1
|
Pushkarev SV, Kirilin EM, Švedas VK, Nilov DK. Mechanism of PARP1 Elongation Reaction Revealed by Molecular Modeling. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1202-1210. [PMID: 39218019 DOI: 10.1134/s0006297924070046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 09/04/2024]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) plays a major role in the DNA damage repair and transcriptional regulation, and is targeted by a number of clinical inhibitors. Despite this, catalytic mechanism of PARP1 remains largely underexplored because of the complex substrate/product structure. Using molecular modeling and metadynamics simulations we have described in detail elongation of poly(ADP-ribose) chain in the PARP1 active site. It was shown that elongation reaction proceeds via the SN1-like mechanism involving formation of the intermediate furanosyl oxocarbenium ion. Intriguingly, nucleophilic 2'A-OH group of the acceptor substrate can be activated by the general base Glu988 not directly but through the proton relay system including the adjacent 3'A-OH group.
Collapse
Affiliation(s)
- Sergey V Pushkarev
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | | | - Vytas K Švedas
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Dmitry K Nilov
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| |
Collapse
|
2
|
Fang B, Dai X, Li B, Qu Y, Li YQ, Zhao M, Yang Y, Li W. Self-assembly of ultra-small-sized carbon nanoparticles in lipid membrane disrupts its integrity. NANOSCALE ADVANCES 2021; 4:163-172. [PMID: 36132950 PMCID: PMC9417506 DOI: 10.1039/d1na00529d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/12/2021] [Indexed: 06/15/2023]
Abstract
Although nanomaterials are widely studied in biomedical applications, the major concern of nanotoxicity still exists. Therefore, numerous studies have been conducted on the interactions of various biomolecules with various types of nanomaterials, including carbon nanotubes, graphene, fullerene etc. However, the size effect of nanomaterials is poorly documented, especially ultra-small particles. Here, the interactions of the smallest carbon nanoparticle (NP), C28, with the cell membrane were studied using molecular dynamics (MD) simulations. The results show that similar to fullerene C60, the C28 NPs can self-assemble into stable clusters in water. Inside the membrane, the C28 NPs are more prone to aggregate to form clusters than C60 NPs. The reason for C28 aggregation is characterized by the potential of mean force (PMF) and can be explained by the polarized nature of C28 NPs while the acyl chains of lipids are nonpolar. At the C28 cluster regions, the thickness of the membrane is significantly reduced by the C28 aggregation. Accordingly, the membrane loses its structural integrity, and translocation of water molecules through it was observed. Thus, these results predict a stronger cytotoxicity to cells than C60 NPs. The present findings might shed light on the understanding of the cytotoxicity of NPs with different sizes and would be helpful for the potential biomedical applications of carbon NPs, especially as antibacterial agents.
Collapse
Affiliation(s)
- Bing Fang
- School of Physics, Shandong University Jinan Shandong 250100 China
| | - Xing Dai
- Institute of Quantitative Biology and Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University Suzhou 215123 China
| | - Baoyu Li
- Institute of Quantitative Biology and Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University Suzhou 215123 China
| | - Yuanyuan Qu
- School of Physics, Shandong University Jinan Shandong 250100 China
| | - Yong-Qiang Li
- School of Physics, Shandong University Jinan Shandong 250100 China
| | - Mingwen Zhao
- School of Physics, Shandong University Jinan Shandong 250100 China
| | - Yanmei Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 China
| | - Weifeng Li
- School of Physics, Shandong University Jinan Shandong 250100 China
| |
Collapse
|
3
|
Marforio TD, Calza A, Mattioli EJ, Zerbetto F, Calvaresi M. Dissecting the Supramolecular Dispersion of Fullerenes by Proteins/Peptides: Amino Acid Ranking and Driving Forces for Binding to C 60. Int J Mol Sci 2021; 22:ijms222111567. [PMID: 34768997 PMCID: PMC8583719 DOI: 10.3390/ijms222111567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 01/05/2023] Open
Abstract
Molecular dynamics simulations were used to quantitatively investigate the interactions between the twenty proteinogenic amino acids and C60. The conserved amino acid backbone gave a constant energetic interaction ~5.4 kcal mol−1, while the contribution to the binding due to the amino acid side chains was found to be up to ~5 kcal mol−1 for tryptophan but lower, to a point where it was slightly destabilizing, for glutamic acid. The effects of the interplay between van der Waals, hydrophobic, and polar solvation interactions on the various aspects of the binding of the amino acids, which were grouped as aromatic, charged, polar and hydrophobic, are discussed. Although π–π interactions were dominant, surfactant-like and hydrophobic effects were also observed. In the molecular dynamics simulations, the interacting residues displayed a tendency to visit configurations (i.e., regions of the Ramachandran plot) that were absent when C60 was not present. The amino acid backbone assumed a “tepee-like” geometrical structure to maximize interactions with the fullerene cage. Well-defined conformations of the most interactive amino acids (Trp, Arg, Met) side chains were identified upon C60 binding.
Collapse
|
4
|
Permeation pathway of two hydrophobic carbon nanoparticles across a lipid bilayer. J CHEM SCI 2021. [DOI: 10.1007/s12039-021-01968-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Paul R, Paul S. Translocation of Endo-Functionalized Molecular Tubes across Different Lipid Bilayers: Atomistic Molecular Dynamics Simulation Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10376-10387. [PMID: 34415773 DOI: 10.1021/acs.langmuir.1c01594] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Various artificial receptors, such as calixarenes, cyclodextrins, cucurbit[n]urils, and their acyclic compounds, pliiar[n]arenes, deep cavitands, and molecular tweezers, can permeate the lipid membranes and they are used as drug carriers to improve the drug solubility, stability, and bioavailability. Inspired by these, we have employed atomistic molecular dynamics simulation to examine the effects of endo-functionalized molecular tubes or naphthotubes (host-1a and host-1b) on seven different types of model lipid bilayers and the permeation properties of these receptors through these model lipid bilayers. Lipid types include six model lipid bilayers (POPC, POPE, DOPC, POPG, DPPE, POPE/POPG) and one realistic membrane (Yeast). We observe that these receptors are spontaneously translocated toward these model lipid bilayer head regions and do not proceed further into these lipid bilayer tail regions (reside at the interface between lipid head and lipid tail region), except for the DPPE-containing systems. In the DPPE model lipid bilayer-containing systems (1a-dppe and 1b-dppe), receptor molecules are only adsorbed on the bilayer surface and reside at the interface between lipid head and water. This finding is also supported by the biased free-energy profiles of these translocation processes. Passive transport of these receptors may be possible through these model lipid bilayers (due to low barrier height), except for DPPE bilayer-containing systems (that have a very high energy barrier at the center). The results from these simulations provide insight into the biocompatibility of host-1a or host-1b in microscopic detail. Based on this work, more research is needed to fully comprehend the role of these synthesized receptors as a prospective drug carrier.
Collapse
Affiliation(s)
- Rabindranath Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| |
Collapse
|
6
|
|
7
|
Forbot N, Bolibok P, Wiśniewski M, Roszek K. Carbonaceous Nanomaterials-Mediated Defense Against Oxidative Stress. Mini Rev Med Chem 2020; 20:294-307. [PMID: 31738152 DOI: 10.2174/1389557519666191029162150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/12/2019] [Accepted: 08/21/2019] [Indexed: 11/22/2022]
Abstract
The concept of nanoscale materials and their applications in industrial technologies, consumer goods, as well as in novel medical therapies has rapidly escalated in the last several years. Consequently, there is a critical need to understand the mechanisms that drive nanomaterials biocompatibility or toxicity to human cells and tissues. The ability of nanomaterials to initiate cellular pathways resulting in oxidative stress has emerged as a leading hypothesis in nanotoxicology. Nevertheless, there are a few examples revealing another face of nanomaterials - they can alleviate oxidative stress via decreasing the level of reactive oxygen species. The fundamental structural and physicochemical properties of carbonaceous nanomaterials that govern these anti-oxidative effects are discussed in this article. The signaling pathways influenced by these unique nanomaterials, as well as examples of their applications in the biomedical field, e.g. cell culture, cell-based therapies or drug delivery, are presented. We anticipate this emerging knowledge of intrinsic anti-oxidative properties of carbon nanomaterials to facilitate the use of tailored nanoparticles in vivo.
Collapse
Affiliation(s)
- Natalia Forbot
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Paulina Bolibok
- Physicochemistry of Carbon Materials Research Group, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Marek Wiśniewski
- Physicochemistry of Carbon Materials Research Group, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, Poland
| |
Collapse
|
8
|
Tu CK, Xi WJ, Shen ZL, Wu YJ. Computer simulation of fullerene polymers interacting with DPPC membrane: patchy functionalised modification and sequence effect. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1787408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Chen-kun Tu
- Kangda College, Nanjing Medical University, Lianyungang, People’s Republic of China
| | - Wen-jing Xi
- Kangda College, Nanjing Medical University, Lianyungang, People’s Republic of China
| | - Zhuang-lin Shen
- Center for Soft Condensed Matter Physics and Technology, School of Physical Science and Technology, Soochow University, Suzhou, People’s Republic of China
| | - Yang-jiang Wu
- Department of Materials Science, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
9
|
Efimova SS, Khaleneva DA, Litasova EV, Piotrovskiy LB, Ostroumova OS. The mechanisms of action of water-soluble aminohexanoic and malonic adducts of fullerene C 60 with hexamethonium on model lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183433. [PMID: 32763244 DOI: 10.1016/j.bbamem.2020.183433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/10/2020] [Accepted: 07/22/2020] [Indexed: 10/23/2022]
Abstract
In an attempt to understand the possibility of applications of the fullerene-based systems for transporting various polar compounds like hexamethonium through the blood-brain barrier, we studied the influence of a series of derivatives of fullerene C60 in the form of salts with hexamethonium bis-anion, namely the adducts of fullerenols with 6-aminohexanoic acid (IEM-2197), and two bis-adduct malonic acid derivatives of fullerene with addents bound in two hemispheres (IEM-2143) and in equatorial positions (IEM-2144), on model membranes. We showed that IEM-2197 induced the disintegration of the bilayers composed of DOPC at the concentrations more than 2 mg/ml. IEM-2144 and IEM-2143-induced ion-permeable pores at concentrations of 0.3 and 0.02 mg/ml, respectively; herewith, IEM-2143 was characterized by the greater efficiency than IEM-2144. IEM-2197 did not significantly affect the phase behavior of DPPC, while the melting temperature significantly decreased with addition of IEM-2144 and IEM-2143. The increase in the half-width of the main transition peaks by more than 2.0 °C in the presence of IEM-2144 and IEM-2143 was observed, along with the pronounced peak deconvolution. We proposed that the immersion of IEM-2144 and IEM-2143 into the polar region of the DOPC or DPPC bilayers led to an increase in the relative mobility of tails and formation of ion-permeable defects. IEM-2197 demonstrated the more pronounced effects on the melting and ion permeability of PG- and PS-containing bilayers compared to PC-enriched membranes. These results indicated that IEM-2197 preferentially interacts with the negatively charged lipids compared to neutral species.
Collapse
Affiliation(s)
- S S Efimova
- Institute of Cytology, Russian of the Academy of Science, Saint Petersburg, Russia.
| | - D A Khaleneva
- Institute of Cytology, Russian of the Academy of Science, Saint Petersburg, Russia
| | - E V Litasova
- Institute of Experimental Medicine, Saint Petersburg, Russia
| | - L B Piotrovskiy
- Institute of Experimental Medicine, Saint Petersburg, Russia.
| | - O S Ostroumova
- Institute of Cytology, Russian of the Academy of Science, Saint Petersburg, Russia
| |
Collapse
|
10
|
Erimban S, Daschakraborty S. Translocation of a hydroxyl functionalized carbon dot across a lipid bilayer: an all-atom molecular dynamics simulation study. Phys Chem Chem Phys 2020; 22:6335-6350. [DOI: 10.1039/c9cp05999g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Passive permeation of CD across lipid bilayer is almost impossible. Forced permeation results membrane rupture.
Collapse
Affiliation(s)
- Shakkira Erimban
- Department of Chemistry
- Indian Institute of Technology Patna
- Bihar 801106
- India
| | | |
Collapse
|
11
|
Li X, Wang L, Liu H, Fu J, Zhen L, Li Y, Zhang Y, Zhang Y. C 60 Fullerenes Suppress Reactive Oxygen Species Toxicity Damage in Boar Sperm. NANO-MICRO LETTERS 2019; 11:104. [PMID: 34138040 PMCID: PMC7770955 DOI: 10.1007/s40820-019-0334-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/29/2019] [Indexed: 05/22/2023]
Abstract
We report the carboxylated C60 improved the survival and quality of boar sperm during liquid storage at 4 °C and thus propose the use of carboxylated C60 as a novel antioxidant semen extender supplement. Our results demonstrated that the sperm treated with 2 μg mL-1 carboxylated C60 had higher motility than the control group (58.6% and 35.4%, respectively; P ˂ 0.05). Moreover, after incubation with carboxylated C60 for 10 days, acrosome integrity and mitochondrial activity of sperm increased by 18.1% and 34%, respectively, compared with that in the control group. Similarly, the antioxidation abilities and adenosine triphosphate levels in boar sperm treated with carboxylated C60 significantly increased (P ˂ 0.05) compared with those in the control group. The presence of carboxylated C60 in semen extender increases sperm motility probably by suppressing reactive oxygen species (ROS) toxicity damage. Interestingly, carboxylated C60 could protect boar sperm from oxidative stress and energy deficiency by inhibiting the ROS-induced protein dephosphorylation via the cAMP-PKA signaling pathway. In addition, the safety of carboxylated C60 as an alternative antioxidant was also comprehensively evaluated by assessing the mean litter size and number of live offspring in the carboxylated C60 treatment group. Our findings confirm carboxylated C60 as a novel antioxidant agent and suggest its use as a semen extender supplement for assisted reproductive technology in domestic animals.
Collapse
Affiliation(s)
- Xinhong Li
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Lirui Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Huan Liu
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Jieli Fu
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Linqing Zhen
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yuhua Li
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yaozhong Zhang
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, USA
| | - Yafei Zhang
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
12
|
Ageev SV, Iurev GO, Podolsky NE, Rakipov IT, Vasina LV, Noskov BA, Akentiev AV, Charykov NA, Murin IV, Semenov KN. Density, speed of sound, viscosity, refractive index, surface tension and solubility of С60[C(COOH)2]3. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Shaitan KV. Features of Energy Landscape Topography in the Space of Torsion Angles for Macromolecules that Form Unique 3D Structures. Biophysics (Nagoya-shi) 2018. [DOI: 10.1134/s0006350918060246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
14
|
Jaiswal S, Singh R, Singh K, Fatma S, Prasad BB. Enantioselective analysis of D- and l- Serine on a layer-by-layer imprinted electrochemical sensor. Biosens Bioelectron 2018; 124-125:176-183. [PMID: 30388559 DOI: 10.1016/j.bios.2018.09.090] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/21/2018] [Accepted: 09/27/2018] [Indexed: 12/21/2022]
Abstract
The present work describes a new, simple, and easy method of generating acrylamide functionalised reduced graphene oxide-fullerene layer-by-layer assembled dual imprinted polymers to quantify D- and L-Serine at ultra trace level in aqueous and real samples. Herein, the pencil graphite electrode was initially spin coated with D-Serine imprinted acrylamide functionalized reduced graphene oxide. After 10 min thermal treatment (50 °C), this electrode was again modified with L-Serine imprinted acrylamide functionalized fullerene molecules. This bilayer assembly was finally made thermally stable by 60 °C exposure for 3 h. The proposed sensor showed better electronic properties with an improved synergism. We have compared this modified electrode with other modified pencil graphite electrodes like single layered acrylamide functionalised reduced graphene oxide or fullerene, single layered acrylamide functionalised reduced graphene oxide-fullerene composite and double layered acrylamide functionalised reduced graphene oxide or fullerene molecules, which yielded very inferior sensitivity due to possible agglomeration and decreased synergism. The chosen system demonstrated a very good analytical figures of merit with differential pulse anodic stripping voltammetry and cyclic voltammetry transduction, showing lower limits of detection (0.24 ng mL-1, S/N = 3) for both isomers. The proposed sensor assures practical applications as disease biomarker, manifesting several diseases at very ultra-trace level.
Collapse
Affiliation(s)
- Swadha Jaiswal
- Analytical Division, Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Richa Singh
- Analytical Division, Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Kislay Singh
- Analytical Division, Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Sana Fatma
- Analytical Division, Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Bhim Bali Prasad
- Analytical Division, Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
15
|
Petrov AV, Semenov KN, Murin IV. Electronic Structure of Fullerene Derivatives with Malonic Acid Fragments. RUSS J GEN CHEM+ 2018. [DOI: 10.1134/s1070363218030374] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Orekhov PS, Kholina EG, Bozdaganyan ME, Nesterenko AM, Kovalenko IB, Strakhovskaya MG. Molecular Mechanism of Uptake of Cationic Photoantimicrobial Phthalocyanine across Bacterial Membranes Revealed by Molecular Dynamics Simulations. J Phys Chem B 2018; 122:3711-3722. [PMID: 29553736 DOI: 10.1021/acs.jpcb.7b11707] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Phthalocyanines are aromatic macrocyclic compounds, which are structurally related to porphyrins. In clinical practice, phthalocyanines are used in fluorescence imaging and photodynamic therapy of cancer and noncancer lesions. Certain forms of the substituted polycationic metallophthalocyanines have been previously shown to be active in photodynamic inactivation of both Gram-negative and Gram-positive bacteria; one of them is zinc octakis(cholinyl)phthalocyanine (ZnPcChol8+). However, the molecular details of how these compounds translocate across bacterial membranes still remain unclear. In the present work, we have developed a coarse-grained (CG) molecular model of ZnPcChol8+ within the framework of the popular MARTINI CG force field. The obtained model was used to probe the solvation behavior of phthalocyanine molecules, which agreed with experimental results. Subsequently, it was used to investigate the molecular details of interactions between phthalocyanines and membranes of various compositions. The results demonstrate that ZnPcChol8+ has high affinity to both the inner and the outer model membranes of Gram-negative bacteria, although this species does not show noticeable affinity to the 1-palmitoyl-2-oleoyl- sn-glycero-3-phosphatidylcholine membrane. Furthermore, we found out that the process of ZnPcChol8+ penetration toward the center of the outer bacterial membrane is energetically favorable and leads to its overall disturbance and formation of the aqueous pore. Such intramembrane localization of ZnPcChol8+ suggests their twofold cytotoxic effect on bacterial cells: (1) via induction of lipid peroxidation by enhanced production of reactive oxygen species (i.e., photodynamic toxicity); (2) via rendering the bacterial membrane more permeable for additional Pc molecules as well as other compounds. We also found that the kinetics of penetration depends on the presence of phospholipid defects in the lipopolysaccharide leaflet of the outer membrane and the type of counterions, which stabilize it. Thus, the results of our simulations provide a detailed molecular view of ZnPcChol8+ "self-promoted uptake", the pathway previously proposed for some small molecules crossing the outer bacterial membrane.
Collapse
Affiliation(s)
- Philipp S Orekhov
- Moscow Institute of Physics and Technology , Dolgoprudny 141700 , Russia.,Sechenov University , Trubetskaya 8-2 , Moscow 119991 , Russia
| | | | - Marine E Bozdaganyan
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies , Federal Medical and Biological Agency of Russia , Moscow 115682 , Russia
| | | | - Ilya B Kovalenko
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies , Federal Medical and Biological Agency of Russia , Moscow 115682 , Russia.,Astrakhan State University , Astrakhan 414056 , Russia.,Scientific and Technological Center of Unique Instrumentation of the Russian Academy of Sciences , Moscow 117342 , Russia
| | - Marina G Strakhovskaya
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies , Federal Medical and Biological Agency of Russia , Moscow 115682 , Russia
| |
Collapse
|
17
|
Zeng Y, Wang Q, Zhang Q, Jiang W. Quantification of C60-induced membrane disruption using a quartz crystal microbalance. RSC Adv 2018; 8:9841-9849. [PMID: 35540840 PMCID: PMC9078712 DOI: 10.1039/c7ra13690k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/03/2018] [Indexed: 11/28/2022] Open
Abstract
Direct contact between fullerene C60 nanoparticles (NPs) and cell membranes is one of mechanisms for its cytotoxicity. In this study, the influence of C60 NPs on lipid membranes was investigated. Giant unilamellar vesicles (GUVs) were used as model cell membranes to observe the membrane disruption after C60 exposure. C60 NPs disrupted the positively charged GUVs but not the negatively charged vesicles, confirming the role of electrostatic forces. To quantify the C60 adhesion on membrane and the induced membrane disruption, a supported lipid bilayer (SLB) and a layer of small unilamellar vesicles (SUVs) were used to cover the sensor of a quartz crystal microbalance (QCM). The mass change on the SLB (ΔmSLB) was caused by the C60 adhesion on the membrane, while the mass change on the SUV layer (ΔmSUV) was the combined result of C60 adhesion (mass increase) and SUV disruption (mass loss). The surface area of SLB (ASLB) was much smaller than the surface area of SUV (ASUV), but ΔmSLB was larger than ΔmSUV after C60 deposition, indicating that C60 NPs caused remarkable membrane disruption. Therefore a new method was built to quantify the degree of NP-induced membrane disruption using the values of ΔmSUV/ΔmSLB and ASUV/ASLB. In this way, C60 can be compared with other types of NPs to know which one causes more serious membrane disruption. In addition, C60 NPs caused negligible change in the membrane phase, indicating that membrane gelation was not the mechanism of cytotoxicity for C60 NPs. This study provides important information to predict the environmental hazard presented by fullerene NPs and to evaluate the degree of membrane damage caused by different NPs. Fullerene C60 NPs adhere on lipid membrane due to electrostatic force and cause membrane disruption.![]()
Collapse
Affiliation(s)
- Yuxuan Zeng
- Environment Research Institute
- Shandong University
- Jinan
- China
| | - Qi Wang
- Environment Research Institute
- Shandong University
- Jinan
- China
| | - Qiu Zhang
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
- China
| | - Wei Jiang
- Environment Research Institute
- Shandong University
- Jinan
- China
| |
Collapse
|
18
|
Li J, Jin K, Mushnoori SC, Dutt M. Mechanisms underlying interactions between PAMAM dendron-grafted surfaces with DPPC membranes. RSC Adv 2018; 8:24982-24992. [PMID: 35542143 PMCID: PMC9082323 DOI: 10.1039/c8ra03742f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/04/2018] [Indexed: 11/24/2022] Open
Abstract
Biofouling is a pervasive problem which demands the creation of smart, antifouling surfaces. Towards this end, we examine the interactions between a dipalmitoylphosphatidylcholine (DPPC) lipid bilayer and a polyamidoamine (PAMAM) dendron-grafted surface. In addition, we investigate the impact of dendron generation on the system behavior. To resolve the multiscale dynamical processes occurring over a large spatial scale, we employ Molecular Dynamics simulations with a coarse-grained implicit solvent force field. Our results demonstrate the transient and equilibrium system dynamics to be determined by the PAMAM dendron generation along with the underlying mechanisms. Higher generation dendrons are observed to favor penetration of the DPPC molecules into the dendron branches, thereby enabling sustained interactions between the membrane and the dendron-grafted surface. Under equilibrium, the membrane adopts a bowl-shaped morphology whose dimensions are determined by the dendron generation and density of interactions. The results from our study can be used to guide the design of novel surfaces with selective antifouling properties which can prevent the adsorption of microorganisms onto lipid membranes. The interactions between a DPPC lipid membrane and a PAMAM dendron-grafted surface.![]()
Collapse
Affiliation(s)
- Jia Li
- Department of Chemical and Biochemical Engineering
- Rutgers
- The State University of New Jersey
- USA
| | - Kai Jin
- Department of Chemical and Biochemical Engineering
- Rutgers
- The State University of New Jersey
- USA
| | - Srinivas C. Mushnoori
- Department of Chemical and Biochemical Engineering
- Rutgers
- The State University of New Jersey
- USA
| | - Meenakshi Dutt
- Department of Chemical and Biochemical Engineering
- Rutgers
- The State University of New Jersey
- USA
| |
Collapse
|
19
|
Xie LQ, Liu YZ, Xi ZH, Li HY, Liang SD, Zhu KL. Computer simulations of the interaction of fullerene clusters with lipid membranes. MOLECULAR SIMULATION 2017. [DOI: 10.1080/08927022.2017.1332410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Li-qiang Xie
- Department of Physics, Gansu Normal University for Nationalities, Hezuo, China
| | - Yong-zhi Liu
- Department of Physics, Gansu Normal University for Nationalities, Hezuo, China
| | - Zhong-hong Xi
- Department of Physics, Gansu Normal University for Nationalities, Hezuo, China
- College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, China
| | - Hai-yi Li
- Department of Physics, Gansu Normal University for Nationalities, Hezuo, China
| | - Sheng-de Liang
- Department of Physics, Gansu Normal University for Nationalities, Hezuo, China
- Key Laboratory of Modern Acoustics, Ministry of Education, Institute of Acoustics, Nanjing University, Nanjing, China
| | - Kai-li Zhu
- Department of Chemistry, Gansu Normal University for Nationalities, Hezuo, China
| |
Collapse
|
20
|
Akhtar MJ, Ahamed M, Alhadlaq HA, Alshamsan A. Mechanism of ROS scavenging and antioxidant signalling by redox metallic and fullerene nanomaterials: Potential implications in ROS associated degenerative disorders. Biochim Biophys Acta Gen Subj 2017; 1861:802-813. [PMID: 28115205 DOI: 10.1016/j.bbagen.2017.01.018] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 12/21/2016] [Accepted: 01/09/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND The balance between oxidation and anti-oxidation is believed to be critical in maintaining healthy biological systems. However, our endogenous antioxidant defense systems are incomplete without exogenous antioxidants and, therefore, there is a continuous demand for exogenous antioxidants to prevent stress and ageing associated disorders. Nanotechnology has yielded enormous variety of nanomaterials (NMs) of which metallic and carbonic (mainly fullerenes) NMs, with redox property, have been found to be strong scavengers of ROS and antioxidants in preclinical in vitro and in vivo models. SCOPE OF REVIEW Redox activity of metal based NMs and membrane translocation time of fullerene NMs seem to be the major determinants in ROS scavenging potential exhibited by these NMs. A comprehensive knowledge about the effects of ROS scavenging NMs in cellular antioxidant signalling is largely lacking. This review compiles the mechanisms of ROS scavenging as well as antioxidant signalling of the aforementioned metallic and fullerene NMs. MAJOR CONCLUSIONS Direct interaction between NMs and proteins does greatly affect the corona/adsorption formation dynamics but such interaction does not provide the explanation behind diverse biological outcomes induced by NMs. Indirect interaction, however, that could occur via NMs uptake and dissolution, NMs ROS induction and ROS scavenging property, and NMs membrane translocation time seem to work as a central mode of interaction. GENERAL SIGNIFICANCE The usage of potential antioxidant NMs in biological systems would greatly impact the field of nanomedicine. ROS scavenging NMs hold great promise in the future treatment of ROS related degenerative disorders.
Collapse
Affiliation(s)
- Mohd Javed Akhtar
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia.
| | - Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Hisham A Alhadlaq
- Department of Physics and Astronomy, College of Sciences, King Saud University, Riyadh, Saudi Arabia; King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Aws Alshamsan
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia; Nanomedicine Research Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
21
|
Hsu PC, Jefferies D, Khalid S. Molecular Dynamics Simulations Predict the Pathways via Which Pristine Fullerenes Penetrate Bacterial Membranes. J Phys Chem B 2016; 120:11170-11179. [DOI: 10.1021/acs.jpcb.6b06615] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pin-Chia Hsu
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | - Damien Jefferies
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | - Syma Khalid
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| |
Collapse
|
22
|
Drašler B, Drobne D, Poklar Ulrih N, Ota A. Biological potential of nanomaterials strongly depends on the suspension media: experimental data on the effects of fullerene C₆₀ on membranes. PROTOPLASMA 2016; 253:175-184. [PMID: 25833389 DOI: 10.1007/s00709-015-0803-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/14/2015] [Indexed: 06/04/2023]
Abstract
Fullerenes (C60) are some of the most promising carbon nanomaterials to be used for medical applications as drug delivery agents. Computational and experimental studies have proposed their ability to enter cells by penetrating lipid bilayers. The aim of our study was to provide experimental evidence on whether pristine C60 in physiological media could penetrate cell membranes. The effect was tested on phospholipid vesicles (liposomes) composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, and validated on isolated human red blood cells (RBCs). We incubated the liposomes in an aqueous suspension of C60 and dissolved the lipids and C60 together in chloroform and subsequently formatted the liposomes. By differential scanning calorimetry measurements, we assessed the effect of C60 on the phospholipid thermal profile. The latter was not affected after the incubation of liposomes in the C60 suspension; also, a shape transformation of RBCs did not occur. Differently, by dispersing both C60 and the phospholipids in chloroform, we confirmed the possible interaction of C60 with the bilayer. We provide experimental data suggesting that the suspension medium is an important factor in determining the C60-membrane interaction, which is not always included in computational studies. Since the primary particle size is not the only crucial parameter in C60-membrane interactions, it is important to determine the most relevant characteristics of their effects on membranes.
Collapse
Affiliation(s)
- Barbara Drašler
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000, Ljubljana, Slovenia.
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000, Ljubljana, Slovenia
| | - Nataša Poklar Ulrih
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia
| | - Ajda Ota
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia
| |
Collapse
|
23
|
Varanasi SR, Guskova OA, John A, Sommer JU. Water around fullerene shape amphiphiles: A molecular dynamics simulation study of hydrophobic hydration. J Chem Phys 2015; 142:224308. [DOI: 10.1063/1.4922322] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
24
|
Calvaresi M, Furini S, Domene C, Bottoni A, Zerbetto F. Blocking the passage: C60 geometrically clogs K(+) channels. ACS NANO 2015; 9:4827-4834. [PMID: 25873341 DOI: 10.1021/nn506164s] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Classical molecular dynamics (MD) simulations combined with docking calculations, potential of mean force estimates with the umbrella sampling method, and molecular mechanic/Poisson-Boltzmann surface area (MM-PBSA) energy calculations reveal that C60 may block K(+) channels with two mechanisms: a low affinity blockage from the extracellular side, and an open-channel block from the intracellular side. The presence of a low affinity binding-site at the extracellular entrance of the channel is in agreement with the experimental results showing a fast and reversible block without use-dependence, from the extracellular compartment. Our simulation protocol suggests the existence of another binding site for C60 located in the channel cavity at the intracellular entrance of the selectivity filter. The escape barrier from this binding site is ∼21 kcal/mol making the corresponding kinetic rate of the order of minutes. The analysis of the change in solvent accessible surface area upon C60 binding shows that binding at this site is governed purely by shape complementarity, and that the molecular determinants of binding are conserved in the entire family of K(+) channels. The presence of this high-affinity binding site conserved among different K(+) channels may have serious implications for the toxicity of carbon nanomaterials.
Collapse
Affiliation(s)
- Matteo Calvaresi
- †Dipartimento di Chimica "G. Ciamician", Alma Mater Studiorum - Università di Bologna, via F. Selmi 2, 40126 Bologna, Italy
| | - Simone Furini
- ‡Dipartimento di Biotecnologie Mediche, Università di Siena, viale M. Bracci 12, I-53100 Siena, Italy
| | - Carmen Domene
- §Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
- ⊥Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| | - Andrea Bottoni
- †Dipartimento di Chimica "G. Ciamician", Alma Mater Studiorum - Università di Bologna, via F. Selmi 2, 40126 Bologna, Italy
| | - Francesco Zerbetto
- †Dipartimento di Chimica "G. Ciamician", Alma Mater Studiorum - Università di Bologna, via F. Selmi 2, 40126 Bologna, Italy
| |
Collapse
|