1
|
Huang C, Yu X, Du Z, Zhu Z, Shi C, Li A, Wang F. Pyrroloquinoline Quinone Alleviates Intestinal Inflammation and Cell Apoptosis via the MKK3/6-P38 Pathway in a Piglet Model. Int J Mol Sci 2024; 25:9723. [PMID: 39273669 PMCID: PMC11395797 DOI: 10.3390/ijms25179723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
This study investigates the underlying mechanism through which dietary supplementation of pyrroloquinoline quinone disodium (PQQ) alleviates intestinal inflammation and cell apoptosis in piglets challenged with lipopolysaccharide (LPS). Seventy-two barrows were divided into three groups: control (CTRL), LPS challenged (LPS), and LPS challenged with PQQ supplementation (PQQ + LPS). On d 7, 11, and 14, piglets received intraperitoneal injections of LPS or 0.9% of NaCl (80 μg/kg). After a 4 h interval following the final LPS injection on d 14, blood samples were obtained, and all piglets were euthanized for harvesting jejunal samples. The results showed that dietary supplementation of PQQ improved the damage of intestinal morphology, increased the down-regulated tight junction proteins, and reduced the increase of serum diamine oxidase activity, the intestinal fatty acid binding protein, and TNF-α levels in piglets challenged with LPS (p < 0.05). The proteomics analysis revealed a total of 141 differentially expressed proteins (DEPs), consisting of 64 up-regulated DEPs and 77 down-regulated DEPs in the PQQ + LPS group compared to the LPS group. The KEGG pathway analysis indicated enrichment of the tight junction pathway and the apoptosis pathway (p < 0.05). Compared to the LPS group, the piglets in the PQQ + LPS group had increased levels of Bcl-2 protein, reduced positive apoptosis signals, and a decrease in the abundance of MKK 3/6 and p-p38 proteins (p < 0.05). In conclusion, dietary supplementation of PQQ could alleviate jejunal inflammatory damage and cell apoptosis in piglets challenged with LPS through the MKK3/6-p38 signaling pathway.
Collapse
Affiliation(s)
- Caiyun Huang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Y.); (Z.D.); (Z.Z.); (A.L.)
| | - Xuanci Yu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Y.); (Z.D.); (Z.Z.); (A.L.)
| | - Ziyuan Du
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Y.); (Z.D.); (Z.Z.); (A.L.)
| | - Zhihao Zhu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Y.); (Z.D.); (Z.Z.); (A.L.)
| | - Chenyu Shi
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China; (C.S.); (F.W.)
| | - Ang Li
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Y.); (Z.D.); (Z.Z.); (A.L.)
| | - Fenglai Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China; (C.S.); (F.W.)
| |
Collapse
|
2
|
Kim S, Cho J, Keum GB, Kwak J, Doo H, Choi Y, Kang J, Kim H, Chae Y, Kim ES, Song M, Kim HB. Investigation of the impact of multi-strain probiotics containing Saccharomyces cerevisiae on porcine production. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:876-890. [PMID: 39398307 PMCID: PMC11466735 DOI: 10.5187/jast.2024.e79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 10/15/2024]
Abstract
A balanced intestinal microbiome controls intestinal bacterial diseases, helps regulate immunity, and digests and utilizes nutrients, ultimately having a positive effect on the productivity of industrial animals. Yeasts help in the digestion process by breaking down indigestible fibers and producing organic acids, vitamins, and minerals. In particular, polysaccharides such as beta-glucan and mannan-oligosaccharides, which are present in the cell wall of yeast, inhibit the adhesion of pathogens to the surface of the gastrointestinal tract and increase resistance to disease to help maintain and improve intestinal health. Among the yeast additives used in animal feed, Saccharomyces cerevisiae is one of the most commonly used probiotics. However, it does not naturally reside in the intestine, so if it is supplied in combination with other species of probiotics that can compensate for it, many benefits and synergies can be expected for pigs in terms of maintaining intestinal health such as supplementing the immune system and improving digestion. A number of previous studies have demonstrated that dietary complex probiotic supplementation has growth-promoting effects in pigs, suggesting that multiple strains of probiotics may be more effective than single strain probiotics due to their additive and synergistic effects. In practice, however, the effects of complex probiotics are not always consistent, and can be influenced by a variety of factors. Therefore, this review comprehensively examines and discusses the literature related to the effects of complex probiotics using Saccharomyces cerevisiae in pig production.
Collapse
Affiliation(s)
- Sheena Kim
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Jinho Cho
- Division of Food and Animal Science,
Chungbuk National University, Cheongju 28644, Korea
| | - Gi Beom Keum
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Jinok Kwak
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Hyunok Doo
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Yejin Choi
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Juyoun Kang
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Haram Kim
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Yeongjae Chae
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Eun Sol Kim
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Minho Song
- Division of Animal and Dairy Science,
Chungnam National University, Daejeon 31434, Korea
| | - Hyeun Bum Kim
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| |
Collapse
|
3
|
Liu M, Deng X, Zhao Y, Everaert N, Zhang H, Xia B, Schroyen M. Alginate Oligosaccharides Enhance Antioxidant Status and Intestinal Health by Modulating the Gut Microbiota in Weaned Piglets. Int J Mol Sci 2024; 25:8029. [PMID: 39125598 PMCID: PMC11311613 DOI: 10.3390/ijms25158029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/16/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024] Open
Abstract
Alginate oligosaccharides (AOSs), which are an attractive feed additive for animal production, exhibit pleiotropic bioactivities. In the present study, we investigated graded doses of AOS-mediated alterations in the physiological responses of piglets by determining the intestinal architecture, barrier function, and microbiota. A total of 144 weaned piglets were allocated into four dietary treatments in a completely random design, which included a control diet (CON) and three treated diets formulated with 250 mg/kg (AOS250), 500 mg/kg (AOS500), and 1000 mg/kg AOS (AOS1000), respectively. The trial was carried out for 28 days. Our results showed that AOS treatment reinforced the intestinal barrier function by increasing the ileal villus height, density, and fold, as well as the expression of tight junction proteins, especially at the dose of 500 mg/kg AOS. Meanwhile, supplementations with AOSs showed positive effects on enhancing antioxidant capacity and alleviating intestinal inflammation by elevating the levels of antioxidant enzymes and inhibiting excessive inflammatory cytokines. The DESeq2 analysis showed that AOS supplementation inhibited the growth of harmful bacteria Helicobacter and Escherichia_Shigella and enhanced the relative abundance of Faecalibacterium and Veillonella. Collectively, these findings suggested that AOSs have beneficial effects on growth performance, antioxidant capacity, and gut health in piglets.
Collapse
Affiliation(s)
- Ming Liu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China; (M.L.)
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China (H.Z.)
| | - Xiong Deng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China; (M.L.)
| | - Yong Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China (H.Z.)
| | - Nadia Everaert
- Nutrition and Animal Microbiota Ecosystems Laboratory, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China (H.Z.)
| | - Bing Xia
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China; (M.L.)
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium
| |
Collapse
|
4
|
Tan K, Bian Z, Liang H, Hu W, Xia M, Han S, Chen B. Enzymolytic soybean meal-impact on growth performance, nutrient digestibility, antioxidative capacity, and intestinal health of weaned piglets. Front Vet Sci 2024; 11:1381823. [PMID: 38585301 PMCID: PMC10995376 DOI: 10.3389/fvets.2024.1381823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
Enzymolytic soybean meal (ESBM) enriches free amino acids and small peptides, while mitigating anti-nutritional factors. Substituting soybean meal with ESBM enhances animal performance, though optimal piglet dietary supplementation levels vary. The present study aimed to assess the impact of ESBM on the growth performance, nutrient digestibility, antioxidative capacity and intestinal health of weaned piglets. A total of 120 piglets (initial body weight, 7.0 ± 0.4 kg) were randomly allocated into 4 dietary groups, each comprising 5 replicates with 6 piglets per replicate. The control group received the basal diet, while the experimental groups were fed diets containing 2, 4% or 8% ESBM as a replacement for soybean meal over 28 days. Compared with the control group, piglets supplemented with 4% ESBM exhibited a significant increase (p < 0.05) in average daily gain and the apparent total tract digestibility of dry matter, ether extract and gross energy (p < 0.05), alongside a notable decrease (p < 0.05) in diarrhea incidence. Fed ESBM linearly increased (p < 0.05) the villus height in the ileum of piglets. The levels of superoxide dismutase and total antioxidant capacity in serum of piglets increased (p < 0.05) in the 2 and 4% ESBM groups, while diamine oxidase content decreased (p < 0.05) in the 4 and 8% ESBM group. ESBM inclusion also upregulated (p < 0.05) the expression of superoxide dismutase 1 (SOD-1), Catalase (CAT) and claudin-1 mRNA. In terms of cecal fermentation characteristics, ESBM supplementation resulted in a increase (p < 0.05) in valerate content and a linear rise (p < 0.05) in propionate, butyrate, and total short-chain fatty acids levels, accompanied by a decrease (p < 0.05) in the concentrations of tryptamine and NH3 in cecal digesta. ESBM had no discernible effect on cecal microbial composition. In summary, substitution of soybean meal with ESBM effectively improved the growth performance of piglets by enhancing nutrient digestibility, antioxidant capacity, intestinal barrier and cecal microbial fermentation characteristics, with the optimal replacement level identified at 4%.
Collapse
Affiliation(s)
| | | | | | | | | | - Shuaijuan Han
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Baojiang Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
5
|
He Z, Liu S, Wen X, Cao S, Zhan X, Hou L, Li Y, Chen S, Zheng H, Deng D, Gao K, Yang X, Jiang Z, Wang L. Effect of mixed meal replacement of soybean meal on growth performance, nutrient apparent digestibility, and gut microbiota of finishing pigs. Front Vet Sci 2024; 11:1321486. [PMID: 38362303 PMCID: PMC10868527 DOI: 10.3389/fvets.2024.1321486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024] Open
Abstract
Introduction This study was carried out to investigate the effects of mixed meal (rapeseed meal, cotton meal, and sunflower meal) replacement soybean meal on growth performance, nutrient apparent digestibility, serum inflammatory factors and immunoglobulins, serum biochemical parameters, intestinal permeability, short-chain fatty acid content, and gut microbiota of finishing pigs. Methods A total of 54 pigs with an average initial weight of 97.60 ± 0.30 kg were selected and randomly divided into 3 groups according to their initial weight, with 6 replicates in each group and 3 pigs in each replicate. The trial period was 26 days. The groups were as follows: control group (CON), fed corn-soybean meal type basal diet; Corn-soybean-mixed meal group (CSM), fed corn-soybean meal-mixed meal diet with a ratio of rapeseed meal, cotton meal, and sunflower meal of 1:1:1 to replace 9.06% soybean meal in the basal diet; Corn-mixed meal group (CMM), fed a corn-mixed meal diet with a ratio of Rapeseed meal, Cotton meal and Sunflower meal of 1:1:1 to replace soybean meal in the basal diet completely. The crude protein level of the three diets was maintained at 12.5%. Results Our findings revealed no significant impact of replacing soybean meal with the mixed meal (rapeseed meal, cotton meal, and sunflower meal) on the ADG (Average daily gain), ADFI (Average daily feed intake), and F/G (Feed gain ratio) (P > 0.05), or crude protein, crude fat, and gross energy (P > 0.05) in the diet of finishing pigs. Compared with the CON group, the serum interleukin 6 (IL-6) and interleukin 10 (IL-10) concentrations were significantly decreased in the CMM group (P < 0.05). However, there is no significant effect of the mixed meal (rapeseed meal, cotton meal, and sunflower meal) replacing soybean meal in the diet on the serum interleukin 1β (IL-1β), interleukin 8 (IL-8), tumor necrosis factor-alpha (TNF-α), immunoglobulin A (IgA), immunoglobulin G (IgG), and immunoglobulin M (IgM) concentrations (P > 0.05). Concordantly, there is no significant effect of mixed meal (rapeseed meal, cotton meal, and sunflower meal) replacing soybean meal in the diet on the serum antioxidant capacity, such as total antioxidant capacity (T-AOC), catalase (CAT), and malondialdehyde (MDA) levels of finishing pigs. Moreover, compared with the CON group, serum low-density lipoprotein (LDL-C) levels were significantly lower in the CSM group (P < 0.05) and their total bilirubin (TBIL) levels were significantly lower in the CMM group (P < 0.05). There is not a significant effect on serum D-lactate and diamine oxidase (DAO) concentrations (P > 0.05). The next section of the survey showed that the replacement of soybean meal with a mixed meal (rapeseed meal, cotton meal, and sunflower meal) in the diet did not significantly influence the acetic acid, propionic acid, butyric acid, valeric acid, isobutyric acid, and isovaleric acid in the colon contents (P > 0.05). Furthermore, compared with the CON group, the CMM group diet significantly increased the abundance of Actinobacteria at the phylum level (P < 0.05), U_Actinobacteria at the class level (P < 0.05), and U_Bacteria at the class level (P < 0.05). The result also showed that the CMM group significantly reduced the abundance of Oscillospirales at the order level (P < 0.05) and Streptococcaceae at the family level (P < 0.05) compared with the CON group. The Spearman correlation analysis depicted a statistically significant positive correlation identified at the class level between the relative abundance of U_Bacteria and the serum T. BILI concentrations (P < 0.05). Moreover, a significant negative correlation was detected at the order level between the relative abundance of Oscillospirales and the levels of acetic and propionic acids in the colonic contents (P < 0.05). Additionally, there was a significant positive correlation between the serum concentrations of IL-6 and IL-10 and the relative abundance of the family Streptococcaceae (P < 0.05). Discussion This study demonstrated that the mixed meal (rapeseed meal, cotton meal, and sunflower meal) as a substitute for soybean meal in the diet had no significant negative effects on the growth performance, nutrient apparent digestibility, serum immunoglobulins, serum antioxidant capacity, intestinal permeability, short-chain fatty acid content, and diversity of gut microbiota of finishing pigs. These results can help develop further mixed meals (rapeseed meal, cotton meal, and sunflower meal) as a functional alternative feed ingredient for soybean meals in pig diets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Li Wang
- State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
6
|
Lu X, Zhang M, Ma Y, Li G, Zhao X, Qian W. Protective effect of Limosilactobacillus reuteri-fermented yogurt on mouse intestinal barrier injury induced by enterotoxigenic Escherichia coli. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7494-7505. [PMID: 37411001 DOI: 10.1002/jsfa.12836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/25/2023] [Accepted: 07/07/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Enterotoxigenic Escherichia coli (ETEC) is a pathogen that causes traveler's diarrhea, for which an effective vaccine is lacking. Previous studies showed that Limosilactobacillus reuteri could inhibit E. coli, effectively increase the expression of its tight junction protein, and reduce the adhesion of ETEC to the intestinal epithelial Caco-2 cell line. In this study, three kinds of yogurt with different starter cultures were first prepared: Lm. reuteri yogurt (fermented by Lm. reuteri alone), traditional yogurt (fermented by Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus at a ratio of 1:1) and mixed yogurt (fermented by Lm. reuteri, S. thermophilus and L. delbrueckii subsp. bulgaricus at a ratio of 1:1:1). The physiological properties, oxidative stress, intestinal barrier function, tight junction protein, pathological conditions and intestinal microbiota composition were investigated. RESULTS The data showed that Lm. reuteri-fermented yogurt pregavage could effectively alleviate the intestinal barrier impairment caused by ETEC in mice. It alleviated intestinal villus shortening and inflammatory cell infiltration, decreased plasma diamine oxidase concentration and increased claudin-1 and occludin expression in the jejunum of ETEC-infected mice. In addition, Lm. reuteri-fermented yogurt significantly reduced the ETEC load in fecal samples, reversed the increase in Pseudomonadota abundance and decreased Bacteroidota abundance caused by ETEC infection. Furthermore, the composition of the intestinal microbiota could maintain a stable state similar to that in healthy mice. CONCLUSION These findings indicate that Lm. reuteri-fermented yogurt could alleviate intestinal barrier damage, inhibit ETEC growth and maintain the stability of the intestinal microbiota during ETEC infection. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xi Lu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Mingxin Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Yuzhe Ma
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Guohua Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Xin Zhao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Weisheng Qian
- Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| |
Collapse
|
7
|
Dai ZQ, Shang LJ, Wei YS, Li ZQ, Zeng XF, Chen MX, Wang XY, Li SY, Qiao S, Yu H. Immunomodulatory Effects of Microcin C7 in Cyclophosphamide-Induced Immunosuppressed Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12700-12714. [PMID: 37602796 DOI: 10.1021/acs.jafc.3c01033] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Microcin C7 (McC) as a viable immunomodulator peptide can be a potential solution for pathogenic microbial infection in the post-antibiotic era and has gained substantial attention. This study was designed to evaluate the immunomodulatory activity of Microcin C7 in a cyclophosphamide (CTX)-induced immunodeficient mouse model. We show that Microcin C7 treatment significantly alleviated the CTX-caused body weight loss, improved the feed and water consumption to improve the state of the mice, and elevated the absolute number and proportion of peripheral blood lymphocytes as well as the level of hemoglobulin. We further aim to characterize the phenotypes of the immune function and intestinal health profiles. The results demonstrate that Microcin C7 treatment increased serum levels of immunoglobulin A (IgA), IgG, interleukin 6, and hemolysin, promoted splenic lymphocyte proliferation induced by concanavalin A and LPS, and enhanced the phagocytosis of peritoneal macrophages immunized by sheep red blood cells. Additionally, Microcin C7 treatment decreased levels of diamine oxidase and d-lactate, ameliorated CTX-induced intestinal morphological damage, and increased the levels of zonula occluden 1, occludin, claudin-1, mucin 2, and secretary IgA in the jejunum and colon. Moreover, Microcin C7 administration is sufficient to reverse CTX-induced intestinal microbiota dysbiosis by increasing the number of Lactobacillus and Bifidobacterium, decreasing the number of Escherichia coli in colonic contents. Collectively, our results demonstrate that Microcin C7 may have protective and immunomodulatory functions and could be a potential candidate used in animal feed, functional foods, and immunological regimens..
Collapse
Affiliation(s)
- Zi-Qi Dai
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs Feed Industry Center, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, China
| | - Li-Jun Shang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs Feed Industry Center, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, China
| | - Yu-Shu Wei
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, P. R. China
| | - Ze-Qiang Li
- Luzhou Modern Agriculture Development Promotion Center, Luzhou, Sichuan 646000, P. R. China
| | - Xiang-Fang Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs Feed Industry Center, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, China
| | - Mei-Xia Chen
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xin-Yu Wang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs Feed Industry Center, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, China
| | - Si-Yu Li
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs Feed Industry Center, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs Feed Industry Center, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, China
| | - Haitao Yu
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs Feed Industry Center, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, China
| |
Collapse
|
8
|
Chen J, Song Z, Ji R, Liu Y, Zhao H, Liu L, Li F. Chlorogenic acid improves growth performance of weaned rabbits via modulating the intestinal epithelium functions and intestinal microbiota. Front Microbiol 2022; 13:1027101. [PMID: 36419414 PMCID: PMC9676508 DOI: 10.3389/fmicb.2022.1027101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/18/2022] [Indexed: 12/10/2023] Open
Abstract
This study was conducted to investigate the impacts of chlorogenic acid (CGA) on growth performance, intestinal permeability, intestinal digestion and absorption-related enzyme activities, immune responses, antioxidant capacity and cecum microbial composition in weaned rabbits. One hundred and sixty weaned rabbits were allotted to four treatment groups and fed with a basal diet or a basal diet supplemented with 400, 800, or 1,600 mg/kg CGA, respectively. After a 35-d trial, rabbits on the 800 mg/kg CGA-supplemented group had higher (p < 0.05) ADG and lower (p < 0.05) F/G than those in control (CON) group. According to the result of growth performance, eight rabbits per group were randomly selected from the CON group and 800 mg/kg CGA group to collect serum, intestinal tissue samples and cecum chyme samples. Results showed that compared with the CON group, supplementation with 800 mg/kg CGA decreased (p < 0.05) levels of D-lactate, diamine oxidase, IL-1β, IL-6, and malondialdehyde (MDA), and increased IL-10 concentration in the serum; increased (p < 0.05) jejunal ratio of villus height to crypt depth, enhanced (p < 0.05) activities of maltase and sucrase, increased (p < 0.05) concentrations of IL-10, T-AOC, MHCII and transforming growth factor-α, and decreased (p < 0.05) levels of TNF-α and MDA in the jejunum of weaned rabbits. In addition, results of high-throughput sequencing showed that CGA supplementation elevated (p < 0.05) microbial diversity and richness, and increased (p < 0.05) the abundances of butyrate-producing bacteria (including genera V9D2013_group, Monoglobus, Papillibacter, UCG-005, and Ruminococcus). These results indicated that dietary supplementation with 800 mg/kg CGA could improve the growth performance of weaned rabbits by enhancing intestinal structural integrity, improving the intestinal epithelium functions, and modulating the composition and diversity of gut microbiota.
Collapse
Affiliation(s)
- Jiali Chen
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China
| | - Zhicheng Song
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China
| | - Rongmei Ji
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China
| | - Yongxu Liu
- Qingdao Kangda Food Co., Ltd., Qingdao, China
| | - Hong Zhao
- Qingdao Kangda Food Co., Ltd., Qingdao, China
| | - Lei Liu
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China
| | - Fuchang Li
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
9
|
Yu HT, Zhang JQ, Sun MC, Chen H, Shi XM, You FP, Qiao SY. Polymeric Nanohybrids Engineered by Chitosan Nanoparticles and Antimicrobial Peptides as Novel Antimicrobials in Food Biopreservatives: Risk Assessment and Anti-Foodborne Pathogen Escherichia coli O157:H7 Infection by Immune Regulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12535-12549. [PMID: 36153996 DOI: 10.1021/acs.jafc.2c05308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Polymeric nanomaterials (APs) are gaining attention as promising clinical antimicrobials with rapidly increasing antibiotic resistance. Infections by zoonotic enterohemorrhagic Escherichia coli are a severe global threat to public health. Chitosan nanoparticles-microcin J25 (CNM), a class of APs engineered by bioactive peptides and chitosan nanoparticles, can be used as a novel antimicrobial agent against bacterial infections. However, the risk assessment of CNM on animal health or its potential immune modulation to treat serotype E. coli O157:H7 infection impacts in vivo are not well understood. Herein, our findings in mouse models uncovered that oral administration of low levels of CNM significantly increased the body weight and made beneficial effects on the lifespan or clinical signs, accompanied by a significant improvement in gut health, including enhancing the intestinal barrier, immune modulation, and changes in gut microbiota compositions or metabolites. However, high concentrations of CNM induced serious adverse effects, negatively improving intestinal health targets. Anti-infective results proved that oral 0.1% CNM enhances host defense against E. coli O157:H7 infection by improving immune functions and modulating the Th1/Th2 balance. In summary, these findings uncover an instrumental link between the dosage and toxicity risk, suggesting that APs need to be comprehensively assessed for risk before application as safe and reliable food preservatives or therapeutic agents. In addition, CNM as a promising AP may markedly enhance host immunity and therapeutic effects by oral administration.
Collapse
Affiliation(s)
- Hai-Tao Yu
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, P. R. China
| | - Jia-Qi Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Ming-Chao Sun
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Han Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Xiu-Mei Shi
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Fu-Ping You
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, P. R. China
| | - Shi-Yan Qiao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs Feed Industry Center, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
10
|
Xie W, Song L, Wang X, Xu Y, Liu Z, Zhao D, Wang S, Fan X, Wang Z, Gao C, Wang X, Wang L, Qiao X, Zhou H, Cui W, Jiang Y, Li Y, Tang L. A bovine lactoferricin-lactoferrampin-encoding Lactobacillus reuteri CO21 regulates the intestinal mucosal immunity and enhances the protection of piglets against enterotoxigenic Escherichia coli K88 challenge. Gut Microbes 2021; 13:1956281. [PMID: 34369287 PMCID: PMC8354667 DOI: 10.1080/19490976.2021.1956281] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrhea in human and animal. To determine the mechanism of a bovine lactoferricin-lactoferrampin (LFCA)-encoding Lactobacillus reuteri CO21 (LR-LFCA) to enhance the intestinal mucosal immunity, we used a newborn piglet intestine model to study the intestinal response to ETEC. Pigs were chosen due to the anatomical similarity between the porcine and the human intestine.4-day-old piglets were orally administered with LR-LFCA, LR-con (L. reuteri CO21 transformed with pPG612 plasmid) or phosphate buffered saline (PBS) for three consecutive days, within 21 days after these treatments, we found that LR-LFCA can colonize the intestines of piglets, improve the growth performance, enhance immune response and is beneficial for intestinal health of piglets by improving intestinal barrier function and modulating the composition of gut microbiota. Twenty-one days after, piglets were infected with ETEC K88 for 5 days, we found that oral administration of LR-LFCA to neonatal piglets attenuated ETEC-induced the weight loss of piglets and diarrhea incidence. LR-LFCA decreased the production of inflammatory factors and oxidative stress in intestinal mucosa of ETEC-infected piglets. Additionally, LR-LFCA increased the expression of tight junction proteins in the ileum of ETEC-infected piglets. Using LPS-induced porcine intestinal epithelial cells (IPEC-J2) in vitro, we demonstrated that LR-LFCA-mediated increases in the tight junction proteins might depend on the MLCK pathway; LR-LFCA might increase the anti-inflammatory ability by inhibiting the NF-κB pathway. We also found that LR-LFCA may enhance the antioxidant capacity of piglets by activating the Nrf2/HO-1 pathway. This study demonstrates that LR-LFCA is effective at maintaining intestinal epithelial integrity and host homeostasis as well as at repairing intestinal damage after ETEC infection and is thus a promising alternative therapeutic method for intestinal inflammation.
Collapse
Affiliation(s)
- Weichun Xie
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Liying Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xueying Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yigang Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen, Harbin, China
| | - Zengsu Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Dongfang Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Shubo Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaolong Fan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhaorui Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chong Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaona Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen, Harbin, China
| | - Li Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen, Harbin, China
| | - Xinyuan Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen, Harbin, China
| | - Han Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen, Harbin, China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen, Harbin, China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen, Harbin, China
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen, Harbin, China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen, Harbin, China,CONTACT Lijie Tang College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
11
|
CBP22, a Novel Bacteriocin Isolated from Clostridium butyricum ZJU-F1, Protects against LPS-Induced Intestinal Injury through Maintaining the Tight Junction Complex. Mediators Inflamm 2021; 2021:8032125. [PMID: 34158805 PMCID: PMC8187061 DOI: 10.1155/2021/8032125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/14/2020] [Accepted: 05/10/2021] [Indexed: 12/30/2022] Open
Abstract
A novel bacteriocin secreted by Clostridium butyricum ZJU-F1 was isolated using ammonium sulfate fractionation, cation exchange chromatography, affinity chromatography, and reverse-phase high-performance liquid chromatography (RP-HPLC). The bacteriocin, named CBP22, contained 22 amino acids with the sequence PSAWQITKCAGSIAWALGSGIF. Analysis of its structure and physicochemical properties indicated that CBP22 had a molecular weight of 2264.63 Da and a +1 net charge. CBP22 showed activity against E. col K88, E. coli ATCC25922, and S. aureus ATCC26923. The effects and potential mechanisms of bacteriocin CBP22 on the innate immune response were investigated with a lipopolysaccharide- (LPS-) induced mouse model. The results showed that pretreatment with CBP22 prevented LPS-induced impairment in epithelial tissues and significantly reduced serum levels of IgG, IgA, IgM, TNF-α, and sIgA. Moreover, CBP22 treatment increased the expression of the zonula occludens and reduced permeability as well as apoptosis in the jejunum in LPS-treated mice. In summary, CBP22 inhibits the intestinal injury and prevents the gut barrier dysfunction induced by LPS, suggesting the potential use of CBP22 for treating intestinal damage.
Collapse
|
12
|
Watanabe K, Shiba T, Komatsu T, Sakuma K, Aimoto M, Nagasawa Y, Takahara A, Hori Y. The influence of hemorrhagic shock on ocular microcirculation by obtained by laser speckle flowgraphy in a white rabbit model. Microcirculation 2021; 28:e12716. [PMID: 34008269 DOI: 10.1111/micc.12716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/27/2021] [Accepted: 05/11/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE To clarify the continuous changes in the retinal vessels' and choroid's microcirculation during hemorrhagic shock and resuscitation in a rabbit model. METHODS Hemorrhagic shock by the removal of blood (30 mL) and resuscitation by a blood-return technique was induced in anesthetized male New Zealand White rabbits (n = 10). We evaluated the retinal vessel blood flow (relative flow volume: RFV) and choroidal blood flow (mean blur rate in the choroid area: MBR-CH) by laser speckle flowgraphy (LSFG), with simultaneous measurements of systemic hemodynamics and laboratory parameters. RESULTS RFV and MBR-CH showed significant decreases immediately after the initiation of blood removal and recovered by blood return. The lactate concentration tended to increase from baseline by the blood-removal operation, and it was significantly higher at the end of observation period. The %RFV and %MBR-CH each showed a significant positive correlation with mean arterial blood pressure, cardiac output, carotid blood flow, and central venous pressure. %RFV showed a significant positive correlation with %central venous oxygen saturation and negatively correlated with %lactate. The %hemoglobin did not show a significant correlation with %RFV or %MBR-CH. CONCLUSION This rabbit hemorrhagic shock model confirmed that ocular microcirculation measurements by LSFG feasibly reflect variations in systemic hemodynamics during hemorrhagic shock and recovery.
Collapse
Affiliation(s)
- Kento Watanabe
- Department of Ophthalmology, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Tomoaki Shiba
- Department of Ophthalmology, Toho University Graduate School of Medicine, Tokyo, Japan.,Department of Ophthalmology, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Tetsuya Komatsu
- Department of Ophthalmology, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Kiyoshi Sakuma
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Megumi Aimoto
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Yoshinobu Nagasawa
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Akira Takahara
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Yuichi Hori
- Department of Ophthalmology, Toho University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
13
|
Wang D, Zhou L, Zhou H, Hu H, Hou G. Chemical composition and protective effect of guava (Psidium guajava L.) leaf extract on piglet intestines. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2767-2778. [PMID: 33140438 DOI: 10.1002/jsfa.10904] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/10/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Dietary intervention is an important approach to improve intestinal function of weaned piglets. Phytogenic and herbal products have received increasing attention as in-feed antibiotic alternatives. This study investigated the chemical composition of guava leaf extract (GE) by ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Meanwhile, we investigated the effects of dietary supplementation with GE on diarrhea in relation to immune responses and intestinal health in weaned piglets challenged by enterotoxigenic Escherichia coli (ETEC). RESULTS In total, 323 characterized compounds, which including 91 phenolic compounds and 232 other compounds were identified. Animal experiment results showed that the supplementation of 50-200 mg kg-1 of GE in the diet could reduce diarrhea incidence, increase activities of superoxide dismutase, glutathione peroxidase and total anti-oxidant capacity in the serum (P < 0.05), decrease the levels of interleukin 1β, interleukin 6 and tumor necrosis factor α in the serum or jejunum mucosa (P < 0.05), and increase villus height and villus height to crypt depth ratio (P < 0.05) in the jejuna of piglets challenged by oral ETEC compared with negative control group (NC). Meanwhile, diet supplementation with 50-200 mg kg-1 GE reduced the levels of D-lactate, endothelin-1 and diamine oxidase in the serum, and increased the expression of zonula occludens-1, Claudin-1, Occludin and Na+ /H+ exchanger 3 (P < 0.05) in the jejuna mucosa of piglets challenged by ETEC compared with the NC. CONCLUSIONS These results suggested that GE could attenuate diarrhea and improve intestinal barrier function of piglets challenged by ETEC. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dingfa Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Luli Zhou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Hanlin Zhou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Haichao Hu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Guanyu Hou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
14
|
Genua F, Raghunathan V, Jenab M, Gallagher WM, Hughes DJ. The Role of Gut Barrier Dysfunction and Microbiome Dysbiosis in Colorectal Cancer Development. Front Oncol 2021; 11:626349. [PMID: 33937029 PMCID: PMC8082020 DOI: 10.3389/fonc.2021.626349] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence indicates that breakdown of the+ protective mucosal barrier of the gut plays a role in colorectal cancer (CRC) development. Inflammation and oxidative stress in the colonic epithelium are thought to be involved in colorectal carcinogenesis and the breakdown of the integrity of the colonic barrier may increase the exposure of colonocytes to toxins from the colonic milieu, enhancing inflammatory processes and release of Reactive Oxygen Species (ROS). The aetiological importance of the gut microbiome and its composition - influenced by consumption of processed meats, red meats and alcoholic drinks, smoking, physical inactivity, obesity - in CRC development is also increasingly being recognized. The gut microbiome has diverse roles, such as in nutrient metabolism and immune modulation. However, microbial encroachment towards the colonic epithelium may promote inflammation and oxidative stress and even translocation of species across the colonic lumen. Recent research suggests that factors that modify the above mechanisms, e.g., obesity and Western diet, also alter gut microbiota, degrade the integrity of the gut protective barrier, and expose colonocytes to toxins. However, it remains unclear how obesity, lifestyle and metabolic factors contribute to gut-barrier integrity, leading to metabolic disturbance, colonocyte damage, and potentially to CRC development. This review will discuss the interactive roles of gut-barrier dysfunction, microbiome dysbiosis, and exposure to endogenous toxins as another mechanism in CRC development, and how biomarkers of colonic mucosal barrier function may provide avenues for disease, prevention and detection.
Collapse
Affiliation(s)
- Flavia Genua
- Cancer Biology and Therapeutics Laboratory, Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland
| | - Vedhika Raghunathan
- College of Literature, Sciences, and the Arts, University of Michigan, Ann Arbor, MI, United States
| | - Mazda Jenab
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - William M. Gallagher
- Cancer Biology and Therapeutics Laboratory, Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland
| | - David J. Hughes
- Cancer Biology and Therapeutics Laboratory, Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland
| |
Collapse
|
15
|
Fu J, Wang T, Xiao X, Cheng Y, Wang F, Jin M, Wang Y, Zong X. Clostridium Butyricum ZJU-F1 Benefits the Intestinal Barrier Function and Immune Response Associated with Its Modulation of Gut Microbiota in Weaned Piglets. Cells 2021; 10:cells10030527. [PMID: 33801396 PMCID: PMC8001369 DOI: 10.3390/cells10030527] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/23/2021] [Accepted: 02/15/2021] [Indexed: 12/15/2022] Open
Abstract
This study investigated the effects of dietary C. butyricum ZJU-F1 on the apparent digestibility of nutrients, intestinal barrier function, immune response, and microflora of weaned piglets, with the aim of providing a theoretical basis for the application of Clostridium butyricum as an alternative to antibiotics in weaned piglets. A total of 120 weanling piglets were randomly divided into four treatment groups, in which piglets were fed a basal diet supplemented with antibiotics (CON), Bacillus licheniformis (BL), Clostridium butyricum ZJU-F1 (CB), or Clostridium butyricum and Bacillus licheniformis (CB-BL), respectively. The results showed that CB and CB-BL treatment increased the intestinal digestibility of nutrients, decreased intestinal permeability, and increased intestinal tight junction protein and mucin expression, thus maintaining the integrity of the intestinal epithelial barrier. CB and CB-BL, as exogenous probiotics, were also found to stimulate the immune response of weaned piglets and improve the expression of antimicrobial peptides in the ileum. In addition, dietary CB and CB-BL increased the proportion of Lactobacillus. The levels of butyric acid, propionic acid, acetic acid, and total acid were significantly increased in the ceca of piglets fed CB and CB-BL. Furthermore, we validated the effects of C. butyricum ZJU-F1 on the intestinal barrier function and immune response in vitro and found C. butyricum ZJU-F1 improved intestinal function and enhanced the TLR-2-MyD88-NF-κB signaling.
Collapse
Affiliation(s)
- Jie Fu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.F.); (T.W.); (X.X.); (Y.C.); (F.W.); (M.J.)
| | - Tenghao Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.F.); (T.W.); (X.X.); (Y.C.); (F.W.); (M.J.)
| | - Xiao Xiao
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.F.); (T.W.); (X.X.); (Y.C.); (F.W.); (M.J.)
| | - Yuanzhi Cheng
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.F.); (T.W.); (X.X.); (Y.C.); (F.W.); (M.J.)
| | - Fengqin Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.F.); (T.W.); (X.X.); (Y.C.); (F.W.); (M.J.)
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou 310058, China
| | - Mingliang Jin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.F.); (T.W.); (X.X.); (Y.C.); (F.W.); (M.J.)
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou 310058, China
| | - Yizhen Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.F.); (T.W.); (X.X.); (Y.C.); (F.W.); (M.J.)
- Correspondence: (Y.W.); (X.Z.)
| | - Xin Zong
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.F.); (T.W.); (X.X.); (Y.C.); (F.W.); (M.J.)
- Correspondence: (Y.W.); (X.Z.)
| |
Collapse
|
16
|
He C, Huang ZS, Yu CC, Wang XS, Jiang T, Wu M, Kong LH. Preventive electroacupuncture ameliorates D-galactose-induced Alzheimer's disease-like inflammation and memory deficits, probably via modulating the microbiota-gut-brain axis. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:341-348. [PMID: 33995945 PMCID: PMC8087854 DOI: 10.22038/ijbms.2021.49147.11256] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 02/14/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVES We aimed to observe the effects of preventive electroacupuncture (EA) on the microbiota-gut-brain axis and spatial learning and memory deficits and to investigate the possible mechanism using D-galactose (D-gal)-induced aging rats. MATERIALS AND METHODS D-gal was intraperitoneally injected to establish the aging model. We used Morris water maze to detect spatial learning and memory function of rats. RT-PCR was applied to test targeted gut microbes. The expression of zonula occludens-1 (ZO-1) and Toll-like receptor 4 (TLR4)/nuclear factor (NF)-κB pathway proteins were detected by Western blotting. ELISA was employed to evaluate the level of lipopolysaccharides (LPS), diamine oxidase (DAO) and S-100β. Additionally, we observed ionized calcium-binding adapter molecule-1 (Iba-1) expression in the hippocampal CA1 area by immunofluorescence. RESULTS Morris water maze test showed decreased mean escape latency and increased target quadrant time after EA treatment. The gut microbiota composition has been modified in EA treated rats. Molecular examination indicated that expression of ZO-1 was improved and the the concentration of LPS in blood and hippocampus were reduced in EA treated rats. Further, we observed an inhibition of activated microglia and TLR4/NF-κB pathway in EA groups. CONCLUSION Preventive EA may alleviate the impairments of the microbiota-gut-brain axis and spatial learning and memory in aging, and the mechanism may be related to the inhibition of TLR4/NF-kB signaling pathway. The combination of acupoints GV20 and ST36 can enhance the therapeutic effect in aging rats.
Collapse
Affiliation(s)
- Chuan He
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, China
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Zhong-Sheng Huang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, China
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Chao-Chao Yu
- Department of Tuina, Shenzhen Traditional Chinese Medicine Hospital
- The 4 Clinical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xue-Song Wang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, China
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Tao Jiang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, China
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Miao Wu
- Hubei Provincial Hospital of TCM, Wuhan, Hubei, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Li-Hong Kong
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, China
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| |
Collapse
|
17
|
Zeng Y, Wang Z, Zou T, Chen J, Li G, Zheng L, Li S, You J. Bacteriophage as an Alternative to Antibiotics Promotes Growth Performance by Regulating Intestinal Inflammation, Intestinal Barrier Function and Gut Microbiota in Weaned Piglets. Front Vet Sci 2021; 8:623899. [PMID: 33585620 PMCID: PMC7874526 DOI: 10.3389/fvets.2021.623899] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
This study aimed to investigate the effects of dietary bacteriophage supplementation on growth performance, intestinal morphology, barrier function, and intestinal microbiota of weaned piglets fed antibiotic-free diet. A total of 120 weaned piglets were allotted to four dietary treatments with five pens/treatment and six piglets/pen in a 21-d feeding trial. The control diet was supplemented with 25 mg/kg quinocetone and 11.25 mg/kg aureomycin in the basal diet, while the three treatment diets were supplemented with 200, 400, or 600 mg/kg bacteriophage in the basal diet, respectively. There was no difference for growth performance and all measured indices of serum and intestinal tissues between 200 mg/kg bacteriophage group and the control group with antibiotics (P > 0.05). More importantly, compared with the control diet, dietary 400 mg/kg bacteriophage inclusion increased average daily gain and average daily feed intake, and decreased feed/gain ratio and diarrhea incidence of weaned piglets (P < 0.05). Also, piglets fed 400 mg/kg bacteriophage had elevated villi height (VH) in jejunum and ileum, reduced crypt depth (CD) in jejunum and ileum, and elevated VH/CD ratio in duodenum, jejunum and ileum (P < 0.05). Compared to the control group, piglets fed 400 mg/kg bacteriophage had lower interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), and higher interleukin-10 (IL-10) concentration in serum, and higher secretory immunoglobulin A (sIgA), intestinal trefoil factor (ITF), and tumor growth factor-alpha (TGF-α) content in the ileal mucosa (P < 0.05). Besides, dietary addition with 400 mg/kg bacteriophage decreased the D-lactate concentration and diamine oxidase (DAO) activity in serum, and increased the relative mRNA expression of ZO-1, Claudin-1, Occludin, TLR2, TLR4, and TLR9, as well as the relative protein expression of Occludin in the jejunum (P < 0.05). However, the growth performance and all analyzed parameters in serum and intestinal tissues were not further improved when piglets fed 600 vs. 400 mg/kg bacteriophage (P > 0.05). MiSeq sequencing analysis showed that bacteriophage regulated the microbial composition in caecum digesta, as indicated by higher observed_species, Chao1, and ACE richness indices, as well as changes in the relative abundance of Firmicutes, Bacteroidetes, and Tenericutes (P < 0.05). Collectively, 400 mg/kg bacteriophage can be used as an antibiotics alternative for promoting the growth of weaned piglets. The underlying mechanism is associated with a positive effect of bacteriophage on intestinal inflammation, intestinal barrier function and gut microbiota in weaned piglets.
Collapse
Affiliation(s)
- Yongdi Zeng
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang, China
| | - Zirui Wang
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang, China
| | - Tiande Zou
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang, China
| | - Jun Chen
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang, China
| | - Guanhong Li
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang, China
| | - Liuzhen Zheng
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang, China
| | - Shuo Li
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang, China
| | - Jinming You
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
18
|
Lasso Peptide Microcin J25 Effectively Enhances Gut Barrier Function and Modulates Inflammatory Response in an Enterotoxigenic Escherichia coli-Challenged Mouse Model. Int J Mol Sci 2020; 21:ijms21186500. [PMID: 32899529 PMCID: PMC7555725 DOI: 10.3390/ijms21186500] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
Bacterial resistance leads to severe public health and safety issues worldwide. Alternatives to antibiotics are currently needed. A promising lasso peptide, microcin J25 (MccJ25), is considered to be the best potential substitute for antibiotics to treat pathogen infection, including enterotoxigenic Escherichia coli (ETEC). This study evaluated the efficacy of MccJ25 in the prevention of ETEC infection. Forty-five female BALB/c mice of clean grade (aged seven weeks, approximately 16.15 g) were randomly divided into three experimental groups as follows: (i) control group (uninfected); (ii) ETEC infection group; (iii) MccJ25 + ETEC group. Fifteen mice per group in five cages, three mice/cage. MccJ25 conferred effective protection against ETEC-induced body weight loss, decrease in rectal temperature and increase in diarrhea scores in mice. Moreover, in ETEC-challenged mice model, MccJ25 significantly improved intestinal morphology, decreased intestinal histopathological scores and attenuated intestinal inflammation by decreasing proinflammatory cytokines and intestinal permeability, including reducing serum diamine oxidase and D-lactate levels. MccJ25 enhanced epithelial barrier function by increasing occludin expression in the colon and claudin-1 expression in the jejunum, ultimately improving intestinal health of host. MccJ25 was further found to alleviate gut inflammatory responses by decreasing inflammatory cytokine production and expression via the activation of the mitogen-activated protein kinase and nuclear factor κB signaling pathways. Taken together, the results indicated that MccJ25 protects against ETEC-induced intestinal injury and intestinal inflammatory responses, suggesting the potential application of MccJ25 as an excellent antimicrobial or anti-inflammation agent against pathogen infections.
Collapse
|
19
|
Alterations of the Predominant Fecal Microbiota and Disruption of the Gut Mucosal Barrier in Patients with Early-Stage Colorectal Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2948282. [PMID: 32280686 PMCID: PMC7114766 DOI: 10.1155/2020/2948282] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/18/2020] [Accepted: 03/09/2020] [Indexed: 12/16/2022]
Abstract
Growing evidence indicated that the gut microbiota was the intrinsic and essential component of the cancer microenvironment, which played vital roles in the development and progression of colorectal cancer (CRC). In our present study, we investigated the alterations of fecal abundant microbiota with real-time quantitative PCR and the changes of indicators of gut mucosal barrier from 53 early-stage CRC patients and 45 matched healthy controls. We found that the traditional beneficial bacteria such as Lactobacillus and Bifidobacterium decreased significantly and the carcinogenic bacteria such as Enterobacteriaceae and Fusobacterium nucleatum were significantly increased in CRC patients. We also found gut mucosal barrier dysfunction in CRC patients with increased levels of endotoxin (LPS), D-lactate, and diamine oxidase (DAO). With Pearson's correlation analysis, D-lactate, LPS, and DAO were correlated negatively with Lactobacillus and Bifidobacterium and positively with Enterobacteriaceae and F. nucleatum. Our present study found dysbiosis of the fecal microbiota and dysfunction of the gut mucosal barrier in patients with early-stage CRC, which implicated that fecal abundant bacteria and gut mucosal barrier indicators could be used as targets to monitor the development and progression of CRC in a noninvasive and dynamic manner.
Collapse
|
20
|
Wang H, Li P, Du T, Pu G, Fan L, Gao C, Niu P, Wu C, Zhou W, Huang R. Effects of Increasing Levels of Defatted Rice Bran on Intestinal Physical Barrier and Bacteria in Finishing Pigs. Animals (Basel) 2019; 9:ani9121039. [PMID: 31795068 PMCID: PMC6940934 DOI: 10.3390/ani9121039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/18/2019] [Accepted: 11/25/2019] [Indexed: 01/19/2023] Open
Abstract
The aims of this study were to assess the effects of increasing levels of DFRB as a replacement for corns on intestinal physical barrier function and bacteria of finishing pigs. A total of 35 castrated finishing pigs (age: 158.5 ± 2.0 d, initial body weight: 62.9 ± 0.8 kg) were randomly divided into five dietary treatments (seven replicates/treatment) for a 28-day experimental period, i.e., a control diet with basal diet, and four experimental diets in which maize was replaced by 7%, 14%, 21%, and 28% DFRB, respectively. The results showed that serum endotoxins concentration and diamine oxidase (DAO) activity were both increased (linear, p = 0.0004, 0.001, respectively) with DFRB level. However, compared with control group, serum endotoxins concentration and DAO activity were not different in pigs fed with 7% DFRB in the diet. There was a quadratic response in serum D-lactate concentration to the increased DFRB (quadratic, p = 0.021). In the cecum, thickness of the intestinal wall significantly increased with increasing levels of DFRB in the diets (linear, p = 0.033), while crypt depth/thickness of the intestinal wall ratio significantly decreased with increasing level of DFRB in the diets (linear, p = 0.043). In the jejunum, total bacteria, Escherichia coli, and Bifidobacterium all responded quadratically to increasing levels of DFRB in the diets (quadratic, p = 0.003, 0.001, 0.006, respectively). Additionally, there was no difference in Escherichia coli in pigs fed 0%, 7%, and 14% DFRB diets. In the colon, there were quadratic responses in C. perfringens to the increased DFRB (quadratic, p = 0.023). C. perfringens reduced as the DFRB concentration increased from 0% to 14% and then increased. When D-lactate, total bacteria, Escherichia coli, Bifidobacterium, and C. perfringens were considered, the optimal substitution level of DFRB were 12.00%, 11.84%, 7.50%, 8.92%, and 15.92%, respectively. In conclusion, 7% DFRB had a beneficial effect on intestinal wall thickness, Bifidobacterium and C. perfringens, and had no adverse effect on intestinal permeability and Escherichia coli.
Collapse
Affiliation(s)
- Huan Wang
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
- Huaian Academy, Nanjing Agricultural University, Huaian 223003, China
| | - Pinghua Li
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
- Huaian Academy, Nanjing Agricultural University, Huaian 223003, China
- Industrial Technology System Integration Innovation Center of Jiangsu Modern Agriculture (PIG), Nanjing 210095, China
- Nanjing Agricultural University’s New Rural Research and Development Corporation of Huaian City, Huaian 223003, China
- Correspondence:
| | - Taoran Du
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
- Huaian Academy, Nanjing Agricultural University, Huaian 223003, China
| | - Guang Pu
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
- Huaian Academy, Nanjing Agricultural University, Huaian 223003, China
| | - Lijuan Fan
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
- Huaian Academy, Nanjing Agricultural University, Huaian 223003, China
| | - Chen Gao
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
- Huaian Academy, Nanjing Agricultural University, Huaian 223003, China
| | - Peipei Niu
- Huaian Academy, Nanjing Agricultural University, Huaian 223003, China
| | - Chengwu Wu
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
- Huaian Academy, Nanjing Agricultural University, Huaian 223003, China
| | - Wuduo Zhou
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
- Industrial Technology System Integration Innovation Center of Jiangsu Modern Agriculture (PIG), Nanjing 210095, China
| | - Ruihua Huang
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
- Huaian Academy, Nanjing Agricultural University, Huaian 223003, China
- Industrial Technology System Integration Innovation Center of Jiangsu Modern Agriculture (PIG), Nanjing 210095, China
| |
Collapse
|
21
|
Yu X, Zhang X, Jin H, Wu Z, Yan C, Liu Z, Xu X, Liu S, Zhu F. Zhengganxifeng Decoction Affects Gut Microbiota and Reduces Blood Pressure via Renin–Angiotensin System. Biol Pharm Bull 2019; 42:1482-1490. [DOI: 10.1248/bpb.b19-00057] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Xiaoying Yu
- Gansu University of Traditional Chinese Medicine
- Gansu Gem Flower Hospital (Lanzhou Petrochemical General Hospital)
| | - Xindi Zhang
- Gansu Gem Flower Hospital (Lanzhou Petrochemical General Hospital)
| | - Hua Jin
- Gansu University of Traditional Chinese Medicine
| | - Zhiwei Wu
- Gansu University of Traditional Chinese Medicine
| | - Chunlu Yan
- Gansu University of Traditional Chinese Medicine
| | - Zhijun Liu
- Affiliated Hospital of Gansu Traditional Chinese Medicine University
| | - Xinghua Xu
- Gansu University of Traditional Chinese Medicine
| | | | - Feifei Zhu
- Gansu University of Traditional Chinese Medicine
| |
Collapse
|
22
|
The involvement of NF- κB/P38 pathways in Scutellaria baicalensis extracts attenuating of Escherichia coli K88-induced acute intestinal injury in weaned piglets. Br J Nutr 2019; 122:152-161. [PMID: 31006408 DOI: 10.1017/s0007114519000928] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The present study was carried out to evaluate the effect of dietary supplementation of Scutellaria baicalensis extracts (SBE) on intestinal health in terms of morphology, barrier integrity and immune responses in weaned piglets challenged with Escherichia coli K88. A total of seventy-two weaned piglets were assigned into two groups to receive a basal diet without including antibiotic additives or the basal diet supplemented 1000 mg SBE/kg diet for 14 d. On day 15, twelve healthy piglets from each group were selected to expose to oral administration of either 10 ml 1 × 109 colony-forming units of E. coli K88 or the vehicle control. After 48 h of E.coli K88 challenge, blood was sampled, and then all piglets were killed humanely for harvesting jejunal and ileal samples. Dietary supplementation of SBE significantly decreased diarrhoea frequency and improved feed conversion ratio (P < 0·05). SBE supplementation to E.coli K88-challenged piglets improved villous height and villous height/crypt depth (P < 0·05), recovered the protein expression of occludin and zonula occludens-2 in both the jejunum and ileum (P < 0·05), and mitigated the increases in plasma IL-1β, TNF-α, IL-6, IgA and IgG (P < 0·05). Meanwhile, dietary SBE effectively inhibited the stimulation of NF-κB, P38 and TNF-α as well as IL-1β in the small intestine of piglets challenged by E. coli K88 and prevented the activation of NF-κB/P38 signalling pathways (P < 0·05). Collectively, SBE supplementation can potently attenuate diarrhoea in weaning piglets and decrease inflammatory cytokine expressions through inhibiting the NF-κB and P38 signalling pathways.
Collapse
|
23
|
Peng P, Chen J, Yao K, Yin Y, Long L, Fang R. The effects of dietary supplementation with porous zinc oxide on growth performance, intestinal microbiota, morphology, and permeability in weaned piglets. Anim Sci J 2019; 90:1220-1228. [PMID: 31273888 DOI: 10.1111/asj.13228] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 11/27/2022]
Abstract
The objective of this experiment was to evaluate the effects of dietary supplementation with porous zinc oxide (HiZox) on growth performance, intestinal microbiota, morphology, and permeability in weaned piglets. A total of 128 weaned piglets [(Landrace × Yorkshire) × Duroc] with an average body weight (BW) of (6.55 ± 0.25 kg; 21 d of age) were randomly assigned to four dietary treatments: (1) a corn-soybean basal diet; (2) basal diet + 3,000 mg/kg conventional ZnO; (3) basal diet + 200 mg/kg HiZox; (4) basal diet + 500 mg/kg HiZox. The experiments lasted for 28 days. Incremental HiZox in the diet increased ADG (linear p = 0.015; quadratic p = 0.043) and ADFI (linear p = 0.027; quadratic p = 0.038), and the diarrhea index decreased linearly and quadratically (p < 0.01) as HiZox supplemented increased. Furthermore, supplementation with HiZox increased the amounts of Lactobacillus spp. (p < 0.05) in the ileum and cecum in comparison with that of control treatment or 3,000 mg/kg ZnO treatment, while decreased the populations of Escherichia coli, Clostridium coccoides, and Clostridium. leptum subgroup (p < 0.05) in the ileum and cecum relative to those in control treatment. The addition of HiZox increased the villus height and villus-to-crypt ratio (VC) of duodenum, jejunum, and ileum (p < 0.05), while decreased the crypt depth of jejunum (p < 0.05) and tended to reduce the crypt depth of duodenum (p < 0.10) compared with the control treatment. Piglets fed with 500 mg/kg HiZox had lower serum D-lactate and diamine oxidase (DAO) than those fed with basal control diet or 3,000 mg/kg ZnO diet (p < 0.01). The results suggested that supplementation with HiZox modulated intestinal microbial composition and improved intestinal morphology, which may exert protective effects on the integrity of the mucosal barrier function of weaned piglets, was as efficacious as pharmaceutical doses of ZnO in enhancing growth performance, indicating that the HiZox may be a promising alternative to pharmaceutical doses of ZnO.
Collapse
Affiliation(s)
- Peng Peng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jiashun Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Kang Yao
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Yulong Yin
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Lina Long
- College of Life Science and Engineering, Foshan University, Foshan Guangdong, China
| | - Rejun Fang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
24
|
Shen L, Ao L, Xu H, Shi J, You D, Yu X, Xu W, Sun J, Wang F. Poor short-term glycemic control in patients with type 2 diabetes impairs the intestinal mucosal barrier: a prospective, single-center, observational study. BMC Endocr Disord 2019; 19:29. [PMID: 30849982 PMCID: PMC6408809 DOI: 10.1186/s12902-019-0354-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/25/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND To determine the relation between daily glycemic fluturation and the intestinal mucosal barrier dysfunction in type 2 diabetes mellitus (T2DM). METHODS Totally 66 patients with T2DM were enrolled, 33 healthy volunteers were also recruited according to the enrolled patients' gender and age in a ratio of 2: 1. Patients were bisected by the median of endotoxins level into low(< 12.31 μ/l, n = 33) and high(≥12.31 μ/l, n = 33) blood endotoxin groups. Clinical data and blood glucose fluctuations were compared between groups. Multivariate regression analysis was used to determine the independent factors affecting the intestinal mucosal barrier. RESULTS Serum endotoxin [12.1 (4.2~22.0) vs 3.2 (1.3~6.0), P < 0.001] and fasting blood glucose levels [9.8 ± 3.6 vs 5.4 ± 0.7, P < 0.001] were significantly higher in patients with T2DM than the control group. The standard deviation of blood glucose (SDBG) within 1 day [2.9 (2.0~3.3) vs. 2.1 (1.6~2.5), P = 0.012] and the largest amplitude of glycemic excursions (LAGE) [7.5 (5.4~8.9) vs. 5.9 (4.3~7.4), P = 0.034] were higher in the high endotoxin group than in the low endotoxin group. A multiple linear stepwise regression revealed a positive correlation between SDBG with endotoxin (standard partial regression coefficient = 0.255, P = 0.039). CONCLUSIONS T2DM patients who incapable of maintaining stable blood glucose level are at a higher risk to associated with intestinal mucosal barrier injury.
Collapse
Affiliation(s)
- Lijuan Shen
- Department of Clinical Laboratory, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, No.1, Chengbei Rd, Jiading District, Shanghai, 201800, China
| | - Li Ao
- Department of Endocrinology, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201800, China
| | - Haoben Xu
- Anting Town Community Healthcare Center of Jiading District, Shanghai, 201805, China
| | - Junfeng Shi
- Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Dali You
- Department of Critical Care Medicine, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, No.1, Chengbei Rd, Jiading District, Shanghai, 201800, China
| | - Xiuwen Yu
- Department of Clinical Laboratory, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, No.1, Chengbei Rd, Jiading District, Shanghai, 201800, China
| | - Weixin Xu
- Department of Clinical Laboratory, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, No.1, Chengbei Rd, Jiading District, Shanghai, 201800, China
| | - Jie Sun
- Department of Clinical Laboratory, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, No.1, Chengbei Rd, Jiading District, Shanghai, 201800, China.
| | - Fei Wang
- Department of Critical Care Medicine, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, No.1, Chengbei Rd, Jiading District, Shanghai, 201800, China.
| |
Collapse
|
25
|
Han S, Yu H, Yang F, Qiao S, He P. Effect of dietary supplementation with hyperimmunized hen egg yolk powder on diarrhoea incidence and intestinal health of weaned pigs. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1581732] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Shuaijuan Han
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, College of Animal Science and Technology, China Agricultural University, Beijing, People’s Republic of China
| | - Haitao Yu
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, College of Animal Science and Technology, China Agricultural University, Beijing, People’s Republic of China
| | - Fengfan Yang
- Hubei Shendi Biological Technology Co., LTD, Jingmen, People’s Republic of China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, College of Animal Science and Technology, China Agricultural University, Beijing, People’s Republic of China
| | - Pingli He
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, College of Animal Science and Technology, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
26
|
Han J, Meng J, Chen S, Li C, Wang S. Rice straw biochar as a novel niche for improved alterations to the cecal microbial community in rats. Sci Rep 2018; 8:16426. [PMID: 30401962 PMCID: PMC6219602 DOI: 10.1038/s41598-018-34838-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 10/27/2018] [Indexed: 12/19/2022] Open
Abstract
Biochar as additive has been shown positive effect in animal production, which may be linked to the role of gastrointestinal microbial modulation. This study aimed to assess the effects of biochar on the gut microbial communities in terms of their structure and diversity. Illumina high-throughput technology was utilized to evaluate the cecal microbial community in Wistar rats received oral rice straw biochar (RSB) at 1120 mg/kg of body weight for 5 weeks. RSB improved the gut mucosal structure and epithelial integrity. More importantly, principal coordinate analysis of UniFrac distances based on a 97% operational taxonomic unit composition and abundance indicated that the bacterial community was ameliorated after RSB addition (P < 0.05). Firmicutes and Bacteroidetes were found to be the prevalent phyla accounting for approximately 90% of the sequences and their ratio of relative abundance was increased by RSB addition (P < 0.05). Improved bacterial proportion of unclassified Lachnospiraceae (P < 0.001), Oscillibacter (P = 0.02), and Clostridium IV (P = 0.02) and XIVa (P = 0.02) as well as decreased abundances of Prevotella (P < 0.001) and Bacteroides (P = 0.03) were also detected at genus level following RSB treatment. These results revealed that RSB altered and improved the cecal microbial community, which may contribute to the affected growth and gut status in rats.
Collapse
Affiliation(s)
- Jie Han
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Dongling Road 120, Shenyang, Liaoning Province, 110866, P.R. China
- Liaoning Biochar Engineering & Technology Research Center, Shenyang Agricultural University, Dongling Road 120, Shenyang, Liaoning Province, 110866, P.R. China
| | - Jun Meng
- Liaoning Biochar Engineering & Technology Research Center, Shenyang Agricultural University, Dongling Road 120, Shenyang, Liaoning Province, 110866, P.R. China.
| | - Shuya Chen
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Dongling Road 120, Shenyang, Liaoning Province, 110866, P.R. China
| | - Chuang Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Dongling Road 120, Shenyang, Liaoning Province, 110866, P.R. China
| | - Shuo Wang
- Testing and Analysis Center, Shenyang Agricultural University, Dongling Road 120, Shenyang, Liaoning Province, 110866, P.R. China
| |
Collapse
|
27
|
Yu H, Shang L, Zeng X, Li N, Liu H, Cai S, Huang S, Wang G, Wang Y, Song Q, Qiao S. Risks Related to High-Dosage Recombinant Antimicrobial Peptide Microcin J25 in Mice Model: Intestinal Microbiota, Intestinal Barrier Function, and Immune Regulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11301-11310. [PMID: 30298738 DOI: 10.1021/acs.jafc.8b03405] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Antimicrobial peptide (AMP) can be a promising alternative in various domains. However, further risk information is required. In this study, mice were orally administrated different dosages of recombinant AMP microcin J25 (4.55, 9.1, and 18.2 mg/kg; MccJ25) for 1 week, and the toxicity risk impacts were examined. We evidenced that middle-dosage administration mice had a lower inflammation, better body weight, and ameliorated mucosal morphology, accompanied by reduced intestinal permeability and tighter intestinal barrier. Fecal microbiota composition analysis in middle- or low-dosage mice revealed the Bifidobacterium count was increased and the coliform bacteria count was decreased, and increased in short-chain fatty acid levels. Unexpectedly, there was a risk that high-dosage mice increased intestinal permeability and imbalance of intestinal bacteria. Taken together, these data indicated a safe threshold for usage of MccJ25 in clinical practice. Such studies can effectively enhance the safety of various aspects such as food preservative and drug.
Collapse
Affiliation(s)
- Haitao Yu
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre , China Agricultural University , Beijing 100193 , People's Republic of China
- Beijing Bio-feed Additives Key Laboratory , Beijing 100193 , People's Republic of China
| | - Lijun Shang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre , China Agricultural University , Beijing 100193 , People's Republic of China
- Beijing Bio-feed Additives Key Laboratory , Beijing 100193 , People's Republic of China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre , China Agricultural University , Beijing 100193 , People's Republic of China
- Beijing Bio-feed Additives Key Laboratory , Beijing 100193 , People's Republic of China
| | - Ning Li
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre , China Agricultural University , Beijing 100193 , People's Republic of China
- Beijing Bio-feed Additives Key Laboratory , Beijing 100193 , People's Republic of China
| | - Hongbin Liu
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre , China Agricultural University , Beijing 100193 , People's Republic of China
- Beijing Bio-feed Additives Key Laboratory , Beijing 100193 , People's Republic of China
| | - Shuang Cai
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre , China Agricultural University , Beijing 100193 , People's Republic of China
- Beijing Bio-feed Additives Key Laboratory , Beijing 100193 , People's Republic of China
| | - Shuo Huang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre , China Agricultural University , Beijing 100193 , People's Republic of China
- Beijing Bio-feed Additives Key Laboratory , Beijing 100193 , People's Republic of China
| | - Gang Wang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre , China Agricultural University , Beijing 100193 , People's Republic of China
- Beijing Bio-feed Additives Key Laboratory , Beijing 100193 , People's Republic of China
| | - Yuming Wang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre , China Agricultural University , Beijing 100193 , People's Republic of China
- Beijing Bio-feed Additives Key Laboratory , Beijing 100193 , People's Republic of China
| | - Qinglong Song
- Beijing Bio-feed Additives Key Laboratory , Beijing 100193 , People's Republic of China
- Beijing Longkefangzhou Bio-Engineering Technology Co., Ltd. , Beijing 100193 , People's Republic of China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre , China Agricultural University , Beijing 100193 , People's Republic of China
- Beijing Bio-feed Additives Key Laboratory , Beijing 100193 , People's Republic of China
| |
Collapse
|
28
|
Yu HT, Ding XL, Li N, Zhang XY, Zeng XF, Wang S, Liu HB, Wang YM, Jia HM, Qiao SY. Dietary supplemented antimicrobial peptide microcin J25 improves the growth performance, apparent total tract digestibility, fecal microbiota, and intestinal barrier function of weaned pigs. J Anim Sci 2018; 95:5064-5076. [PMID: 29293710 DOI: 10.2527/jas2017.1494] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Microcin J25 (MccJ25) is an antimicrobial peptide produced by a fecal strain of Escherichia coli containing 21 AA. This study was performed primarily to evaluate the effects of MccJ25 as a potential substitute for antibiotics (AB) on growth performance, nutrient digestibility, fecal microbiota, and intestinal barrier function in weaned pigs. In the present study, 180 weaned pigs (7.98 ± 0.29 kg initial BW) were randomly assigned to 1 of 5 treatments, including a basal diet (CON) and CON supplemented with AB (20 mg/kg colistin sulfate; ABD) or 0.5, 1.0, and 2.0 mg/kg MccJ25. On d 0 to 14, dietary supplementation with MccJ25 and ABD had positive effects on ADG, ADFI, diarrhea incidence, and G:F ( < 0.05). Pigs fed the 2.0 mg/kg MccJ25 diet had greater ADG ( < 0.05) and marginally greater G:F ( < 0.10) compared with pigs fed the ABD diet. Compared with the CON diet, the 2.0 mg/kg MccJ25 diet sharply improved ( < 0.05) ADG and G:F and decreased ( < 0.05) diarrhea incidence (d 15 to 28 and d 0 to 28). Apparent digestibility of nutrients in pigs fed 1.0 and 2.0 mg/kg MccJ25 was improved ( < 0.05) compared with that of pigs fed CON and ABD. The serum cytokines IL-6 and IL-1β and tumor necrosis factor-α levels in pigs fed MccJ25 were greater than in pigs fed CON ( < 0.05). Additionally, the IL-10 concentration in pigs fed MccJ25 was sharply increased ( < 0.05) compared with that of pigs fed CON. Pigs fed 1.0 and 2.0 mg/kg MccJ25 diets had remarkably decreased lactate, diamine oxidase, and endotoxin concentrations and fecal numbers ( < 0.05) and improved fecal and numbers ( < 0.05). Compared with the ABD diet, the diet containing 2.0 mg/kg MccJ25 did not increase lactate, diamine oxidase, and endotoxin (d 14) concentrations ( < 0.05) or decrease the and (d 28) numbers ( < 0.05). The diets containing 1.0 and 2.0 mg/kg MccJ25 and ABD (d 28) improved lactate concentration and short-chain fatty acid concentrations, including acetate, propionate, and butyrate, in feces ( < 0.05). Moreover, the pigs fed 2.0 mg/kg MccJ25 had greater lactate, butyrate (d 14), and propionate concentrations than the pigs fed the ABD diet ( < 0.05). In conclusion, dietary supplemented MccJ25 effectively improved performance, attenuated diarrhea and systematic inflammation, enhanced intestinal barrier function, and improved fecal microbiota composition of weaned pigs. Therefore, MccJ25 could be a potential effective alternative to AB for weaned pigs.
Collapse
|
29
|
Pan L, Zhao PF, Ma XK, Shang QH, Xu YT, Long SF, Wu Y, Yuan FM, Piao XS. Probiotic supplementation protects weaned pigs against enterotoxigenic Escherichia coli K88 challenge and improves performance similar to antibiotics. J Anim Sci 2017; 95:2627-2639. [PMID: 28727032 DOI: 10.2527/jas.2016.1243] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
These studies evaluated the effects of probiotics (PB) as a potential substitute for antibiotics (AB) on diarrhea in relation to immune responses and intestinal health in weaned pigs challenged with enterotoxigenic (ETEC) K88 (Exp. 1) and the effects of PB on performance and nutrient digestibility in weaned pigs (Exp. 2). In Exp. 1, 24 weaned barrows (4.9 ± 0.4 kg initial BW) were randomly assigned to 1 of 4 treatments. The treatments consisted of pigs fed an unsupplemented corn-soybean meal basal diet and not challenged (NON-C) or challenged with ETEC K88 (CHA-C) on d 9 and pigs fed the same basal diet supplemented with AB (100 mg/kg zinc bacitracin, 50 mg/kg colistin sulfate, and 100 mg/kg olaquindox; CHA-AB) or 500 mg/kg PB ( and ; CHA-PB) and challenged with ETEC K88 on d 9. In Exp. 2, 108 weaned pigs (7.5 ± 0.9 kg initial BW) not challenged with ETEC K88 were randomly assigned to 1 of 3 treatments, including an AB-free basal diet (CON) and the basal diet with AB (ABD) or 500 mg/kg PB supplementation (PBD). In Exp. 1, after challenge, CHA-C decreased ( < 0.05) ADG and ADFI, whereas CHA-AB and CHA-PB revealed no significant change compared with NON-C. Compared with CHA-C, CHA-AB and CHA-PB improved ( < 0.05) ADG and ADFI and decreased ( < 0.05) the diarrhea incidence in pigs. Mucosal secretory Ig A contents in the jejunum and ileum were greater in CHA-C than in NON-C ( < 0.05) and lower than in CHA-PB ( < 0.05). The diet containing PB alleviated the increase in the endotoxin and diamine oxidase concentration and cecal count ( < 0.05) and the decrease in intestinal villus height, cecal count, and jejunal mucosal occludin protein abundance ( < 0.05). In Exp. 2, dietary supplementation with AB and PB had positive effects on ADG and feed efficiency ( < 0.05). Compared with CON, apparent digestibility of nutrients in PBD was improved ( < 0.05). Collectively, PB supplementation protected the pigs against ETEC K88 infection by enhancing immune responses and attenuating intestinal damage and improved the performance and nutrient digestibility of weaned pigs. Therefore, PB could be a potential effective alternative to AB for ameliorating diarrhea and improving performance in weaned pigs.
Collapse
|
30
|
Dai-Huang-Fu-Zi-Tang Alleviates Intestinal Injury Associated with Severe Acute Pancreatitis by Regulating Mitochondrial Permeability Transition Pore of Intestinal Mucosa Epithelial Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:4389048. [PMID: 29403537 PMCID: PMC5748303 DOI: 10.1155/2017/4389048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/21/2017] [Indexed: 12/27/2022]
Abstract
Objective The aim of the present study was to examine whether Dai-Huang-Fu-Zi-Tang (DHFZT) could regulate mitochondrial permeability transition pore (MPTP) of intestinal mucosa epithelial cells for alleviating intestinal injury associated with severe acute pancreatitis (SAP). Methods A total of 72 Sprague-Dawley rats were randomly divided into 3 groups (sham group, SAP group, and DHFZT group, n = 24 per group). The rats in each group were divided into 4 subgroups (n = 6 per subgroup) accordingly at 1, 3, 6, and 12 h after the operation. The contents of serum amylase, D-lactic acid, diamine oxidase activity, and degree of MPTP were measured by dry chemical method and enzyme-linked immunosorbent assay. The change of mitochondria of intestinal epithelial cells was observed by transmission electron microscopy. Results The present study showed that DHFZT inhibited the openness of MPTP at 3, 6, and 12 h after the operation. Meanwhile, it reduced the contents of serum D-lactic acid and activity of diamine oxidase activity and also drastically relieved histopathological manifestations and epithelial cells injury of intestine. Conclusion DHFZT alleviates intestinal injury associated SAP via reducing the openness of MPTP. In addition, DHFZT could also decrease the content of serum diamine oxidase activity and D-lactic acid after SAP.
Collapse
|
31
|
Dose-dependent effects of peroxisome proliferator-activated receptors β/δ agonist on systemic inflammation after haemorrhagic shock. Cytokine 2017; 103:127-132. [PMID: 28969938 DOI: 10.1016/j.cyto.2017.09.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/27/2017] [Accepted: 09/20/2017] [Indexed: 11/20/2022]
Abstract
INTRODUCTION PPARβ/δ agonists are known to modulate the systemic inflammatory response after sepsis. In this study, inflammation modulation effects of PPARβ/δ are investigated using the selective PPARβ/δ agonist (GW0742) in a model of haemorrhagic shock (HS)-induced sterile systemic inflammation. METHODS Blood pressure-controlled (35±5mmHg) HS was performed in C57/BL6 mice for 90min. Low-dose GW0742 (0.03mg/kg/BW) and high-dose GW0742 (0.3mg/kg/BW) were then administered at the beginning of resuscitation. Mice were sacrificed 6h after induction of HS. Plasma levels of IL-6, IL-1β, IL-10, TNFα, KC, MCP-1, and GM-CSF were determined by ELISA. Myeloperoxidase (MPO) activity in pulmonary and liver tissues was analysed with standardised MPO kits. RESULTS In mice treated with high-dose GW0742, plasma levels of IL-6, IL-1β, and MCP-1 were significantly increased compared to the control group mice. When compared to mice treated with low-dose GW0742 plasma levels of IL-6, IL-1β, GM-CSF, KC, and MCP-1 were significantly elevated in high-dose-treated mice. Low-dose GW0742 treatment was associated with a non-significant downtrend of inflammatory factors in mice with HS. No significant changes of MPO activity in lung and liver were observed between the control group and the GW0742 treatment groups. CONCLUSION This study identified dose-dependent effects of GW0742 on systemic inflammation after HS. While high-dose GW0742 substantially enhanced the systemic inflammatory response, low-dose GW0742 led to a downtrend of pro-inflammation cytokine expression. The exact mechanisms are yet unknown and need to be assessed in further studies.
Collapse
|
32
|
Liu Q, Ni X, Wang Q, Peng Z, Niu L, Wang H, Zhou Y, Sun H, Pan K, Jing B, Zeng D. Lactobacillus plantarum BSGP201683 Isolated from Giant Panda Feces Attenuated Inflammation and Improved Gut Microflora in Mice Challenged with Enterotoxigenic Escherichia coli. Front Microbiol 2017; 8:1885. [PMID: 29018435 PMCID: PMC5623042 DOI: 10.3389/fmicb.2017.01885] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 09/14/2017] [Indexed: 12/28/2022] Open
Abstract
In this work, we searched for an effective probiotic that can help control intestinal infection, particularly enterotoxigenic Escherichia coli K88 (ETEC) invasion, in giant panda (Ailuropoda melanoleuca). As a potential probiotic strain, Lactobacillus plantarum BSGP201683 (L. plantarum G83) was isolated from the feces of giant panda and proven beneficial in vitro. This study was aimed to evaluate the protective effect of L. plantarum G83 in mice challenged with ETEC. The mice were orally administered with 0.2 mL of PBS containing L. plantarum G83 at 0 colony-forming units (cfu) mL−1 (control; negative control, ETEC group), 5.0 × 108 cfu mL−1 (LDLP), 5.0 × 109 cfu mL−1 (MDLP), and 5.0 × 1010 cfu mL−1 (HDLP) for 14 consecutive days. At day 15, the mice (LDLP, MDLP, HDLP, and ETEC groups) were challenged with ETEC and assessed at 0, 24, and 144 h. Animal health status; chemical and biological intestinal barriers; and body weight were measured. Results showed that L. plantarum G83 supplementation protected the mouse gut mainly by attenuating inflammation and improving the gut microflora. Most indices significantly changed at 24 h after challenge compared to those at 0 and 144 h. All treatment groups showed inhibited plasma diamine oxidase activity and D-lactate concentration. Tight-junction protein expression was down-regulated, and interleukin (IL)-1β, IL-6, IL-8, TLR4, and MyD88 levels were up-regulated in the jejunum in the LDLP and MDLP groups. The number of the Enterobacteriaceae family and the heat-labile enterotoxin (LT) gene decreased (P < 0.05) in the colons in the LDLP and MDLP groups. All data indicated that L. plantarum G83 could attenuate acute intestinal inflammation caused by ETEC infection, and the low and intermediate doses were superior to the high dose. These findings suggested that L. plantarum G83 may serve as a protective probiotic for intestinal disease and merits further investigation.
Collapse
Affiliation(s)
- Qian Liu
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiang Wang
- Chengdu Wildlife Institute, Chengdu Zoo, Chengdu, China
| | - Zhirong Peng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lili Niu
- Chengdu Wildlife Institute, Chengdu Zoo, Chengdu, China
| | - Hengsong Wang
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yi Zhou
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hao Sun
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Kangcheng Pan
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Bo Jing
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Dong Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
33
|
Wu J, Lyu B, Gan T, Wang L, Zhu M. Electroacupuncture improves acute bowel injury recovery in rat models. Exp Ther Med 2017; 14:4655-4662. [PMID: 29201164 PMCID: PMC5704319 DOI: 10.3892/etm.2017.5159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/24/2017] [Indexed: 01/24/2023] Open
Abstract
Electroacupuncture (EA) accelerates intestinal functional recovery in sepsis. The present study investigated ghrelin and ghrelin receptor (GSH-R) levels during EA in rats with acute bowel injury (ABI). Rats were grouped into four groups: Sham, ABI, ABI+EA and ABI+GHRA+EA (n=12 per group). ABI was induced by cecal ligation and puncture (CLP). EA on bilateral Zusanli acupoints was performed following CLP. GSH-R blocker (GHRA) was used following CLP but prior to EA for ABI+GHRA+EA rats. Rats were sacrificed 12 h following CLP. Serum ghrelin, tumor necrosis factor-α (TNF-α) and high mobility group box 1 (HMGB1) levels, as well as ghrelin and GSH-R protein expression, water content, pathological changes and myeloperoxidase (MPO) and diamine oxidase (DAO) activities in the bowel tissues, were measured. ABI rats, compared with the sham rats, had significantly lower levels of ghrelin and GSH-R in the serum and bowel tissue, and higher Chiu's score (all P<0.05). The ABI+EA rats, compared with the ABI rats, had significantly reduced serum TNF-α and HMGB1 levels, bowel water content, MPO activity and Chiu's score (all P<0.05), and significantly higher serum ghrelin (121.2±10.7 vs. 86.7±6.4 pg/ml), bowel ghrelin (0.12±0.02 vs. 0.08±0.01), GSH-R (0.05±0.04 vs. 0.03±0.01) and DAO activity (18.74±4.18 vs. 13.52±2.33 U/ml; all P<0.05), indicating an improvement of the intestinal mucosal barrier. GHRA reversed the protective effects of EA. Therefore, EA improved ABI recovery by promoting ghrelin secretion and upregulating GSH-R expression.
Collapse
Affiliation(s)
- Jiannong Wu
- Department of Critical Care, The First Affiliated Hospital, Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang 310053, P.R. China
| | - Bin Lyu
- Division of Gastroenterology, The First Affiliated Hospital, Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang 310053, P.R. China
| | - Tie'er Gan
- Department of Infectious Diseases, The First Affiliated Hospital, Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang 310053, P.R. China
| | - Lingcong Wang
- Department of Critical Care, The First Affiliated Hospital, Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang 310053, P.R. China
| | - Meifei Zhu
- Department of Critical Care, The First Affiliated Hospital, Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang 310053, P.R. China
| |
Collapse
|
34
|
Gao XY, Zhou XF, Wang H, Lv N, Liu Y, Guo JR. Effects of heme oxygenase-1 recombinant Lactococcus lactis on the intestinal barrier of hemorrhagic shock rats. ACTA ACUST UNITED AC 2017; 50:e5601. [PMID: 28591377 PMCID: PMC5463530 DOI: 10.1590/1414-431x20175601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 03/22/2017] [Indexed: 12/22/2022]
Abstract
This study aimed to investigate the effects of heme oxygenase-1 recombinant Lactococcus lactis (LL-HO-1) on the intestinal barrier of rats with hemorrhagic shock. One hundred Sprague-Dawley male rats (280-320 g) were randomly divided into healthy control group (N group) and hemorrhagic shock group (H group). Each group was subdivided into HO1t, HO2t, HO3t, PBS and LL groups in which rats were intragastrically injected with LL-HO-1 once, twice and three times, PBS and L. lactis (LL), respectively. The mortality, intestinal myeloperoxidase (MPO) activity, intestinal contents of TNF-α, IL-10 and HO-1, and intestinal Chiu's score were determined. Results showed that in N group, the HO-1 content increased after LL-HO-1 treatment, and significant difference was observed in HO1t group and HO2t group (P<0.05). In H groups, MPO activity and Chiu's score decreased, but IL-10 content increased in LL-HO-1-treated groups when compared with PBS and LL groups (P<0.05). When compared with N group, the MPO activity reduced dramatically in LL-HO-1-treated groups. Thus, in healthy rats (N group), intragastrical LL-HO-1 treatment may increase the intestinal HO-1 expression, but has no influence on the intestinal barrier. In hemorrhagic shock rats, LL-HO-1 may significantly protect the intestinal barrier, and repeating the intragastrical LL-HO-1 treatments twice has the most obvious protection.
Collapse
Affiliation(s)
- X Y Gao
- Department of Anesthesiology, Gongli Hospital, Second Military Medical University, Shanghai, China.,Shool of Medicine, Shandong University, Shandong, China
| | - X F Zhou
- Department of Anesthesiology, Gongli Hospital, Second Military Medical University, Shanghai, China
| | - H Wang
- Department of Anesthesiology, Gongli Hospital, Second Military Medical University, Shanghai, China
| | - N Lv
- Department of Anesthesiology, Gongli Hospital, Second Military Medical University, Shanghai, China
| | - Y Liu
- Department of Anesthesiology, Gongli Hospital, Second Military Medical University, Shanghai, China
| | - J R Guo
- Department of Anesthesiology, Gongli Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
35
|
Rong Y, Lu Z, Zhang H, Zhang L, Song D, Wang Y. Effects of casein glycomacropeptide supplementation on growth performance, intestinal morphology, intestinal barrier permeability and inflammatory responses in Escherichia coli K88 challenged piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2015; 1:54-59. [PMID: 29766986 PMCID: PMC5884472 DOI: 10.1016/j.aninu.2015.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 05/05/2015] [Indexed: 12/13/2022]
Abstract
Casein glycomacropeptide (CGMP) is a bioactive peptide derived from milk with multiple functions. This study was aimed at evaluating the effects of CGMP as a potential feed additive on growth performance, intestinal morphology, intestinal barrier permeability and inflammatory responses of Escherichia coli K88 (E. coli K88) challenged piglets. Eighteen weaning piglets were randomly assigned to three groups. Control group and K88 challenged group received a basal diet, and CGMP treated group received the basal diet supplemented with 1% of CGMP powder. The trail lasted for 12 days, K88 was orally administered to the piglets of K88 challenged group and CGMP treated group on days 8-10. The results showed that the diet containing 1% CGMP significantly alleviated the decrease in average daily gain (P < 0.05), increase in pathogenic bacteria amounts in intestinal contents (P < 0.05), intestinal morphology (P > 0.05) and barrier permeability damage (P < 0.05), and acute inflammatory response (P < 0.05) induced by E. coli K88 infection. In conclusion, CGMP supplementation in the diet protected the weaning piglets against E. coli K88 infection.
Collapse
Affiliation(s)
| | | | | | | | | | - Yizhen Wang
- Key Laboratory of Animal Nutrition and Feed Science, Ministry of Agriculture, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Institute of Feed Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|