathers and CORT concentrations did not vary systematically with age or sex for any species. Significant relationships between feather CORT content and condition were observed in only tawny owl and kestrel. In sparrowhawks, feather CORT concentration was found to be positively related to the hepatic concentrations of five metals (Cd, Mn, Co, Cu, Mo) and the metalloid As. There was also a negative relationship between measures of condition and total hepatic metal concentration in males. The results suggest that some factors affecting CORT uptake by feathers remain to be resolved but feather CORT content from archived specimens has the potential to provide a simple effects biomarker for exposure to environmental contaminants.
Collapse
Affiliation(s)
- Rebecca J Strong
- Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP, United Kingdom; University of Lancaster, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4YQ, United Kingdom
| | - M Glória Pereira
- Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP, United Kingdom
| | - Richard F Shore
- Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP, United Kingdom
| | - Peter A Henrys
- Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP, United Kingdom
| | - Tom G Pottinger
- Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP, United Kingdom.
| |
Collapse
|
22
|
Lattin CR, Romero LM. Chronic exposure to a low dose of ingested petroleum disrupts corticosterone receptor signalling in a tissue-specific manner in the house sparrow (Passer domesticus). CONSERVATION PHYSIOLOGY 2014; 2:cou058. [PMID: 27293679 PMCID: PMC4732471 DOI: 10.1093/conphys/cou058] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/06/2014] [Accepted: 11/11/2014] [Indexed: 05/06/2023]
Abstract
Stress-induced concentrations of glucocorticoid hormones (including corticosterone, CORT) can be suppressed by chronic exposure to a low dose of ingested petroleum. However, endocrine-disrupting chemicals could interfere with CORT signalling beyond the disruption of hormone titres, including effects on receptors in different target tissues. In this study, we examined the effects of 6 weeks of exposure to a petroleum-laced diet (1% oil weight:food weight) on tissue mass and intracellular CORT receptors in liver, fat, muscle and kidney (metabolic tissues), spleen (an immune tissue) and testes (a reproductive tissue). In the laboratory, male house sparrows were fed either a 1% weathered crude oil (n = 12) or a control diet (n = 12); glucocorticoid receptors and mineralocorticoid receptors were quantified using radioligand binding assays. In oil-exposed birds, glucocorticoid receptors were lower in one metabolic tissue (liver), higher in another metabolic tissue (fat) and unchanged in four other tissues (kidney, muscle, spleen and testes) compared with control birds. We saw no differences in mineralocorticoid receptors between groups. We also saw a trend towards reduced mass of the testes in oil-exposed birds compared with controls, but no differences in fat, kidney, liver, muscle or spleen mass between the two groups. This is the first study to examine the effects of petroleum on CORT receptor density in more than one or two target tissues. Given that a chronic low dose of ingested petroleum can affect stress-induced CORT titres as well as receptor density, this demonstrates that oil can act at multiple levels to disrupt an animal's response to environmental stressors. This also highlights the potential usefulness of the stress response as a bioindicator of chronic crude oil exposure.
Collapse
Affiliation(s)
- Christine R. Lattin
- Corresponding author: Department of Diagnostic Radiology, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT 06520, USA. Tel: +1 203 785 5054.
| | | |
Collapse
|