1
|
Kang J, Shah I, Shahrestani S, Nguyen CQ, Chen PM, Lopez AM, Chen JW. Friedman's Gradient-Boosting Algorithm Predicts Lactate-Pyruvate Ratio Trends in Cases of Intracerebral Hemorrhages. World Neurosurg 2024; 187:e620-e628. [PMID: 38679378 DOI: 10.1016/j.wneu.2024.04.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 04/21/2024] [Indexed: 05/01/2024]
Abstract
OBJECTIVE The local effects of an intracerebral hemorrhage (ICH) on surrounding brain tissue can be detected bedside using multimodal brain monitoring techniques. The aim of this study is to design a gradient boosting regression model using the R package boostmtree with the ability to predict lactate-pyruvate ratio measurements in ICH. METHODS We performed a retrospective analysis of 6 spontaneous ICH and 6 traumatic ICH patients who underwent surgical removal of the clot with microdialysis catheters placed in the perihematomal zone. Predictors of glucose, lactate, pyruvate, age, sex, diagnosis, and operation status were used to design our model. RESULTS In a holdout analysis, the model forecasted lactate-pyruvate ratio trends in a representative in-sample testing set. We anticipate that boostmtree could be applied to designs of similar regression models to analyze trends in other multimodal monitoring features across other types of acute brain injury. CONCLUSIONS The model successfully predicted hourly lactate-pyruvate ratios in spontaneous ICH and traumatic ICH cases after the hemorrhage evacuation and displayed significantly better performance than linear models. Our results suggest that boostmtree may be a powerful tool in developing more advanced mathematical models to assess other multimodal monitoring parameters for cases in which the perihematomal environment is monitored.
Collapse
Affiliation(s)
- Jaeyoung Kang
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA; Department of Neurological Surgery, University of California Irvine, Orange, California, USA
| | - Ishan Shah
- Department of Neurological Surgery, University of California Irvine, Orange, California, USA; Keck School of Medicine of USC, Los Angeles, California, USA.
| | - Shane Shahrestani
- Keck School of Medicine of USC, Los Angeles, California, USA; Department of Neurological Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Christopher Q Nguyen
- Department of Neurological Surgery, University of California Irvine, Orange, California, USA
| | - Patrick M Chen
- Department of Neurology, University of California Irvine, Orange, California, USA
| | - Alexander M Lopez
- Department of Neurological Surgery, University of California Irvine, Orange, California, USA
| | - Jefferson W Chen
- Department of Neurological Surgery, University of California Irvine, Orange, California, USA
| |
Collapse
|
2
|
Arikan F, Chocron I, Calvo-Rubio H, Santos C, Gándara D. Metabolism changes during direct revascularization in moyamoya disease: illustrative case. JOURNAL OF NEUROSURGERY. CASE LESSONS 2023; 5:CASE23104. [PMID: 37399148 PMCID: PMC10550542 DOI: 10.3171/case23104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/14/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND Cerebral revascularization is recommended for patients with moyamoya disease (MMD) with reduced cerebral perfusion reserve and recurrent or progressive ischemic events. The standard surgical treatment for these patients is a low-flow bypass with or without indirect revascularization. The use of intraoperative monitoring of the metabolic profile using analytes such as glucose, lactate, pyruvate, and glycerol has not yet been described during cerebral artery bypass surgery for MMD-induced chronic cerebral ischemia. The authors aimed to describe an illustrative case using intraoperative microdialysis and brain tissue oxygen partial pressure (PbtO2) probes in a patient with MMD during direct revascularization. OBSERVATIONS The patient's severe tissue hypoxia situation was confirmed by a PbtO2:partial pressure of oxygen (PaO2) ratio below 0.1 and anaerobic metabolism by a lactate:pyruvate ratio greater than 40. Following bypass, a rapid and sustained increase in PbtO2 up to normal values (PbtO2:PaO2 ratio between 0.1 and 0.35) and the normalization of cerebral energetic metabolism with a lactate/pyruvate ratio less than 20 was observed. LESSONS The results show a quick improvement of regional cerebral hemodynamics due to the direct anastomosis procedure, reducing the incidence of subsequent ischemic stroke in pediatric and adult patients immediately.
Collapse
Affiliation(s)
- Fuat Arikan
- Department of Neurosurgery and
- Neurotraumatology Neurosurgery Research Unit (UNINN), Vall d‘Hebron Research Institute (VHIR), Barcelona, Spain; and
| | - Ivette Chocron
- Department of Anesthesiology, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | - Dario Gándara
- Department of Neurosurgery and
- Neurotraumatology Neurosurgery Research Unit (UNINN), Vall d‘Hebron Research Institute (VHIR), Barcelona, Spain; and
| |
Collapse
|
3
|
Venturini S, Bhatti F, Timofeev I, Carpenter KLH, Hutchinson PJ, Guilfoyle MR, Helmy A. Microdialysis-Based Classifications of Abnormal Metabolic States after Traumatic Brain Injury: A Systematic Review of the Literature. J Neurotrauma 2023; 40:195-209. [PMID: 36112699 DOI: 10.1089/neu.2021.0502] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
After traumatic brain injury (TBI), cerebral metabolism can become deranged, contributing to secondary injury. Cerebral microdialysis (CMD) allows cerebral metabolism assessment and is often used with other neuro-monitoring modalities. CMD-derived parameters such as the lactate/pyruvate ratio (LPR) show a failure of oxidative energy generation. CMD-based abnormal metabolic states can be described following TBI, informing the etiology of physiological derangements. This systematic review summarizes the published literature on microdialysis-based abnormal metabolic classifications following TBI. Original research studies in which the populations were patients with TBI were included. Studies that described CMD-based classifications of metabolic abnormalities were included in the synthesis of the narrative results. A total of 825 studies underwent two-step screening after duplicates were removed. Fifty-three articles that used CMD in TBI patients were included. Of these, 14 described abnormal metabolic states based on CMD parameters. Classifications were heterogeneous between studies. LPR was the most frequently used parameter in the classifications; high LPR values were described as metabolic crisis. Ischemia was consistently defined as high LPR with low CMD substrate levels (glucose or pyruvate). Mitochondrial dysfunction, describing inability to use energy substrate despite availability, was identified based on raised LPR with near-normal levels of pyruvate. This is the first systematic review summarizing the published literature on microdialysis-based abnormal metabolic states following TBI. Although variability exists among individual classifications, there is broad agreement about broad definitions of metabolic crisis, ischemia, and mitochondrial dysfunction. Identifying the etiology of deranged cerebral metabolism after TBI is important for targeting therapeutic interventions.
Collapse
Affiliation(s)
- Sara Venturini
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Faheem Bhatti
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Ivan Timofeev
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Keri L H Carpenter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Peter J Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Mathew R Guilfoyle
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Forsse A, Nielsen TH, Mølstrøm S, Hjelmborg J, Nielsen KS, Nygaard KH, Yilmaz S, Nordström CH, Poulsen FR. A Prospective Observational Feasibility Study of Jugular Bulb Microdialysis in Subarachnoid Hemorrhage. Neurocrit Care 2021; 33:241-255. [PMID: 31845174 DOI: 10.1007/s12028-019-00888-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Cerebral metabolic perturbations are common in aneurysmal subarachnoid hemorrhage (aSAH). Monitoring cerebral metabolism with intracerebral microdialysis (CMD) allows early detection of secondary injury and may guide decisions on neurocritical care interventions, affecting outcome. However, CMD is a regional measuring technique that is influenced by proximity to focal lesions. Continuous microdialysis of the cerebral venous drainage may provide information on global cerebral metabolism relevant for the care of aSAH patients. This observational study aimed to explore the feasibility of jugular bulb microdialysis (JBMD) in aSAH and describe the output characteristics in relation to conventional multimodal monitoring. METHODS Patients with severe aSAH were included at admission or after in-house deterioration when local clinical guidelines prompted extended multimodal monitoring. Non-dominant frontal CMD, intracranial pressure (ICP), partial brain tissue oxygenation pressure (PbtO2), and cerebral perfusion pressure (CPP) were recorded every hour. The dominant jugular vein was accessed by retrograde insertion of a microdialysis catheter with the tip placed in the jugular bulb under ultrasound guidance. Glucose, lactate, pyruvate, lactate/pyruvate ratio, glycerol, and glutamate were studied for correlation to intracranial measurements. Modified Rankin scale was assessed at 6 months. RESULTS Twelve adult aSAH patients were monitored during a mean 4.2 ± 2.6 days yielding 22,041 data points for analysis. No complications related to JBMD were observed. Moderate or strong significant monotonic CMD-to-JBMD correlations were observed most often for glucose (7 patients), followed by lactate (5 patients), and pyruvate, glycerol, and glutamate (3 patients). Moderate correlation for lactate/pyruvate ratio was only seen in one patient. Analysis of critical periods defined by ICP > 20, CPP < 65, or PbtO2 < 15 revealed a tendency toward stronger CMD-to-JBMD associations in patients with many or long critical periods. Possible time lags between CMD and JBMD measurements were only identified in 6 out of 60 patient variables. With the exception of pyruvate, a dichotomized outcome was associated with similar metabolite patterns in JBMD and CMD. A nonsignificant tendency toward greater differences between outcome groups was seen in JBMD. CONCLUSIONS Continuous microdialysis monitoring of the cerebral drainage in the jugular bulb is feasible and safe. JBMD-to-CMD correlation is influenced by the type of metabolite measured, with glucose and lactate displaying the strongest associations. JBMD lactate correlated more often than CMD lactate to CPP, implying utility for detection of global cerebral metabolic perturbations. Studies comparing JBMD to other global measures of cerebral metabolism, e.g., PET CT or Xenon CT, are warranted.
Collapse
Affiliation(s)
- Axel Forsse
- Department of Neurosurgery, Odense University Hospital, Sønder Boulevard 29, 5000, Odense, Denmark. .,BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Troels Halfeld Nielsen
- Department of Neurosurgery, Odense University Hospital, Sønder Boulevard 29, 5000, Odense, Denmark.,BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Simon Mølstrøm
- Department of Anesthesiology and Intensive Care, Odense University Hospital, Odense, Denmark
| | - Jacob Hjelmborg
- Department of Biostatistics and Epidemiology, University of Southern Denmark, Odense, Denmark
| | - Kasper Stokbro Nielsen
- Department of Oral and Maxillofacial Surgery, Odense University Hospital, Odense, Denmark
| | - Kevin Hebøll Nygaard
- Department of Neurosurgery, Odense University Hospital, Sønder Boulevard 29, 5000, Odense, Denmark.,BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Sibel Yilmaz
- Department of Neurosurgery, Odense University Hospital, Sønder Boulevard 29, 5000, Odense, Denmark
| | - Carl-Henrik Nordström
- Department of Neurosurgery, Odense University Hospital, Sønder Boulevard 29, 5000, Odense, Denmark.,BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Frantz Rom Poulsen
- Department of Neurosurgery, Odense University Hospital, Sønder Boulevard 29, 5000, Odense, Denmark.,BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
5
|
Mismatch between Tissue Partial Oxygen Pressure and Near-Infrared Spectroscopy Neuromonitoring of Tissue Respiration in Acute Brain Trauma: The Rationale for Implementing a Multimodal Monitoring Strategy. Int J Mol Sci 2021; 22:ijms22031122. [PMID: 33498736 PMCID: PMC7865258 DOI: 10.3390/ijms22031122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/21/2022] Open
Abstract
The brain tissue partial oxygen pressure (PbtO2) and near-infrared spectroscopy (NIRS) neuromonitoring are frequently compared in the management of acute moderate and severe traumatic brain injury patients; however, the relationship between their respective output parameters flows from the complex pathogenesis of tissue respiration after brain trauma. NIRS neuromonitoring overcomes certain limitations related to the heterogeneity of the pathology across the brain that cannot be adequately addressed by local-sample invasive neuromonitoring (e.g., PbtO2 neuromonitoring, microdialysis), and it allows clinicians to assess parameters that cannot otherwise be scanned. The anatomical co-registration of an NIRS signal with axial imaging (e.g., computerized tomography scan) enhances the optical signal, which can be changed by the anatomy of the lesions and the significance of the radiological assessment. These arguments led us to conclude that rather than aiming to substitute PbtO2 with tissue saturation, multiple types of NIRS should be included via multimodal systemic- and neuro-monitoring, whose values then are incorporated into biosignatures linked to patient status and prognosis. Discussion on the abnormalities in tissue respiration due to brain trauma and how they affect the PbtO2 and NIRS neuromonitoring is given.
Collapse
|
6
|
Kim H, Lee JE, Yoo HJ, Sung JH, Yang SH. Effect of Pioglitazone on Perihematomal Edema in Intracerebral Hemorrhage Mouse Model by Regulating NLRP3 Expression and Energy Metabolism. J Korean Neurosurg Soc 2020; 63:689-697. [PMID: 33105536 PMCID: PMC7671775 DOI: 10.3340/jkns.2020.0056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/26/2020] [Indexed: 12/21/2022] Open
Abstract
Objective Cerebral edema is the predominant mechanism of secondary inflammation after intracerebral hemorrhage (ICH). Pioglitazone, peroxisome proliferator-activated receptor gamma agonist has been shown to play a role in regulation of central nervous system inflammation. Here, we examined the pharmacological effects of pioglitazone in an ICH mouse model and investigated its regulation on NLRP3 inflammasome and glucose metabolism.
Methods The ICH model was established in C57 BL/6 mice by the stereotactical inoculation of blood (30 µL) into the right frontal lobe. The treatment group was administered i.p. pioglitazone (20 mg/kg) for 1, 3, and 6 days. The control group was administered i.p. phosphate-buffered saline for 1, 3, and 6 days. We investigated brain water contents, NLRP3 expression, and changes in the metabolites in the ICH model using liquid chromatography-tandem mass spectrometry.
Results On day 3, brain edema in the mice treated with pioglitazone was decreased more than that in the control group. Expression levels of NLRP3 in the ICH model treated with pioglitazone were decreased more than those of the control mice on days 3 and 7. The pioglitazone group showed higher levels of glycolytic metabolites than those in the ICH mice. Lactate production was increased in the ICH mice treated with pioglitazone.
Conclusion Our results demonstrated less brain swelling following ICH in mice treated with pioglitazone. Pioglitazone decreased NLRP3-related brain edema and increased anaerobic glycolysis, resulting in the production of lactate in the ICH mice model. NLRP3 might be a therapeutic target for ICH recovery.
Collapse
Affiliation(s)
- Hoon Kim
- Department of Neurosurgery, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jung Eun Lee
- Department of Neurosurgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyun Ju Yoo
- Biomedical Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae Hoon Sung
- Department of Neurosurgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung Ho Yang
- Department of Neurosurgery, Cell Death Disease Research Center, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
7
|
Ahmad-Molaei L, Pourhamzeh M, Ahadi R, Khodagholi F, Hassanian-Moghaddam H, Haghparast A. Time-Dependent Changes in the Serum Levels of Neurobiochemical Factors After Acute Methadone Overdose in Adolescent Male Rat. Cell Mol Neurobiol 2020; 41:1635-1649. [DOI: 10.1007/s10571-020-00931-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022]
|
8
|
Alkuraishy HM, Al-Gareeb AI, Waheed HJ. Lipoprotein-Associated Phospholipase A2 is Linked with Poor Cardio-Metabolic Profile in Patients with Ischemic Stroke: A Study of Effects of Statins. J Neurosci Rural Pract 2019; 9:496-503. [PMID: 30271040 PMCID: PMC6126307 DOI: 10.4103/jnrp.jnrp_97_18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objectives The objective of the study is to investigate the effects of statins on the lipoprotein-associated phospholipase A2 (Lp-PLA2) mass in patients with ischemic stroke. Materials and Methods A total number of 59 patient ages 43-69 years with cerebral stroke compared to 39 healthy controls that matching the age and body weight. The patients were divided into 32 patients on statins therapy assigned as statins users and 27 patients, not on statins therapy assigned as nonstatins users. Anthropometric and biochemical measurements were done including lipid profile and inflammatory biomarkers. Results Stroke patients on statins therapy showed a comparable low of Lp-PLA (29.82 ± 3.19 IU/mL) to nonstatins user stroke patients (15.58 ± 5.73 IU/mL). Lp-PLA2 mass levels were positively correlated with body mass index, blood pressure changes, total cholesterol, triglyceride, and very low-density lipoprotein and stroke risk (SR) percentage. Conclusions Patients on statins with ischemic stroke had low levels of Lp-PLA2 mass levels compared to nonstatins user with ischemic stroke. Lp-PLA2 mass levels were higher in men than women and correlated with lipid profile and SR in patients with ischemic stroke.
Collapse
Affiliation(s)
- Hayder M Alkuraishy
- Department of Clinical Pharmacology and Therapeutic, Medical Faculty College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Therapeutic, Medical Faculty College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Huda J Waheed
- Department of Clinical Pharmacology and Therapeutic, Medical Faculty College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| |
Collapse
|
9
|
Ilias I, Apollonatou S, Nikitas N, Theodorakopoulou M, Vassiliou AG, Kotanidou A, Dimopoulou I. Microdialysis-Assessed Adipose Tissue Metabolism, Circulating Cytokines and Outcome in Critical Illness. Metabolites 2018; 8:metabo8040062. [PMID: 30301230 PMCID: PMC6316198 DOI: 10.3390/metabo8040062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 01/02/2023] Open
Abstract
Microdialysis (MD) can provide continuous information about tissue composition. To assess in critically ill patients adipose tissue metabolic patterns, the relationships between metabolic patterns and blood cytokine concentration associations of adipose tissue energy metabolism and clinical outcome we studied 203 mechanically ventilated general intensive care unit (ICU) patients. Upon ICU admission an MD catheter was inserted into the subcutaneous adipose tissue of the upper thigh to measure lactate (L), glucose, pyruvate (P), and glycerol. Serum concentrations of IL-10, IL-6, IL-8, and TNF-α were determined within 48 h from ICU admission. Mitochondrial dysfunction was defined as L/P ratio >30 and pyruvate ≥70 μmol/L, ischemia as L/P ratio >30 and pyruvate <70 μmol/L and no ischemia/no mitochondrial dysfunction (i.e., aerobic metabolism) was as L/P ratio ≤30. Metabolism was aerobic in 74% of patients. In 13% of patients there was biochemical evidence of ischemia and in 13% of patients of mitochondrial dysfunction. Mitochondrial dysfunction was associated with poor outcome. In conclusion, MD showed that about two thirds of critically ill patients have normal aerobic adipose tissue metabolism. Mitochondrial dysfunction was not common but was associated with poor outcome. Identifying subgroups of critically ill patients is crucial as different treatment strategies may improve survival.
Collapse
Affiliation(s)
- Ioannis Ilias
- Endocrine Unit, Elena Venizelou Hospital, GR-11521 Athens, Greece.
| | - Sofia Apollonatou
- Second Department of Critical Care Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Medical School, GR-12462 Athens, Greece.
| | - Nikitas Nikitas
- Department of Critical Care Medicine, North Middlesex Hospital, London N18 1QX, UK.
| | - Maria Theodorakopoulou
- Second Department of Critical Care Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Medical School, GR-12462 Athens, Greece.
| | - Alice G Vassiliou
- First Department of Critical Care Medicine, Evangelismos Hospital, National and Kapodistrian University of Athens, Medical School, GR-10552 Athens, Greece.
| | - Anastasia Kotanidou
- First Department of Critical Care Medicine, Evangelismos Hospital, National and Kapodistrian University of Athens, Medical School, GR-10552 Athens, Greece.
| | - Ioanna Dimopoulou
- First Department of Critical Care Medicine, Evangelismos Hospital, National and Kapodistrian University of Athens, Medical School, GR-10552 Athens, Greece.
| |
Collapse
|
10
|
Zhu N, Wu XX, Tian Y, Zhu JX, Li JC. Pharmacokinetic and Pharmacodynamics of Self-Assembled Cubic Liquid Crystalline Nanoparticle Gel After Transdermal Administration. Med Sci Monit 2018; 24:2330-2338. [PMID: 29666359 PMCID: PMC5926275 DOI: 10.12659/msm.906140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The aim of this study was to assess the pharmacokinetics after transdermal administration by a novel skin microdialysis technology in rats. The guinea pig model was established by investigating the pharmacodynamics. MATERIAL AND METHODS Three different agents were given after hair removal, and the samples were extracted by microdialysis and detected by HPLC. Subcutaneous/plasma concentration-time curves of the 3 different agents were analyzed and the pharmacokinetic parameters were calculated. The SS-04B UV light therapy instrument was used in the modeling. Changes in melanin index and histopathology were observed with HE staining. RESULTS The increment and decrement results showed that the concentration had no significant effect on drug recovery both in vivo and in vitro. After the paeonol cubic liquid crystalline nanoparticles gel (PAE-LCNPs) was administered, the maximum peak time (tmax) of paeonol skin concentration appeared at 2.42±0.20 h, the maximum skin concentration Cmax was (926±105) ng/ml, and the area under the curve AUC0-8 was (8056±954) ng/h/ml. The tmax was shortened much more than in the other groups, and the performance of PAE-LCNPs targeting was good. Pharmacodynamic results showed that PAE-LCNPs can reduce melanocytes and reduce the melanin index, proving its utility in the treatment of melanin deposition. CONCLUSIONS The skin microdialysis study indicated PAE-LCNPs have good transdermal permeability and efficacy. Pharmacological experiments based on the study found that the topical pigmentation model of guinea pigs showed a better therapeutic effect.
Collapse
Affiliation(s)
- Na Zhu
- Department of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Xiao-Xiang Wu
- Department of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China (mainland).,Department of Pharmacy, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Yong Tian
- Department of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Jin-Xiu Zhu
- Department of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China (mainland).,Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Jian-Chun Li
- Department of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China (mainland)
| |
Collapse
|
11
|
Carteron L, Bouzat P, Oddo M. Cerebral Microdialysis Monitoring to Improve Individualized Neurointensive Care Therapy: An Update of Recent Clinical Data. Front Neurol 2017; 8:601. [PMID: 29180981 PMCID: PMC5693841 DOI: 10.3389/fneur.2017.00601] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/27/2017] [Indexed: 01/04/2023] Open
Abstract
Cerebral microdialysis (CMD) allows bedside semicontinuous monitoring of patient brain extracellular fluid. Clinical indications of CMD monitoring are focused on the management of secondary cerebral and systemic insults in acute brain injury (ABI) patients [mainly, traumatic brain injury (TBI), subarachnoid hemorrhage, and intracerebral hemorrhage (ICH)], specifically to tailor several routine interventions—such as optimization of cerebral perfusion pressure, blood transfusion, glycemic control and oxygen therapy—in the individual patient. Using CMD as clinical research tool has greatly contributed to identify and better understand important post-injury mechanisms—such as energy dysfunction, posttraumatic glycolysis, post-aneurysmal early brain injury, cortical spreading depressions, and subclinical seizures. Main CMD metabolites (namely, lactate/pyruvate ratio, and glucose) can be used to monitor the brain response to specific interventions, to assess the extent of injury, and to inform about prognosis. Recent consensus statements have provided guidelines and recommendations for CMD monitoring in neurocritical care. Here, we summarize recent clinical investigation conducted in ABI patients, specifically focusing on the role of CMD to guide individualized intensive care therapy and to improve our understanding of the complex disease mechanisms occurring in the immediate phase following ABI. Promising brain biomarkers will also be described.
Collapse
Affiliation(s)
- Laurent Carteron
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Besançon, University of Bourgogne - Franche-Comté, Besançon, France
| | - Pierre Bouzat
- Department of Anesthesiology and Critical Care, University Hospital Grenoble, Grenoble, France
| | - Mauro Oddo
- Department of Intensive Care Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
12
|
Rostami E, Engquist H, Howells T, Ronne-Engström E, Nilsson P, Hillered LT, Lewén A, Enblad P. The Correlation between Cerebral Blood Flow Measured by Bedside Xenon-CT and Brain Chemistry Monitored by Microdialysis in the Acute Phase following Subarachnoid Hemorrhage. Front Neurol 2017; 8:369. [PMID: 28824527 PMCID: PMC5539179 DOI: 10.3389/fneur.2017.00369] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 07/13/2017] [Indexed: 02/05/2023] Open
Abstract
Cerebral microdialysis (MD) may be used in patients suffering from subarachnoid hemorrhage (SAH) to detect focal cerebral ischemia. The cerebral MD catheter is usually placed in the right frontal lobe and monitors the area surrounding the catheter. This generates the concern that a fall in cerebral blood flow (CBF) and ischemic events distant to the catheter may not be detected. We aimed to investigate if there is a difference in the association between the MD parameters and CBF measured around the MD catheter compared to global cortical CBF and to CBF in the vascular territories following SAH in the early acute phase. MD catheter was placed in the right frontal lobe of 30 SAH patients, and interstitial glucose, lactate, pyruvate, glycerol, and lactate/pyruvate ratio were measured hourly. CBF measurements were performed during day 0-3 after SAH. Global cortical CBF correlated strongly with CBF around the microdialysis catheter (CBF-MD) (r = 0.911, p ≤ 0.001). This was also the case for the anterior, middle, and posterior vascular territories in the right hemisphere. A significant negative correlation was seen between lactate and CBF-MD (r = -0.468, p = 0.009). The same relationship was observed between lactate and CBF in anterior vascular territory but not in the middle and posterior vascular territories. In conclusion, global CBF 0-3 days after severe SAH correlated strongly with CBF-MD. High lactate level was associated with low global CBF and low regional CBF in the right anterior vascular territory, when the MD catheter was placed in the right frontal lobe.
Collapse
Affiliation(s)
- Elham Rostami
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Henrik Engquist
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden.,Anesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Timothy Howells
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | | - Pelle Nilsson
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Lars Tomas Hillered
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Anders Lewén
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Per Enblad
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
13
|
Tholance Y, Barcelos GK, Perret-Liaudet A, Omar E, Carrillon R, Grousson S, Lieutaud T, Dailler F, Marinesco S. Placing intracerebral probes to optimise detection of delayed cerebral ischemia and allow for the prediction of patient outcome in aneurysmal subarachnoid haemorrhage. J Cereb Blood Flow Metab 2017; 37:2820-2832. [PMID: 27798274 PMCID: PMC5536791 DOI: 10.1177/0271678x16675880] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/08/2016] [Accepted: 09/15/2016] [Indexed: 12/23/2022]
Abstract
Cerebral microdialysis could be useful to detect delayed cerebral ischemia in aneurysmal subarachnoid haemorrhage patients. The optimal location of the probes, however, remains controversial. Here, we determined the vascular territories with the highest infarct risk in relation to aneurysm location to define probe implantation guidelines. These guidelines were retrospectively validated by studying the likelihood of probe to fall in a secondary infarct area, and by analysing their influence to predict patient outcome. The vascular territories with highest risk of infarction were the anterior cerebral arteries for anterior communicating artery aneurysms and the ipsilateral middle cerebral artery for internal carotid artery, posterior communicating artery and middle cerebral artery aneurysms. When cerebral microdialysis probes had been implanted in these territories, 79% were located within an infarcted area versus 54% when they were implanted in other territories. Delayed cerebral ischemia was detected only when the probe was located within a brain area later affected by secondary infarction, which could justify the use of implantation guidelines. Moreover, individual patient outcomes could be predicted when probes were placed in the brain territories as suggested by this study. Thus, a precise probe placement algorithm can improve delayed cerebral ischemia detection sensitivity and allow for a better prediction concerning patient outcome.
Collapse
Affiliation(s)
- Yannick Tholance
- Department of Biochemistry and Molecular Genetics, Dupuytren University Hospital, Limoges, France
- TIGER Team, Lyon Neuroscience Research Center, CNRS, UMR 5292, INSERM U1028, University Lyon 1, Lyon, France
| | - Gleicy K Barcelos
- Department of Anesthesiology, Pharmacology and Intensive Care, Geneva University Hospitals, Geneva, Switzerland
- BioRaN Team, Lyon Neuroscience Research Center, CNRS, UMR 5292, INSERM U1028, University Lyon 1, Lyon, France
| | - Armand Perret-Liaudet
- BioRaN Team, Lyon Neuroscience Research Center, CNRS, UMR 5292, INSERM U1028, University Lyon 1, Lyon, France
- Laboratory of Neurobiology, Neurochemistry Unit, Department of Biochemistry and Molecular Biology, Hospices Civils de Lyon, Lyon, France
| | - Edris Omar
- Neuro-Intensive Care Unit, Neurological Hospital, Hospices Civils de Lyon, Lyon, France
| | - Romain Carrillon
- Neuro-Intensive Care Unit, Neurological Hospital, Hospices Civils de Lyon, Lyon, France
| | - Sébastien Grousson
- Neuro-Intensive Care Unit, Neurological Hospital, Hospices Civils de Lyon, Lyon, France
| | - Thomas Lieutaud
- TIGER Team, Lyon Neuroscience Research Center, CNRS, UMR 5292, INSERM U1028, University Lyon 1, Lyon, France
| | - Frédéric Dailler
- Neuro-Intensive Care Unit, Neurological Hospital, Hospices Civils de Lyon, Lyon, France
| | - Stéphane Marinesco
- TIGER Team, Lyon Neuroscience Research Center, CNRS, UMR 5292, INSERM U1028, University Lyon 1, Lyon, France
- AniRA-NeuroChem Technological Platform, Lyon Neuroscience Research Center, CNRS, UMR 5292, INSERM U1028, University Lyon 1, Lyon, France
| |
Collapse
|
14
|
Sánchez-Guerrero A, Mur-Bonet G, Vidal-Jorge M, Gándara-Sabatini D, Chocrón I, Cordero E, Poca MA, Mullen K, Sahuquillo J. Reappraisal of the reference levels for energy metabolites in the extracellular fluid of the human brain. J Cereb Blood Flow Metab 2017; 37:2742-2755. [PMID: 27742889 PMCID: PMC5536785 DOI: 10.1177/0271678x16674222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 08/21/2016] [Accepted: 09/15/2016] [Indexed: 11/16/2022]
Abstract
Cerebral microdialysis is widely used in neurocritical care units. The goal of this study was to establish the reference interval for the interstitial fluid concentrations of energy metabolites and glycerol by using the extrapolation to zero-flow methodology in anesthetized patients and by constant perfusion at 0.3 µL/min in awake patients. A CMA-71 probe was implanted during surgery in normal white matter of patients with posterior fossa or supratentorial lesions, and the perfusion flow rate was randomized to 0.1, 0.3, 0.6, 1.2, and 2.4 µL/min. Within 24 h of surgery, perfusion was restarted at a constant 0.3 µL/min in fully awake patients. The actual interstitial fluid metabolite concentrations were calculated using the zero-flow methodology. In vitro experiments were also conducted to evaluate the reproducibility of the in vivo methodology. Nineteen patients (seven males) with a median age of 44 years (range: 21-69) were included in the in vivo study. The median (lower-upper) reference interval values were 1.57 (1.15-4.13 mmol/L) for glucose, 2.01 (1.30-5.31 mmol/L) for lactate, 80.0 (54.4-197.0 µmol/L) for pyruvate, and 49.9 (23.6-227.3 µmol/L) for glycerol. The reference intervals reported raises the need to reconsider traditional definitions of brain metabolic disturbances and emphasize the importance of using different thresholds for awake patients and patients under anesthesia.
Collapse
Affiliation(s)
- Angela Sánchez-Guerrero
- Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gemma Mur-Bonet
- Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marian Vidal-Jorge
- Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Ivette Chocrón
- Department of Anesthesiology, Vall d’Hebron University Hospital, Barcelona, Spain
| | - Esteban Cordero
- Department of Neurosurgery, Vall d’Hebron University Hospital, Barcelona, Spain
| | - Maria-Antonia Poca
- Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Neurosurgery, Vall d’Hebron University Hospital, Barcelona, Spain
| | | | - Juan Sahuquillo
- Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Neurosurgery, Vall d’Hebron University Hospital, Barcelona, Spain
| |
Collapse
|
15
|
Balança B, Meiller A, Bezin L, Dreier JP, Marinesco S, Lieutaud T. Altered hypermetabolic response to cortical spreading depolarizations after traumatic brain injury in rats. J Cereb Blood Flow Metab 2017; 37:1670-1686. [PMID: 27356551 PMCID: PMC5435292 DOI: 10.1177/0271678x16657571] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/27/2016] [Accepted: 05/30/2016] [Indexed: 01/11/2023]
Abstract
Spreading depolarizations are waves of near-complete breakdown of neuronal transmembrane ion gradients, free energy starving, and mass depolarization. Spreading depolarizations in electrically inactive tissue are associated with poor outcome in patients with traumatic brain injury. Here, we studied changes in regional cerebral blood flow and brain oxygen (PbtO2), glucose ([Glc]b), and lactate ([Lac]b) concentrations in rats, using minimally invasive real-time sensors. Rats underwent either spreading depolarizations chemically triggered by KCl in naïve cortex in absence of traumatic brain injury or spontaneous spreading depolarizations in the traumatic penumbra after traumatic brain injury, or a cluster of spreading depolarizations triggered chemically by KCl in a remote window from which spreading depolarizations invaded penumbral tissue. Spreading depolarizations in noninjured cortex induced a hypermetabolic response characterized by a decline in [Glc]b and monophasic increases in regional cerebral blood flow, PbtO2, and [Lac]b, indicating transient hyperglycolysis. Following traumatic brain injury, spontaneous spreading depolarizations occurred, causing further decline in [Glc]b and reducing the increase in regional cerebral blood flow and biphasic responses of PbtO2 and [Lac]b, followed by prolonged decline. Recovery of PbtO2 and [Lac]b was significantly delayed in traumatized animals. Prespreading depolarization [Glc]b levels determined the metabolic response to clusters. The results suggest a compromised hypermetabolic response to spreading depolarizations and slower return to physiological conditions following traumatic brain injury-induced spreading depolarizations.
Collapse
Affiliation(s)
- Baptiste Balança
- Inserm U1028, CNRS UMR 5292, Lyon Neuroscience Research Center, Team TIGER, Lyon, France
- Centre hospitalier universitaire de Lyon, France
| | - Anne Meiller
- Université Claude Bernard Lyon I, Lyon Neuroscience Research Center, AniRA-Neurochem Technological platform, Lyon, France
| | - Laurent Bezin
- Inserm U1028, CNRS UMR 5292, Lyon Neuroscience Research Center, Team TIGER, Lyon, France
| | - Jens P. Dreier
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Neurology and Department of Experimental Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Stéphane Marinesco
- Inserm U1028, CNRS UMR 5292, Lyon Neuroscience Research Center, Team TIGER, Lyon, France
- Université Claude Bernard Lyon I, Lyon Neuroscience Research Center, AniRA-Neurochem Technological platform, Lyon, France
| | - Thomas Lieutaud
- Inserm U1028, CNRS UMR 5292, Lyon Neuroscience Research Center, Team TIGER, Lyon, France
| |
Collapse
|
16
|
Pinczolits A, Zdunczyk A, Dengler NF, Hecht N, Kowoll CM, Dohmen C, Graf R, Winkler MK, Major S, Hartings JA, Dreier JP, Vajkoczy P, Woitzik J. Standard-sampling microdialysis and spreading depolarizations in patients with malignant hemispheric stroke. J Cereb Blood Flow Metab 2017; 37:1896-1905. [PMID: 28350195 PMCID: PMC5435299 DOI: 10.1177/0271678x17699629] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Spreading depolarizations (SD) occur in high frequency in patients with malignant hemispheric stroke (MHS). Experimentally, SDs cause marked increases in glutamate and lactate, whereas glucose decreases. Here, we studied extracellular brain glutamate, glucose, lactate, pyruvate and the lactate/pyruvate ratio in relationship to SDs after MHS. We inserted two microdialysis probes in peri-infarct tissue at 5 and 15 mm to the infarct in close proximity to a subdural electrode strip. During 2356.6 monitoring hours, electrocorticography (ECoG) revealed 697 SDs in 16 of 18 patients. Ninety-nine SDs in electrically active tissue (spreading depressions, SDd) were single (SDds) and 485 clustered (SDdc), whereas 10 SDs with at least one electrode in electrically inactive tissue (isoelectric SDs, SDi) were single (SDis) and 103 clustered (SDic). More SDs and a significant number of clustered SDs occurred during the first 36 h post-surgery when glutamate was significantly elevated (> 100 µM). In a grouped analysis, we observed minor glutamate elevations with more than two SDs per hour. Glucose slightly decreased during SDic at 5 mm from the infarct. Directions of SD-related metabolic changes correspond to the experimental setting but the long sampling time of standard microdialysis precludes a more adequate account of the dynamics revealed by ECoG.
Collapse
Affiliation(s)
- Alexandra Pinczolits
- 1 Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,2 Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anna Zdunczyk
- 1 Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,2 Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Nora F Dengler
- 1 Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,2 Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Nils Hecht
- 1 Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,2 Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christina M Kowoll
- 3 Department of Neurology, University of Cologne, Cologne, Germany.,4 Max Planck Institute for Neurological Research, Cologne, Germany
| | - Christian Dohmen
- 3 Department of Neurology, University of Cologne, Cologne, Germany.,4 Max Planck Institute for Neurological Research, Cologne, Germany
| | - Rudolf Graf
- 4 Max Planck Institute for Neurological Research, Cologne, Germany
| | - Maren Kl Winkler
- 2 Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany.,5 Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Major
- 2 Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany.,5 Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jed A Hartings
- 6 Department of Neurosurgery, University of Cincinnati College of Medicine, Mayfield Clinic, Cincinnati, OH, USA
| | - Jens P Dreier
- 2 Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany.,5 Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Vajkoczy
- 1 Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,2 Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes Woitzik
- 1 Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,2 Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
17
|
Rogers ML, Leong CL, Gowers SA, Samper IC, Jewell SL, Khan A, McCarthy L, Pahl C, Tolias CM, Walsh DC, Strong AJ, Boutelle MG. Simultaneous monitoring of potassium, glucose and lactate during spreading depolarization in the injured human brain - Proof of principle of a novel real-time neurochemical analysis system, continuous online microdialysis. J Cereb Blood Flow Metab 2017; 37:1883-1895. [PMID: 27798268 PMCID: PMC5414898 DOI: 10.1177/0271678x16674486] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Spreading depolarizations occur spontaneously and frequently in injured human brain. They propagate slowly through injured tissue often cycling around a local area of damage. Tissue recovery after an spreading depolarization requires greatly augmented energy utilisation to normalise ionic gradients from a virtually complete loss of membrane potential. In the injured brain, this is difficult because local blood flow is often low and unreactive. In this study, we use a new variant of microdialysis, continuous on-line microdialysis, to observe the effects of spreading depolarizations on brain metabolism. The neurochemical changes are dynamic and take place on the timescale of the passage of an spreading depolarization past the microdialysis probe. Dialysate potassium levels provide an ionic correlate of cellular depolarization and show a clear transient increase. Dialysate glucose levels reflect a balance between local tissue glucose supply and utilisation. These show a clear transient decrease of variable magnitude and duration. Dialysate lactate levels indicate non-oxidative metabolism of glucose and show a transient increase. Preliminary data suggest that the transient changes recover more slowly after the passage of a sequence of multiple spreading depolarizations giving rise to a decrease in basal dialysate glucose and an increase in basal dialysate potassium and lactate levels.
Collapse
Affiliation(s)
| | - Chi Leng Leong
- 1 Department of Bioengineering, Imperial College, London, UK
| | - Sally An Gowers
- 1 Department of Bioengineering, Imperial College, London, UK
| | | | - Sharon L Jewell
- 2 Department of Basic and Clinical Neuroscience, King's College, London, UK
| | - Asma Khan
- 2 Department of Basic and Clinical Neuroscience, King's College, London, UK
| | - Leanne McCarthy
- 2 Department of Basic and Clinical Neuroscience, King's College, London, UK
| | - Clemens Pahl
- 2 Department of Basic and Clinical Neuroscience, King's College, London, UK.,3 King's College Hospital NHS Foundation Trust, London, UK
| | - Christos M Tolias
- 2 Department of Basic and Clinical Neuroscience, King's College, London, UK.,3 King's College Hospital NHS Foundation Trust, London, UK
| | - Daniel C Walsh
- 2 Department of Basic and Clinical Neuroscience, King's College, London, UK.,3 King's College Hospital NHS Foundation Trust, London, UK
| | - Anthony J Strong
- 2 Department of Basic and Clinical Neuroscience, King's College, London, UK
| | | |
Collapse
|
18
|
Vidal-Jorge M, Sánchez-Guerrero A, Mur-Bonet G, Castro L, Rădoi A, Riveiro M, Fernández-Prado N, Baena J, Poca MA, Sahuquillo J. Does Normobaric Hyperoxia Cause Oxidative Stress in the Injured Brain? A Microdialysis Study Using 8-Iso-Prostaglandin F2α as a Biomarker. J Neurotrauma 2017; 34:2731-2742. [PMID: 28323516 DOI: 10.1089/neu.2017.4992] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Significant controversy exists regarding the potential clinical benefit of normobaric hyperoxia (NBO) in patients with traumatic brain injury (TBI). This study consisted of two aims: 1) to assess whether NBO improves brain oxygenation and metabolism and 2) to determine whether this therapy may increase the risk of oxidative stress (OxS), using 8-iso-Prostaglandin F2α (PGF2α) as a biomarker. Thirty-one patients with a median admission Glasgow Coma Scale score of 4 (min: 3, max: 12) were monitored with cerebral microdialysis and brain tissue oxygen sensors and treated with fraction of inspired oxygen (FiO2) of 1.0 for 4 h. Patients were divided into two groups according to the area monitored by the probes: normal injured brain and traumatic penumbra/traumatic core. NBO maintained for 4 h did not induce OxS in patients without preOxS at baseline, except in one case. However, for patients in whom OxS was detected at baseline, NBO induced a significant increase in 8-iso-PGF2α. The results of our study showed that NBO did not change energy metabolism in the whole group of patients. In the five patients with brain lactate concentration ([Lac]brain) > 3.5 mmol/L at baseline, NBO induced a marked reduction in both [Lac]brain and lactate-to-pyruvate ratio. Although these differences were not statistically significant, together with the results of our previous study, they suggest that TBI patients would benefit from receiving NBO when they show indications of disturbed brain metabolism. These findings, in combination with increasing evidence that TBI metabolic crises are common without brain ischemia, open new possibilities for the use of this accessible therapeutic strategy in TBI patients.
Collapse
Affiliation(s)
- Marian Vidal-Jorge
- 1 Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron Research Institute (VHIR) , Barcelona, Spain
| | - Angela Sánchez-Guerrero
- 1 Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron Research Institute (VHIR) , Barcelona, Spain
| | - Gemma Mur-Bonet
- 1 Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron Research Institute (VHIR) , Barcelona, Spain
| | - Lidia Castro
- 1 Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron Research Institute (VHIR) , Barcelona, Spain
| | - Andreea Rădoi
- 1 Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron Research Institute (VHIR) , Barcelona, Spain
| | - Marilyn Riveiro
- 2 Neurotraumatology Intensive Care Unit, Vall d'Hebron University Hospital , Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Natalia Fernández-Prado
- 2 Neurotraumatology Intensive Care Unit, Vall d'Hebron University Hospital , Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jacinto Baena
- 2 Neurotraumatology Intensive Care Unit, Vall d'Hebron University Hospital , Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria-Antonia Poca
- 1 Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron Research Institute (VHIR) , Barcelona, Spain .,3 Department of Neurosurgery, Vall d'Hebron University Hospital , Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juan Sahuquillo
- 1 Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron Research Institute (VHIR) , Barcelona, Spain .,3 Department of Neurosurgery, Vall d'Hebron University Hospital , Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
19
|
Sahu S, Nag DS, Swain A, Samaddar DP. Biochemical changes in the injured brain. World J Biol Chem 2017; 8:21-31. [PMID: 28289516 PMCID: PMC5329711 DOI: 10.4331/wjbc.v8.i1.21] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/23/2016] [Accepted: 12/13/2016] [Indexed: 02/05/2023] Open
Abstract
Brain metabolism is an energy intensive phenomenon involving a wide spectrum of chemical intermediaries. Various injury states have a detrimental effect on the biochemical processes involved in the homeostatic and electrophysiological properties of the brain. The biochemical markers of brain injury are a recent addition in the armamentarium of neuro-clinicians and are being increasingly used in the routine management of neuro-pathological entities such as traumatic brain injury, stroke, subarachnoid haemorrhage and intracranial space occupying lesions. These markers are increasingly being used in assessing severity as well as in predicting the prognostic course of neuro-pathological lesions. S-100 protein, neuron specific enolase, creatinine phosphokinase isoenzyme BB and myelin basic protein are some of the biochemical markers which have been proven to have prognostic and clinical value in the brain injury. While S-100, glial fibrillary acidic protein and ubiquitin C terminal hydrolase are early biomarkers of neuronal injury and have the potential to aid in clinical decision-making in the initial management of patients presenting with an acute neuronal crisis, the other biomarkers are of value in predicting long-term complications and prognosis in such patients. In recent times cerebral microdialysis has established itself as a novel way of monitoring brain tissue biochemical metabolites such as glucose, lactate, pyruvate, glutamate and glycerol while small non-coding RNAs have presented themselves as potential markers of brain injury for future.
Collapse
|
20
|
Martínez-Valverde T, Sánchez-Guerrero A, Vidal-Jorge M, Torné R, Castro L, Gandara D, Munar F, Poca MA, Sahuquillo J. Characterization of the Ionic Profile of the Extracellular Space of the Injured and Ischemic Brain: A Microdialysis Study. J Neurotrauma 2017; 34:74-85. [DOI: 10.1089/neu.2015.4334] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Tamara Martínez-Valverde
- Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron University Hospital, Universidad Autònoma de Barcelona, Barcelona, Spain
| | - Angela Sánchez-Guerrero
- Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron University Hospital, Universidad Autònoma de Barcelona, Barcelona, Spain
| | - Marian Vidal-Jorge
- Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron University Hospital, Universidad Autònoma de Barcelona, Barcelona, Spain
| | - Ramon Torné
- Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron University Hospital, Universidad Autònoma de Barcelona, Barcelona, Spain
- Department of Neurosurgery, Vall d'Hebron University Hospital, Universidad Autònoma de Barcelona, Barcelona, Spain
| | - Lidia Castro
- Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron University Hospital, Universidad Autònoma de Barcelona, Barcelona, Spain
| | - Dario Gandara
- Department of Neurosurgery, Vall d'Hebron University Hospital, Universidad Autònoma de Barcelona, Barcelona, Spain
| | - Francisca Munar
- Department of Anesthesiology, Vall d'Hebron University Hospital, Universidad Autònoma de Barcelona, Barcelona, Spain
| | - Maria-Antonia Poca
- Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron University Hospital, Universidad Autònoma de Barcelona, Barcelona, Spain
- Department of Neurosurgery, Vall d'Hebron University Hospital, Universidad Autònoma de Barcelona, Barcelona, Spain
| | - Juan Sahuquillo
- Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron University Hospital, Universidad Autònoma de Barcelona, Barcelona, Spain
- Department of Neurosurgery, Vall d'Hebron University Hospital, Universidad Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
21
|
Association of brain metabolites with blood lactate and glucose levels with respect to neurological outcomes after out-of-hospital cardiac arrest: A preliminary microdialysis study. Resuscitation 2017; 110:26-31. [DOI: 10.1016/j.resuscitation.2016.10.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/22/2016] [Accepted: 10/09/2016] [Indexed: 12/13/2022]
|
22
|
Breuer T, Hatam N, Grabiger B, Marx G, Behnke BJ, Weis J, Kopp R, Gayan-Ramirez G, Zoremba N, Bruells CS. Kinetics of ventilation-induced changes in diaphragmatic metabolism by bilateral phrenic pacing in a piglet model. Sci Rep 2016; 6:35725. [PMID: 27759115 PMCID: PMC5069624 DOI: 10.1038/srep35725] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/30/2016] [Indexed: 12/14/2022] Open
Abstract
Perioperative necessity of deep sedation is inevitably associated with diaphragmatic inactivation. This study investigated 1) the feasibility of a new phrenic nerve stimulation method allowing early diaphragmatic activation even in deep sedation and, 2) metabolic changes within the diaphragm during mechanical ventilation compared to artificial activity. 12 piglets were separated into 2 groups. One group was mechanically ventilated for 12 hrs (CMV) and in the second group both phrenic nerves were stimulated via pacer wires inserted near the phrenic nerves to mimic spontaneous breathing (STIM). Lactate, pyruvate and glucose levels were measured continuously using microdialysis. Oxygen delivery and blood gases were measured during both conditions. Diaphragmatic stimulation generated sufficient tidal volumes in all STIM animals. Diaphragm lactate release increased in CMV transiently whereas in STIM lactate dropped during this same time point (2.6 vs. 0.9 mmol L-1 after 5:20 hrs; p < 0.001). CMV increased diaphragmatic pyruvate (40 vs. 146 μmol L-1 after 5:20 hrs between CMV and STIM; p < 0.0001), but not the lactate/pyruvate ratio. Diaphragmatic stimulation via regular electrodes is feasible to generate sufficient ventilation, even in deep sedation. Mechanical ventilation alters the metabolic state of the diaphragm, which might be one pathophysiologic origin of ventilator-induced diaphragmatic dysfunction. Occurrence of hypoxia was unlikely.
Collapse
Affiliation(s)
- Thomas Breuer
- Department of Anaesthesiology, University Hospital of the RWTH Aachen, Aachen, Germany.,Department of Intensive and Intermediate Care, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Nima Hatam
- Department of Thoracic and Cardiovascular Surgery, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Benjamin Grabiger
- Department of Anaesthesiology, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Gernot Marx
- Department of Intensive and Intermediate Care, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Bradley J Behnke
- Department of Kinesiology, Johnson Cancer Research Institute, Kansas State University, Manhattan, Kansas, USA
| | - Joachim Weis
- Institute of Neuropathology, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Ruedger Kopp
- Department of Intensive and Intermediate Care, University Hospital of the RWTH Aachen, Aachen, Germany
| | | | - Norbert Zoremba
- Department of Anaesthesiology, University Hospital of the RWTH Aachen, Aachen, Germany.,Department of Anaesthesiology, Sankt Elisabeth Hospital, Gütersloh, Germany
| | - Christian S Bruells
- Department of Intensive and Intermediate Care, University Hospital of the RWTH Aachen, Aachen, Germany
| |
Collapse
|
23
|
Effect of glucose-insulin-potassium on hyperlactataemia in patients undergoing valvular heart surgery: A randomised controlled study. Eur J Anaesthesiol 2016; 32:555-62. [PMID: 25760680 DOI: 10.1097/eja.0000000000000250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Hyperlactataemia represents oxygen imbalance in the tissues and its occurrence during cardiac surgery is associated with adverse outcomes. Glucose-insulin-potassium (GIK) infusion confers myocardial protection against ischaemia-reperfusion injury and has the potential to reduce lactate release while improving its clearance. OBJECTIVES The objective of this study is to compare the effect of GIK on the incidence of hyperlactataemia in patients undergoing valvular heart surgery. DESIGN A randomised controlled study. SETTING Single university teaching hospital. PATIENTS One hundred and six patients scheduled for elective valvular heart surgery with at least two of the known risk factors for hyperlactataemia. INTERVENTION Patients were randomly allocated to receive either GIK solution (insulin 0.1 IU kg(-1) h(-1) and an infusion of 30% dextrose and 80 mmol l(-1) potassium at 0.5 ml kg(-1) h(-1)) or 0.9% saline (control) throughout surgery. MAIN OUTCOME MEASURES The primary outcome was the incidence of hyperlactataemia (lactate ≥ 4 mmol l(-1)) during the operation and until 24 h after the operation. Secondary outcomes included haemodynamic parameters, use of vasopressor or inotropic drugs, and fluid balance until 24 h postoperatively. Postoperative morbidity endpoints were also assessed. RESULTS The incidences of hyperlactataemia were similar in the groups (32/53 patients in each of the control and GIK groups, P > 0.999). There were no intergroup differences in haemodynamic parameters, use of vasopressor and inotropic drugs, or fluid balance. The incidences of postoperative morbidity endpoints were similar in both groups. CONCLUSION Despite its theoretical advantage, GIK did not provide beneficial effects in terms of the incidence of hyperlactataemia or outcome in patients undergoing valvular heart surgery. TRIAL REGISTRATION Clinicaltrials.gov identifier: NCT01825720.
Collapse
|
24
|
Amorini AM, Lazzarino G, Di Pietro V, Signoretti S, Lazzarino G, Belli A, Tavazzi B. Metabolic, enzymatic and gene involvement in cerebral glucose dysmetabolism after traumatic brain injury. Biochim Biophys Acta Mol Basis Dis 2016; 1862:679-687. [PMID: 26844378 DOI: 10.1016/j.bbadis.2016.01.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 01/29/2016] [Indexed: 12/16/2022]
Abstract
In this study, the metabolic, enzymatic and gene changes causing cerebral glucose dysmetabolism following graded diffuse traumatic brain injury (TBI) were evaluated. TBI was induced in rats by dropping 450g from 1 (mild TBI; mTBI) or 2m height (severe TBI; sTBI). After 6, 12, 24, 48, and 120h gene expressions and enzymatic activities of glycolysis and pentose phosphate pathway (PPP) enzymes, and levels of lactate, ATP, ADP, ATP/ADP (indexing mitochondrial phosphorylating capacity), NADP(+), NADPH and GSH were determined in whole brain extracts (n=9 rats at each time for both TBI levels). Sham-operated animals (n=9) were used as controls. Results demonstrated that mTBI caused a late increase (48-120h post injury) of glycolytic gene expression and enzymatic activities, concomitantly with mitochondrial functional recovery (ATP and ATP/ADP normalization). No changes in lactate and PPP genes and enzymes, were accompanied by transient decrease in GSH, NADP(+), NADPH and NADPH/NADP(+). Animals following sTBI showed early increase (6-24h post injury) of glycolytic gene expression and enzymatic activities, occurring during mitochondrial malfunctioning (50% decrease in ATP and ATP/ADP). Higher lactate and lower GSH, NADP(+), NADPH, NADPH/NADP(+) than controls were recorded at anytime post injury (p<0.01). Both TBI levels caused metabolic and gene changes affecting glucose metabolism. Following mTBI, increased glucose flux through glycolysis is coupled to mitochondrial glucose oxidation. "True" hyperglycolysis occurs only after sTBI, where metabolic changes, caused by depressed mitochondrial phosphorylating capacity, act on genes causing net glycolytic flux increase uncoupled from mitochondrial glucose oxidation.
Collapse
Affiliation(s)
- Angela Maria Amorini
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome, Largo F. Vito 1, 00168 Rome, Italy.
| | - Giacomo Lazzarino
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome, Largo F. Vito 1, 00168 Rome, Italy.
| | - Valentina Di Pietro
- Neurobiology, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, B15 2TT Birmingham, UK.
| | - Stefano Signoretti
- Division of Neurosurgery, Department of Neurosciences Head and Neck Surgery, S. Camillo Hospital, Circonvallazione Gianicolense 87, 00152 Rome, Italy.
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Antonio Belli
- Neurobiology, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, B15 2TT Birmingham, UK; National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Edgbaston, B15 2TH Birmingham, UK.
| | - Barbara Tavazzi
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome, Largo F. Vito 1, 00168 Rome, Italy.
| |
Collapse
|
25
|
Wilhelm CJ, Hashimoto JG, Roberts ML, Bloom SH, Andrew MR, Wiren KM. Astrocyte Dysfunction Induced by Alcohol in Females but Not Males. Brain Pathol 2015; 26:433-51. [PMID: 26088166 DOI: 10.1111/bpa.12276] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/10/2015] [Indexed: 01/08/2023] Open
Abstract
Chronic alcohol abuse is associated with brain damage in a sex-specific fashion, but the mechanisms involved are poorly described and remain controversial. Previous results have suggested that astrocyte gene expression is influenced by ethanol intoxication and during abstinence in vivo. Here, bioinformatic analysis of astrocyte-enriched ethanol-regulated genes in vivo revealed ubiquitin pathways as an ethanol target, but with sexually dimorphic cytokine signaling and changes associated with brain aging in females and not males. Consistent with this result, astrocyte activation was observed after exposure in female but not male animals, with reduced S100β levels in the anterior cingulate cortex and increased GFAP(+) cells in the hippocampus. In primary culture, the direct effects of chronic ethanol exposure followed by recovery on sex-specific astrocyte function were examined. Male astrocyte responses were consistent with astrocyte deactivation with reduced GFAP expression during ethanol exposure. In contrast, female astrocytes exhibited increased expression of Tnf, reduced expression of the neuroprotective cytokine Tgfb1, disrupted bioenergetics and reduced excitatory amino acid uptake following exposure or recovery. These results indicate widespread astrocyte dysfunction in ethanol-exposed females and suggest a mechanism that may underlie increased vulnerability to ethanol-induced neurotoxicity in females.
Collapse
Affiliation(s)
- Clare J Wilhelm
- VA Portland Health Care System, Portland, OR.,Department of Psychiatry, Oregon Health & Science University, Portland, OR
| | - Joel G Hashimoto
- VA Portland Health Care System, Portland, OR.,Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR
| | | | | | - Melissa R Andrew
- Cincinnati Center for Growth Disorders, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Kristine M Wiren
- VA Portland Health Care System, Portland, OR.,Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR
| |
Collapse
|
26
|
Reis C, Wang Y, Akyol O, Ho WM, Ii RA, Stier G, Martin R, Zhang JH. What's New in Traumatic Brain Injury: Update on Tracking, Monitoring and Treatment. Int J Mol Sci 2015; 16:11903-65. [PMID: 26016501 PMCID: PMC4490422 DOI: 10.3390/ijms160611903] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/04/2015] [Accepted: 05/06/2015] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI), defined as an alteration in brain functions caused by an external force, is responsible for high morbidity and mortality around the world. It is important to identify and treat TBI victims as early as possible. Tracking and monitoring TBI with neuroimaging technologies, including functional magnetic resonance imaging (fMRI), diffusion tensor imaging (DTI), positron emission tomography (PET), and high definition fiber tracking (HDFT) show increasing sensitivity and specificity. Classical electrophysiological monitoring, together with newly established brain-on-chip, cerebral microdialysis techniques, both benefit TBI. First generation molecular biomarkers, based on genomic and proteomic changes following TBI, have proven effective and economical. It is conceivable that TBI-specific biomarkers will be developed with the combination of systems biology and bioinformation strategies. Advances in treatment of TBI include stem cell-based and nanotechnology-based therapy, physical and pharmaceutical interventions and also new use in TBI for approved drugs which all present favorable promise in preventing and reversing TBI.
Collapse
Affiliation(s)
- Cesar Reis
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
| | - Yuechun Wang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA 92354, USA.
- Department of Physiology, School of Medicine, University of Jinan, Guangzhou 250012, China.
| | - Onat Akyol
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA 92354, USA.
| | - Wing Mann Ho
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA 92354, USA.
- Department of Neurosurgery, University Hospital Innsbruck, Tyrol 6020, Austria.
| | - Richard Applegate Ii
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
| | - Gary Stier
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
| | - Robert Martin
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
| | - John H Zhang
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA 92354, USA.
- Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| |
Collapse
|
27
|
Rogatzki MJ, Ferguson BS, Goodwin ML, Gladden LB. Lactate is always the end product of glycolysis. Front Neurosci 2015; 9:22. [PMID: 25774123 PMCID: PMC4343186 DOI: 10.3389/fnins.2015.00022] [Citation(s) in RCA: 238] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/13/2015] [Indexed: 12/22/2022] Open
Abstract
Through much of the history of metabolism, lactate (La−) has been considered merely a dead-end waste product during periods of dysoxia. Congruently, the end product of glycolysis has been viewed dichotomously: pyruvate in the presence of adequate oxygenation, La− in the absence of adequate oxygenation. In contrast, given the near-equilibrium nature of the lactate dehydrogenase (LDH) reaction and that LDH has a much higher activity than the putative regulatory enzymes of the glycolytic and oxidative pathways, we contend that La− is always the end product of glycolysis. Cellular La− accumulation, as opposed to flux, is dependent on (1) the rate of glycolysis, (2) oxidative enzyme activity, (3) cellular O2 level, and (4) the net rate of La− transport into (influx) or out of (efflux) the cell. For intracellular metabolism, we reintroduce the Cytosol-to-Mitochondria Lactate Shuttle. Our proposition, analogous to the phosphocreatine shuttle, purports that pyruvate, NAD+, NADH, and La− are held uniformly near equilibrium throughout the cell cytosol due to the high activity of LDH. La− is always the end product of glycolysis and represents the primary diffusing species capable of spatially linking glycolysis to oxidative phosphorylation.
Collapse
Affiliation(s)
- Matthew J Rogatzki
- Department of Health and Human Performance, University of Wisconsin-Platteville Platteville, WI, USA
| | - Brian S Ferguson
- Department of Biomedical Sciences, University of Missouri Columbia, MO, USA
| | - Matthew L Goodwin
- Department of Orthopaedics, and Huntsman Cancer Institute, University of Utah Salt Lake City, UT, USA
| | | |
Collapse
|
28
|
Grinspan ZM, Pon S, Greenfield JP, Malhotra S, Kosofsky BE. Multimodal monitoring in the pediatric intensive care unit: new modalities and informatics challenges. Semin Pediatr Neurol 2014; 21:291-8. [PMID: 25727511 DOI: 10.1016/j.spen.2014.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We review several newer modalities to monitor the brain in children with acute neurologic disease in the pediatric intensive care unit, such as partial brain tissue oxygen tension (PbtO2), jugular venous oxygen saturation (SjvO2), near infrared spectroscopy (NIRS), thermal diffusion measurement of cerebral blood flow, cerebral microdialysis, and EEG. We then discuss the informatics challenges to acquire, consolidate, analyze, and display the data. Acquisition includes multiple data types: discrete, waveform, and continuous. Consolidation requires device interoperability and time synchronization. Analysis could include pressure reactivity index and quantitative EEG. Displays should communicate the patient's current status, longitudinal and trend information, and critical alarms.
Collapse
Affiliation(s)
- Zachary M Grinspan
- Department of Healthcare Policy and Research, Weill Cornell Medical College, New York, NY; Department of Pediatrics, Weill Cornell Medical College, New York, NY; Center for Healthcare Informatics and Policy, Weill Cornell Medical College, New York, NY; New York Presbyterian Hospital, New York, NY.
| | - Steven Pon
- Department of Pediatrics, Weill Cornell Medical College, New York, NY; New York Presbyterian Hospital, New York, NY
| | - Jeffrey P Greenfield
- New York Presbyterian Hospital, New York, NY; Department of Neurologic Surgery, Weill Cornell Medical College, New York, NY
| | - Sameer Malhotra
- Center for Healthcare Informatics and Policy, Weill Cornell Medical College, New York, NY; New York Presbyterian Hospital, New York, NY; Physician Organization, Weill Cornell Medical College, New York, NY
| | - Barry E Kosofsky
- Department of Pediatrics, Weill Cornell Medical College, New York, NY; New York Presbyterian Hospital, New York, NY
| |
Collapse
|
29
|
Perioperative microdialysis in meningioma surgery: correlation of cerebral metabolites with clinical outcome. Acta Neurochir (Wien) 2014; 156:2275-82; discussion 2282. [PMID: 25305088 DOI: 10.1007/s00701-014-2242-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/15/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND Brain tumour resection requires surgical manoeuvres that may cause an ischaemic injury to peritumoral tissue. The aim of the present study was to examine whether putative alterations in peritumoral tissue biochemistry, monitored by microdialysis, correlate with clinical outcome in patients undergoing craniotomy for meningioma resection. METHODS In 34 patients undergoing meningioma resection (35 % male; mean age ± SD: 54.3 ± 12.1 years), microdialysis measurements were taken perioperatively from peritumoral brain parenchyma. Standard metabolites (glucose, lactate, pyruvate, glycerol and the lactate:pyruvate ratio) were quantified in relation to clinical outcome assessed by the Glasgow Coma Scale (GCS) and the Karnofsky Performance Status scale. RESULTS Higher postoperative glucose and pyruvate levels were found in patients with a favourable outcome (GCS not deteriorated or Karnofsky score > 80). Multiple logistic regression analysis (age, preoperative physical status, metabolite levels as independent variables) showed that lower postoperative glucose and pyruvate levels as well as higher lactate:pyruvate ratio values were independently associated with an unfavourable outcome as defined by Karnofsky score <80 [(OR: 0.084, 95 % CI: 0.01-0.98, p = 0.049), (OR: 0.97, 95 % CI: 0.95-0.99, p = 0.050), (OR: 1.21, 95 % CI: 1.04-1.42, p = 0.015) respectively], as well as with death [(OR: 0.08, 95 % CI: 0.01-0.97, p = 0.046), (OR: 0.94, 95 % CI: 0.89-0.99, p = 0.016), (OR: 1.07, 95 % CI: 1.00-1.15, p = 0.05) respectively]. CONCLUSIONS Postoperative levels of glucose and pyruvate and the lactate:pyruvate ratio appear to correlate with clinical outcome in patients undergoing meningioma resection. The present findings provide support for the utility of microdialysis as a prognostic tool in brain tumour surgery.
Collapse
|