1
|
Bacon JM, Jones JL, Liu GS, Dickinson JL, Raspin K. Mitochondrial ribosomal proteins in metastasis and their potential use as prognostic and therapeutic targets. Cancer Metastasis Rev 2024:10.1007/s10555-024-10216-4. [PMID: 39354291 DOI: 10.1007/s10555-024-10216-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024]
Abstract
The mitochondrion is an essential cell organelle known as the powerhouse of the cell. Mitochondrial ribosomal proteins (MRPs) are nuclear encoded, synthesised in the cytoplasm but perform their main functions in the mitochondria, which includes translation, transcription, cell death and maintenance. However, MRPs have also been implicated in cancer, particularly advanced disease and metastasis across a broad range of cancer types, where they play a central role in cell survival and progression. For some, their altered expression has been investigated as potential prognostic markers, and/or therapeutic targets, which is the focus of this review. Several therapies targeting MRPs are currently approved by the Food and Drug Administration and the European Medicines Agency for use in other diseases, revealing the opportunity for repurposing their use in advanced and metastatic cancer. Herein, we review the evidence supporting key MRPs as molecular drivers of advanced disease in multiple cancer types. We also highlight promising avenues for future use of MRPs as precision targets in the treatment of late-stage cancers for which there are currently very limited effective treatment options.
Collapse
Affiliation(s)
- Jasmine M Bacon
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Johanna L Jones
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Guei-Sheung Liu
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Victoria, Australia
| | - Joanne L Dickinson
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Kelsie Raspin
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia.
| |
Collapse
|
2
|
Wu L, Chu J, Shangguan L, Cao M, Lu F. Discovery and identification of the prognostic significance and potential mechanism of FMO2 in breast cancer. Aging (Albany NY) 2023; 15:12651-12673. [PMID: 37963835 PMCID: PMC10683592 DOI: 10.18632/aging.205204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/03/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND Flavin containing dimethylaniline monoxygenase 2 (FMO2), is downexpressed in diverse tumors and displays vital roles in tumorigenesis. However, the prognostic value and potential mechanism of FMO2 in breast cancer remain unclear. METHODS The expression of FMO2 was analyzed and the relationship between FMO2 expression level and clinical indicators in breast cancer was analyzed. Then the prognostic value of FMO2 in breast cancer was assessed. The FMO2-correlated genes were obtained, and the highest-ranked gene was chosen. The expression, therapeutic responder analysis, and gene set enrichment analysis of the highest-ranked gene were conducted. RESULTS FMO2 was downregulated in breast cancer and was closely related to clinical indicators. Patients with decreased FMO2 expression showed poor overall survival, post-progression survival, relapse-free survival, and distant metastasis-free survival. FMO2 correlates with N/ER/PR subgroups in breast cancer and patients with high FMO2 levels were sensitive to anti-programmed cell death protein 1, anti-programmed death-ligand 1, and anti-cytotoxic T-lymphocyte antigen 4 immunotherapies. Mechanically, FMO2 was positively and highly correlated with secreted Frizzled-related protein 1 (SFRP1), which was downregulated in breast cancer due to hypermethylation. Moreover, SFRP1 was correlated to pathological complete response and relapse-free survival status at 5 years regardless of any chemotherapy, hormone therapy, and anti-HER2 therapy. Gene set enrichment analysis revealed enrichment of component and coagulation cascades, focal adhesion, protein export, and spliceosome. CONCLUSIONS FMO2 was lower expressed in breast cancer than normal tissues and contributes to subtype classification and prognosis prediction with co-expressed SFRP1.
Collapse
Affiliation(s)
- Lichun Wu
- Department of Clinical Laboratory, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jie Chu
- The First People’s Hospital of Ziyang, Ziyang, China
| | - Lijuan Shangguan
- Outpatient Department, People’s Hospital of Jianyang, Jianyang, China
| | - Mingfei Cao
- Department of Clinical Laboratory, Chuankong Hospital of Jianyang, Jianyang, China
| | - Feng Lu
- Department of Experimental Medicine, The People’s Hospital of Jianyang City, Jianyang, China
| |
Collapse
|
3
|
Clemenceau A, Lacouture A, Bherer J, Ouellette G, Michaud A, Audet-Walsh É, Diorio C, Durocher F. Role of Secreted Frizzled-Related Protein 1 in Early Breast Carcinogenesis and Breast Cancer Aggressiveness. Cancers (Basel) 2023; 15:cancers15082251. [PMID: 37190179 DOI: 10.3390/cancers15082251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
A human transcriptome array on ERα-positive breast cancer continuum of risk identified Secreted Frizzled-Related Protein 1 (SFRP1) as decreased during breast cancer progression. In addition, SFRP1 was inversely associated with breast tissue age-related lobular involution, and differentially regulated in women with regard to their parity status and the presence of microcalcifications. The causal role of SFRP1 in breast carcinogenesis remains, nevertheless, not well understood. In this study, we characterized mammary epithelial cells from both nulliparous and multiparous mice in organoid culture ex vivo, in the presence of estradiol (E2) and/or hydroxyapatite microcalcifications (HA). Furthermore, we have modulated SFRP1 expression in breast cancer cell lines, including the MCF10A series, and investigated their tumoral properties. We observed that organoids obtained from multiparous mice were resistant to E2 treatment, while organoids obtained from nulliparous mice developed the luminal phenotype associated with a lower ratio between Sfrp1 and Esr1 expression. The decrease in SFRP1 expression in MCF10A and MCF10AT1 cell lines increased their tumorigenic properties in vitro. On the other hand, the overexpression of SFRP1 in MCF10DCIS, MCF10CA1a, and MCF7 reduced their aggressiveness. Our results support the hypothesis that a lack of SFRP1 could have a causal role in early breast carcinogenesis.
Collapse
Affiliation(s)
- Alisson Clemenceau
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
- Cancer Research Centre, CHU de Quebec Research Centre, Quebec, QC G1V 4G2, Canada
| | - Aurélie Lacouture
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
- Cancer Research Centre, CHU de Quebec Research Centre, Quebec, QC G1V 4G2, Canada
| | - Juliette Bherer
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
- Cancer Research Centre, CHU de Quebec Research Centre, Quebec, QC G1V 4G2, Canada
| | - Geneviève Ouellette
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
- Cancer Research Centre, CHU de Quebec Research Centre, Quebec, QC G1V 4G2, Canada
| | - Annick Michaud
- Cancer Research Centre, CHU de Quebec Research Centre, Quebec, QC G1V 4G2, Canada
- Department of Social and Preventive Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
| | - Étienne Audet-Walsh
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
- Cancer Research Centre, CHU de Quebec Research Centre, Quebec, QC G1V 4G2, Canada
| | - Caroline Diorio
- Cancer Research Centre, CHU de Quebec Research Centre, Quebec, QC G1V 4G2, Canada
- Department of Social and Preventive Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
| | - Francine Durocher
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
- Cancer Research Centre, CHU de Quebec Research Centre, Quebec, QC G1V 4G2, Canada
| |
Collapse
|
4
|
El-Helkan B, Emam M, Mohanad M, Fathy S, Zekri AR, Ahmed OS. Long non-coding RNAs as novel prognostic biomarkers for breast cancer in Egyptian women. Sci Rep 2022; 12:19498. [PMID: 36376369 PMCID: PMC9663553 DOI: 10.1038/s41598-022-23938-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer (BC), the most common type of malignant tumor, is the leading cause of death, having the highest incidence rate among women. The lack of early diagnostic tools is one of the clinical obstacles for BC treatment. The current study was designed to evaluate a panel of long non-coding RNAs (lncRNAs) BC040587, HOTAIR, MALAT1, CCAT1, CCAT2, PVT1, UCA1, SPRY4-IT1, PANDAR, and AK058003-and two mRNAs (SNCG, BDNF) as novel prognostic biomarkers for BC. This study was ethically approved by the Institutional Review Board of the National Cancer Institute, Cairo University. Our study included 75 women recently diagnosed with BC and 25 healthy women as normal controls. Patients were divided into three groups: 24 with benign breast diseases, 28 with metastatic breast cancer (MBC, stage IV), and 23 with non-metastatic breast cancer (NMBC, stage III). LncRNA and mRNA expression levels were measured in patient plasma using quantitative real-time PCR. We found that 10 lncRNAs (BCO40587, HOTAIR, PVT1, CCAT2, PANDAR, CCAT1, UCA1, SPRY4-IT1, AK058003, and MALAT1) and both mRNAs demonstrated at least a 2-fold change in expression with a more than 95% probability of significance. BCO40587 and SNCG were significantly up-regulated in MBC and NMBC patients (3.2- and 4-fold, respectively) compared with normal controls. The expression of UCA1 was repressed by 1.78-fold in MBC and NMBC patients compared with those with benign diseases. SPRY4-IT1 was down-regulated by 1.45-fold in MBC patients compared with NMBC and benign disease patients. Up-regulation of lncRNAs plays an important role in BC development. SNCG and BCO40587 may be potential prognostic markers for BC.The organization number is IORG0003381 (IRB No: IRB00004025).
Collapse
Affiliation(s)
- Basma El-Helkan
- grid.7269.a0000 0004 0621 1570Department of Biochemistry, Faculty of Science-Ain Shams University, Cairo, Egypt
| | - Manal Emam
- grid.7269.a0000 0004 0621 1570Department of Biochemistry, Faculty of Science-Ain Shams University, Cairo, Egypt
| | - Marwa Mohanad
- grid.440875.a0000 0004 1765 2064College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October ,Giza, Egypt
| | - Shadia Fathy
- grid.7269.a0000 0004 0621 1570Department of Biochemistry, Faculty of Science-Ain Shams University, Cairo, Egypt
| | - Abdel Rahman Zekri
- grid.7776.10000 0004 0639 9286Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Ola S. Ahmed
- grid.7776.10000 0004 0639 9286Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
5
|
Crosstalk between the peripheral nervous system and breast cancer influences tumor progression. Biochim Biophys Acta Rev Cancer 2022; 1877:188828. [DOI: 10.1016/j.bbcan.2022.188828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022]
|
6
|
Herbal Ingredients in the Prevention of Breast Cancer: Comprehensive Review of Potential Molecular Targets and Role of Natural Products. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6044640. [PMID: 36017236 PMCID: PMC9398845 DOI: 10.1155/2022/6044640] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/06/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022]
Abstract
Among various cancers, breast cancer is the most prevalent type in women throughout the world. Breast cancer treatment is challenging due to complex nature of the etiology of disease. Cell division cycle alterations are often encountered in a variety of cancer types including breast cancer. Common treatments include chemotherapy, surgery, radiotherapy, and hormonal therapy; however, adverse effects and multidrug resistance lead to complications and noncompliance. Accordingly, there is an increasing demand for natural products from medicinal plants and foods. This review summarizes molecular mechanisms of signaling pathways in breast cancer and identifies mechanisms by which natural compounds may exert their efficacy in the treatment of breast cancer.
Collapse
|
7
|
Oviya RP, Gopal G, Jayavelu S, Rajkumar T. Expression and affinity purification of recombinant mammalian Mitochondrial Ribosomal Small Subunit (MRPS) proteins and protein-protein interaction analysis indicate putative role in tumorigenic cellular processes. J Biochem 2021; 169:675-692. [PMID: 33471101 DOI: 10.1093/jb/mvab004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/08/2021] [Indexed: 12/16/2022] Open
Abstract
MRPS group of proteins are structural constituents of the small subunit of mitoribosomes involved in translation. Recent studies indicate role in tumorigenic process, however, unlike cytosolic ribosomal proteins, knowledge on the role of MRPS proteins in alternate cellular processes is very limited. Mapping protein-protein interactions (PPIs) onto known cellular processes can be a valuable tool to identify novel protein functions. In this study, to identify PPIs of MRPS proteins, we have constructed thirty-one GST/MRPS fusion clones. GST/MRPS fusion proteins were confirmed by MALDI-TOF analysis. GST pull-downs were performed using eight GST/MRPS proteins (MRPS9, MRPS10, MRPS11, MRPS18B, MRPS31, MRPS33, MRPS38, MRPS39), GST alone as pull-down control, and HEK293 cell lysate as the source for anchor proteins followed by nLC/MS/MS analysis and probable PPIs of eight MRPS proteins were identified. Three PPIs from GST pull-downs and interaction between six MRPS proteins and p53 previously reported in PPI database were validated. The PPI network analysis revealed putative role in cellular processes with implications for tumorigenesis. Gene expression screening of a cancer cell line panel indicated overexpression of MRPS10 and MRPS31 in breast cancer. Co-expression module identification tool analysis of breast cancer gene expression and MRPS10 and MRPS31 PPIs revealed putative role for PPI with ACADSB in fatty acid oxidation process regulated by brain-derived neurotrophic factor (BDNF) signaling pathway.
Collapse
Affiliation(s)
| | - Gopisetty Gopal
- Department of Molecular Oncology, Cancer Institute (WIA), Adyar, Chennai, 600020
| | - Subramani Jayavelu
- Department of Molecular Oncology, Cancer Institute (WIA), Adyar, Chennai, 600020
| | - Thangarajan Rajkumar
- Department of Molecular Oncology, Cancer Institute (WIA), Adyar, Chennai, 600020
| |
Collapse
|
8
|
Hou Y, Fan L, Li H. Oncogenic miR-27a delivered by exosomes binds to SFRP1 and promotes angiogenesis in renal clear cell carcinoma. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 24:92-103. [PMID: 33738141 PMCID: PMC7941030 DOI: 10.1016/j.omtn.2020.11.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 11/20/2020] [Indexed: 12/27/2022]
Abstract
Exosomes derived from cancer cells have emerged as important mediators of malignant phenotypes of tumors, being involved in the transmission of biological signals between cells. Herein, we intended to clarify the role of exosome-mediated transfer of oncogenic microRNA-27a (miR-27a) in angiogenesis of renal clear cell carcinoma (RCCC). Through bioinformatics analysis, we identified the differentially expressed genes of RCCC and predicted miRNAs targeting SFRP1. We manipulated the expression of miR-27a and/or SFRP1 in RCCC cells to explore their roles in angiogenesis through Cell Counting Kit-8 (CCK-8), Transwell, and Matrigel tubule formation assays. miR-27a loaded in exosomes was overexpressed and downregulated in vitro and in vivo to verify its effect on angiogenesis. SFRP1 was poorly expressed and miR-27a was highly expressed in RCCC tissues, showing a negative correlation. Dual-luciferase assay verified that miR-27a targeted and downregulated SFRP1 expression. Notably, miR-27a enhanced angiogenesis by downregulating SFRP1 expression. miR-27a-loaded exosomes can be delivered from RCCC cells to human umbilical vein endothelial cells (HUVECs). In vitro and in vivo experiments substantiated that miR-27a-loaded exosomes from RCCC cells repressed SFRP1, augmenting the viability, migration, and angiogenesis of RCCC cells. Together, RCCC-derived miR-27a-loaded exosomes inhibit SFRP1 expression and accelerate tumor angiogenesis in RCCC.
Collapse
Affiliation(s)
- Yi Hou
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun 130000, P.R. China
| | - Li Fan
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun 130000, P.R. China
| | - Hai Li
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun 130000, P.R. China
- Corresponding author: Hai Li, Department of Urology, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Road, Changchun 130000, Jilin Province, P.R. China.
| |
Collapse
|
9
|
Breast Cancer and Microcalcifications: An Osteoimmunological Disorder? Int J Mol Sci 2020; 21:ijms21228613. [PMID: 33203195 PMCID: PMC7696282 DOI: 10.3390/ijms21228613] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
The presence of microcalcifications in the breast microenvironment, combined with the growing evidences of the possible presence of osteoblast-like or osteoclast-like cells in the breast, suggest the existence of active processes of calcification in the breast tissue during a woman’s life. Furthermore, much evidence that osteoimmunological disorders, such as osteoarthritis, rheumatoid arthritis, or periodontitis influence the risk of developing breast cancer in women exists and vice versa. Antiresorptive drugs benefits on breast cancer incidence and progression have been reported in the past decades. More recently, biological agents targeting pro-inflammatory cytokines used against rheumatoid arthritis also demonstrated benefits against breast cancer cell lines proliferation, viability, and migratory abilities, both in vitro and in vivo in xenografted mice. Hence, it is tempting to hypothesize that breast carcinogenesis should be considered as a potential osteoimmunological disorder. In this review, we compare microenvironments and molecular characteristics in the most frequent osteoimmunological disorders with major events occurring in a woman’s breast during her lifetime. We also highlight what the use of bone anabolic drugs, antiresorptive, and biological agents targeting pro-inflammatory cytokines against breast cancer can teach us.
Collapse
|
10
|
Dettogni RS, Stur E, Laus AC, da Costa Vieira RA, Marques MMC, Santana IVV, Pulido JZ, Ribeiro LF, de Jesus Parmanhani N, Agostini LP, Dos Reis RS, de Vargas Wolfgramm Dos Santos E, Alves LNR, Garcia FM, Santos JA, do Prado Ventorim D, Reis RM, Louro ID. Potential biomarkers of ductal carcinoma in situ progression. BMC Cancer 2020; 20:119. [PMID: 32050925 PMCID: PMC7017577 DOI: 10.1186/s12885-020-6608-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/06/2020] [Indexed: 12/21/2022] Open
Abstract
Background Ductal carcinoma in situ is a non-obligate precursor of invasive breast carcinoma and presents a potential risk of over or undertreatment. Finding molecular biomarkers of disease progression could allow for more adequate patient treatment. We aimed to identify potential biomarkers that can predict invasiveness risk. Methods In this epithelial cell-based study archival formalin-fixed paraffin-embedded blocks from six patients diagnosed with invasive lesions (pure invasive ductal carcinoma), six with in-situ lesions (pure ductal carcinoma in situ), six with synchronous lesions (invasive ductal carcinoma with an in-situ component) and three non-neoplastic breast epithelium tissues were analyzed by gene expression profiling of 770 genes, using the nCounter® PanCancer Pathways panel of NanoString Technologies. Results The results showed that in comparison with non-neoplastic tissue the pure ductal carcinoma in situ was one with the most altered gene expression profile. Comparing pure ductal carcinoma in situ and in-situ component six differentially expressed genes were found, three of them (FGF2, GAS1, and SFRP1), play a role in cell invasiveness. Importantly, these genes were also differentially expressed between invasive and noninvasive groups and were negatively regulated in later stages of carcinogenesis. Conclusions We propose these three genes (FGF2, GAS1, and SFRP1) as potential biomarkers of ductal carcinoma in situ progression, suggesting that their downregulation may be involved in the transition of stationary to migrating invasive epithelial cells.
Collapse
Affiliation(s)
- Raquel Spinassé Dettogni
- Department of Biological Sciences-Human and Molecular Genetics Nucleus, Federal University of Espirito Santo, Vitoria, Espirito Santo, Brazil.
| | - Elaine Stur
- Department of Biological Sciences-Human and Molecular Genetics Nucleus, Federal University of Espirito Santo, Vitoria, Espirito Santo, Brazil
| | - Ana Carolina Laus
- Molecular Oncology Research Center-Barretos Cancer Hospital, Barretos, Sao Paulo, Brazil
| | | | - Márcia Maria Chiquitelli Marques
- Molecular Oncology Research Center-Barretos Cancer Hospital, Barretos, Sao Paulo, Brazil.,Barretos School of Health Sciences-FACISB, Barretos, Sao Paulo, Brazil
| | | | - José Zago Pulido
- Evangelical Hospital of Cachoeiro de Itapemirim, Cachoeiro de Itapemirim, Espirito Santo, Brazil.,Oncology Clinical Research Center, Cachoeiro de Itapemirim, Espirito Santo, Brazil
| | - Laura Fregonassi Ribeiro
- Evangelical Hospital of Cachoeiro de Itapemirim, Cachoeiro de Itapemirim, Espirito Santo, Brazil
| | - Narelle de Jesus Parmanhani
- Evangelical Hospital of Cachoeiro de Itapemirim, Cachoeiro de Itapemirim, Espirito Santo, Brazil.,Oncology Clinical Research Center, Cachoeiro de Itapemirim, Espirito Santo, Brazil
| | - Lidiane Pignaton Agostini
- Department of Biological Sciences-Human and Molecular Genetics Nucleus, Federal University of Espirito Santo, Vitoria, Espirito Santo, Brazil
| | - Raquel Silva Dos Reis
- Department of Biological Sciences-Human and Molecular Genetics Nucleus, Federal University of Espirito Santo, Vitoria, Espirito Santo, Brazil
| | | | - Lyvia Neves Rebello Alves
- Department of Biological Sciences-Human and Molecular Genetics Nucleus, Federal University of Espirito Santo, Vitoria, Espirito Santo, Brazil
| | - Fernanda Mariano Garcia
- Department of Biological Sciences-Human and Molecular Genetics Nucleus, Federal University of Espirito Santo, Vitoria, Espirito Santo, Brazil
| | - Jéssica Aflávio Santos
- Department of Biological Sciences-Human and Molecular Genetics Nucleus, Federal University of Espirito Santo, Vitoria, Espirito Santo, Brazil
| | - Diego do Prado Ventorim
- Department of Biological Sciences-Human and Molecular Genetics Nucleus, Federal University of Espirito Santo, Vitoria, Espirito Santo, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center-Barretos Cancer Hospital, Barretos, Sao Paulo, Brazil.,Life and Health Sciences Research Institute (ICVS)-Health Sciences School, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Iúri Drumond Louro
- Department of Biological Sciences-Human and Molecular Genetics Nucleus, Federal University of Espirito Santo, Vitoria, Espirito Santo, Brazil
| |
Collapse
|
11
|
Role of Secreted Frizzled-Related Protein 1 in Early Mammary Gland Tumorigenesis and Its Regulation in Breast Microenvironment. Cells 2020; 9:cells9010208. [PMID: 31947616 PMCID: PMC7017175 DOI: 10.3390/cells9010208] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/09/2020] [Accepted: 01/12/2020] [Indexed: 12/11/2022] Open
Abstract
In mice, the lack of secreted frizzled-related protein 1 (SFRP1) is responsible for mammogenesis and hyperplasia, while, in bovines, its overexpression is associated with post-lactational mammary gland involution. Interestingly, there are no reports dealing with the role of SFRP1 in female involution. However, SFRP1 dysregulation is largely associated with human tumorigenesis in the literature. Indeed, the lack of SFRP1 is associated with both tumor development and patient prognosis. Considering the increased risk of breast tumor development associated with incomplete mammary gland involution, it is crucial to demystify the "grey zone" between physiological age-related involution and tumorigenesis. In this review, we explore the functions of SFRP1 involved in the breast involution processes to understand the perturbations driven by the disappearance of SFRP1 in mammary tissue. Moreover, we question the presence of recurrent microcalcifications identified by mammography. In bone metastases from prostate primary tumor, overexpression of SFRP1 results in an osteolytic response of the tumor cells. Hence, we explore the hypothesis of an osteoblastic differentiation of mammary cells induced by the lack of SFRP1 during lobular involution, resulting in a new accumulation of hydroxyapatite crystals in the breast tissue.
Collapse
|
12
|
Yin H, Jiang Y, Zhang Y, Ge H, Yang Z. The inhibition of BDNF/TrkB/PI3K/Akt signal mediated by AG1601 promotes apoptosis in malignant glioma. J Cell Biochem 2019; 120:18771-18781. [PMID: 31219215 DOI: 10.1002/jcb.29190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/28/2019] [Indexed: 12/15/2022]
Abstract
Malignant glioma is the most aggressive primary brain tumor and has a poor survival rate. Even if extensive methods are preformed to treat glioma, the mortality rate is still very high. It is necessary for discovering and developing new drugs for malignant glioma treatment. AG1601 is one of AG-series drugs, including AG1031 and AG1503, and it has been optimized on the original basis. In our study, we found that AG1601 markedly inhibited proliferation and promoted C6 glioma cell apoptosis in vitro. AG1601 also reduced the size and weight of glioma in vivo. The growth ability of glioma was significantly inhibited after treatment with AG1601. It also showed that the expression levels of BDNF/TrkB/PI3K/Akt signal related proteins were obviously decreased in C6 glioma cells after treatment with AG1601 in vivo and in vitro. We also found that BDNF, as the activator of BDNF/TrkB/PI3K/Akt signal, reversed the anti-proliferation and pro-apoptosis of C6 glioma cells caused by AG1601. K252a, a specific inhibitor of TrkB, and AG1601 in combination aggravated C6 glioma cell apoptosis. These results indicate that AG1601 has good effects on the anti-proliferation and pro-apoptosis of malignant glioma via BDNF/TrkB/PI3K/Akt signal and could be considered as a potential drug in treating malignant glioma.
Collapse
Affiliation(s)
- Hongqiang Yin
- Medical School, Key Laboratory of Bioactive Materials for Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Yu Jiang
- Medical School, Key Laboratory of Bioactive Materials for Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Yinguo Zhang
- Department of Physiology and Pathophysiology, Logistics University of Chinese People's Armed Police Force, Tianjin, China
| | - Hui Ge
- Division of drug discovery, AscentGene Inc, Gaithersburg, Maryland
| | - Zhuo Yang
- Medical School, Key Laboratory of Bioactive Materials for Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| |
Collapse
|
13
|
Merk DJ, Ohli J, Merk ND, Thatikonda V, Morrissy S, Schoof M, Schmid SN, Harrison L, Filser S, Ahlfeld J, Erkek S, Raithatha K, Andreska T, Weißhaar M, Launspach M, Neumann JE, Shakarami M, Plenker D, Marra MA, Li Y, Mungall AJ, Moore RA, Ma Y, Jones SJM, Lutz B, Ertl-Wagner B, Rossi A, Wagener R, Siebert R, Jung A, Eberhart CG, Lach B, Sendtner M, Pfister SM, Taylor MD, Chavez L, Kool M, Schüller U. Opposing Effects of CREBBP Mutations Govern the Phenotype of Rubinstein-Taybi Syndrome and Adult SHH Medulloblastoma. Dev Cell 2018; 44:709-724.e6. [PMID: 29551561 DOI: 10.1016/j.devcel.2018.02.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/08/2018] [Accepted: 02/12/2018] [Indexed: 10/17/2022]
Abstract
Recurrent mutations in chromatin modifiers are specifically prevalent in adolescent or adult patients with Sonic hedgehog-associated medulloblastoma (SHH MB). Here, we report that mutations in the acetyltransferase CREBBP have opposing effects during the development of the cerebellum, the primary site of origin of SHH MB. Our data reveal that loss of Crebbp in cerebellar granule neuron progenitors (GNPs) during embryonic development of mice compromises GNP development, in part by downregulation of brain-derived neurotrophic factor (Bdnf). Interestingly, concomitant cerebellar hypoplasia was also observed in patients with Rubinstein-Taybi syndrome, a congenital disorder caused by germline mutations of CREBBP. By contrast, loss of Crebbp in GNPs during postnatal development synergizes with oncogenic activation of SHH signaling to drive MB growth, thereby explaining the enrichment of somatic CREBBP mutations in SHH MB of adult patients. Together, our data provide insights into time-sensitive consequences of CREBBP mutations and corresponding associations with human diseases.
Collapse
Affiliation(s)
- Daniel J Merk
- Center for Neuropathology, Ludwig-Maximilians-University, 81377 Munich, Germany; Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Neurobiology, Harvard Medical School, Boston, MA 02215, USA
| | - Jasmin Ohli
- Center for Neuropathology, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Natalie D Merk
- Munich Center for Integrated Protein Science at the Chemistry Department, Technical University, 85747 Munich, Germany
| | - Venu Thatikonda
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sorana Morrissy
- Arthur and Sonia Labatt Brain Tumour Research Centre and Division of Neurosurgery, Hospital for Sick Children (HSC), Toronto, ON M5G 1L7, Canada; Program in Developmental and Stem Cell Biology, HSC, Toronto, ON M5G 1X8, Canada
| | - Melanie Schoof
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, N63 (HPI), Hamburg 20251, Germany
| | - Susanne N Schmid
- Center for Neuropathology, Ludwig-Maximilians-University, 81377 Munich, Germany; Department of Neuropathology, University Medical Center Göttingen, 37099 Göttingen, Germany
| | - Luke Harrison
- Center for Neuropathology, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Severin Filser
- German Center for Neurodegenerative Diseases (DZNE), Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Julia Ahlfeld
- Center for Neuropathology, Ludwig-Maximilians-University, 81377 Munich, Germany; Division of Clinical Pharmacology, Department of Internal Medicine IV, Ludwig-Maximilians-University, 80337 Munich, Germany
| | - Serap Erkek
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany; German Cancer Consortium (DKTK), Core Center Heidelberg, 69120 Heidelberg, Germany
| | - Kaamini Raithatha
- Microarray and Deep-Sequencing Core Facility, University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Thomas Andreska
- Institute for Clinical Neurobiology, University of Würzburg, 97078 Würzburg, Germany
| | - Marc Weißhaar
- Center for Neuropathology, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Michael Launspach
- Center for Neuropathology, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Julia E Neumann
- Center for Neuropathology, Ludwig-Maximilians-University, 81377 Munich, Germany; Institute of Neuropathology, University Medical Center, Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Mehdi Shakarami
- Walter Brendel Center of Experimental Medicine, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Dennis Plenker
- Department of Translational Genomics, University of Cologne, 50931 Cologne, Germany
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC VSZ 4S6, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Yisu Li
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC VSZ 4S6, Canada
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC VSZ 4S6, Canada
| | - Richard A Moore
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC VSZ 4S6, Canada
| | - Yussanne Ma
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC VSZ 4S6, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC VSZ 4S6, Canada
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany
| | - Birgit Ertl-Wagner
- Institute of Clinical Radiology, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Andrea Rossi
- Department of Pediatric Neuroradiology, Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Rabea Wagener
- Institute of Human Genetics, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; Institute for Human Genetics, Ulm University and Ulm University Medical Center, 89081 Ulm, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; Institute for Human Genetics, Ulm University and Ulm University Medical Center, 89081 Ulm, Germany
| | - Andreas Jung
- Institute of Pathology, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Charles G Eberhart
- Division of Neuropathology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Boleslaw Lach
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Michael Sendtner
- Institute for Clinical Neurobiology, University of Würzburg, 97078 Würzburg, Germany
| | - Stefan M Pfister
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), Core Center Heidelberg, 69120 Heidelberg, Germany; Department of Pediatric Hematology and Oncology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Michael D Taylor
- Arthur and Sonia Labatt Brain Tumour Research Centre and Division of Neurosurgery, Hospital for Sick Children (HSC), Toronto, ON M5G 1L7, Canada; Program in Developmental and Stem Cell Biology, HSC, Toronto, ON M5G 1X8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Lukas Chavez
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Marcel Kool
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), Core Center Heidelberg, 69120 Heidelberg, Germany
| | - Ulrich Schüller
- Center for Neuropathology, Ludwig-Maximilians-University, 81377 Munich, Germany; Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, N63 (HPI), Hamburg 20251, Germany; Institute of Neuropathology, University Medical Center, Hamburg-Eppendorf, 20246 Hamburg, Germany; Department of Pediatric Hematology and Oncology, University Medical Center, Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
14
|
Xiao B, Zhang W, Chen L, Hang J, Wang L, Zhang R, Liao Y, Chen J, Ma Q, Sun Z, Li L. Analysis of the miRNA-mRNA-lncRNA network in human estrogen receptor-positive and estrogen receptor-negative breast cancer based on TCGA data. Gene 2018. [PMID: 29518546 DOI: 10.1016/j.gene.2018.03.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Estrogen receptor-positive (ER+) and ER-negative (ER-) subtypes of breast cancer have distinct clinical outcomes because they respond differentially to endocrine therapies. We aimed to comprehensively analyze differentially expressed microRNA (miRNAs), long non-coding RNAs (lncRNAs) and mRNAs in different ER subtypes as well as to identify prognosis-related RNAs. The expression levels of miRNAs, lncRNAs, and mRNAs between breast cancer and normal samples were compared using data from The Cancer Genome Atlas database. Differentially expressed miRNAs, lncRNAs and mRNAs between ER+ and ER- samples were also screened. An ER subtype-related miRNA-lncRNA-mRNA network was constructed. lncRNAs and mRNAs in this network were further subjected to an analysis of their associations with patient prognosis. Sets of differentially expressed miRNAs, lncRNAs, and miRNAs between breast cancer and normal samples were identified among which 14 miRNAs, 78 lncRNAs, and 475 mRNAs were differentially expressed between ER subtypes. Relationships between these RNAs were analyzed. The resultant ER subtype-related miRNA-lncRNA-mRNA network consisted of 14 nodes, among which LINC0092 and chromosome 2 open reading frame 71 (C2orf71) were correlated with better prognosis of breast cancer. LINC0092 was co-expressed with SFRP1 and RGMA and regulated by hsa-miR-449a and hsa-miR-452-5p. C2orf71 was co-expressed with LINC00511 and regulated by hsa-miR-184. Cross-talk among differentially expressed miRNAs, lncRNAs, and miRNAs may be an important feature in ER+ and ER- subtypes of breast cancer. LINC0092 and C2orf71, two of these cross-talking RNAs, may serve as novel prognostic predictor of breast cancer because of their close associations with prognosis.
Collapse
Affiliation(s)
- Bin Xiao
- Department of Laboratory Medicine, Guangzhou General Hospital of PLA, Guangzhou, Guangdong 510010, China
| | - Weiyun Zhang
- Department of Laboratory Medicine, Guangzhou General Hospital of PLA, Guangzhou, Guangdong 510010, China
| | - Lidan Chen
- Department of Laboratory Medicine, Guangzhou General Hospital of PLA, Guangzhou, Guangdong 510010, China
| | - Jianfeng Hang
- Department of Laboratory Medicine, Guangzhou General Hospital of PLA, Guangzhou, Guangdong 510010, China
| | - Lizhi Wang
- Department of Laboratory Medicine, Guangzhou General Hospital of PLA, Guangzhou, Guangdong 510010, China
| | - Rong Zhang
- Department of Laboratory Medicine, Guangzhou General Hospital of PLA, Guangzhou, Guangdong 510010, China
| | - Yang Liao
- Department of Laboratory Medicine, Guangzhou General Hospital of PLA, Guangzhou, Guangdong 510010, China
| | - Jianyun Chen
- Department of Laboratory Medicine, Guangzhou General Hospital of PLA, Guangzhou, Guangdong 510010, China
| | - Qiang Ma
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou, China; State Key Laboratory of Organ Failure, Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, China
| | - Zhaohui Sun
- Department of Laboratory Medicine, Guangzhou General Hospital of PLA, Guangzhou, Guangdong 510010, China.
| | - Linhai Li
- Department of Laboratory Medicine, Guangzhou General Hospital of PLA, Guangzhou, Guangdong 510010, China.
| |
Collapse
|
15
|
Chiu JH, Chen FP, Tsai YF, Lin MT, Tseng LM, Shyr YM. Effects of Chinese medicinal herbs on expression of brain-derived Neurotrophic factor (BDNF) and its interaction with human breast cancer MDA-MB-231 cells and endothelial HUVECs. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:401. [PMID: 28800782 PMCID: PMC5554408 DOI: 10.1186/s12906-017-1909-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 08/03/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND Our previous study demonstrated that an up-regulation of the Brain-Derived Neurotrophic Factor (BDNF) signaling pathway is involved the mechanism causing the recurrence of triple negative breast cancer. The aim of this study is to investigate the effects of commonly used Chinese medicinal herbs on MDA-MB-231 and HUVEC cells and how they interact with BDNF. METHODS Human TNBC MDA-MB-231 cells and human endothelial HUVEC cells were used to explore the effect of commonly used Chinese herbal medicines on cancer cells alone, on endothelial cells alone and on cancer cell/endothelial cell interactions; this was done via functional studies, including migration and invasion assays. Furthermore, Western blot analysis and real-time PCR investigations were also used to investigate migration signal transduction, invasion signal transduction, and angiogenic signal transduction in these systems. Finally, the effect of the Chinese medicinal herbs on cancer cell/endothelial cell interactions was assessed using co-culture and ELISA. RESULTS In terms of autoregulation, BDNF up-regulated TrkB gene expression in both MDA-MB-231 and HUVEC cells. Furthermore, BDNF enhanced migration by MDA-MB-231 cells via Rac, Cdc42 and MMP, while also increasing the migration of HUVEC cells via MMP and COX-2 expression. As measured by ELISA, the Chinese herbal medicinal herbs A. membranaceus, P. lactiflora, L. chuanxiong, P. suffruticosa and L. lucidum increased BDNF secretion by MDA-MB-231 cells. Similarly, using a co-culture system with MDA-MB-231 cells, A. membranaceus and L. lucidum modulated BDNF-TrkB signaling by HUVEC cells. CONCLUSION We conclude that BDNF plays an important role in the metastatic interaction between MDA-MB-231 and HUVEC cells. Some Chinese medicinal herbs are able to enhance the BDNF-related metastatic potential of the interaction between cancer cells and endothelial cells. These findings provide important information that should help with the development of integrated medical therapies for breast cancer patients.
Collapse
Affiliation(s)
- Jen-Hwey Chiu
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan Republic of China
- Comprehensive Breast Health Center & Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan Republic of China
- Division of General Surgery, Department of Surgery, Cheng-Hsin General Hospital, Taipei, Taiwan Republic of China
| | - Fang-Pey Chen
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan Republic of China
- Center of Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan Republic of China
| | - Yi-Fang Tsai
- Comprehensive Breast Health Center & Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan Republic of China
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan Republic of China
| | - Man-Ting Lin
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan Republic of China
| | - Ling-Ming Tseng
- Comprehensive Breast Health Center & Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan Republic of China
- Department of Surgery, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan Republic of China
| | - Yi-Ming Shyr
- Comprehensive Breast Health Center & Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan Republic of China
- Department of Surgery, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan Republic of China
| |
Collapse
|
16
|
Brain-derived neurotrophic factor (BDNF) -TrKB signaling modulates cancer-endothelial cells interaction and affects the outcomes of triple negative breast cancer. PLoS One 2017; 12:e0178173. [PMID: 28604807 PMCID: PMC5467823 DOI: 10.1371/journal.pone.0178173] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/08/2017] [Indexed: 12/31/2022] Open
Abstract
Aims There is good evidence that the tumor microenvironment plays an important role in cancer metastasis and progression. Our previous studies have shown that brain-derived neurotrophic factor (BDNF) participates in the process of metastasis and in the migration of cancer cells. The aim of this study was to investigate the role of BDNF on the tumor cell microenvironment, namely, the cancer cell-endothelial cell interaction of TNBC cells. Methods We conducted oligoneucleotide microarray analysis of potential biomarkers that are able to differentiate recurrent TNBC from non-recurrent TNBC. The MDA-MB-231 and human endothelial HUVEC lines were used for this study and our approaches included functional studies, such as migration assay, as well as Western blot and real-time PCR analysis of migration and angiogenic signaling. In addition, we analyzed the survival outcome of TNBC breast cancer patients according to their expression level of BDNF using clinical samples. Results The results demonstrated that BDNF was able to bring about autocrinal (MDA-MB-231) and paracrinal (HUVECs) regulation of BDNF-TrkB gene expression and this affected cell migratory activity. The BDNF-induced migratory activity was blocked by inhibitors of ERK, PI3K and TrkB when MDA-MB-231 cells were examined, but only an inhibitor of ERK blocked this activity when HUVEC cells were used. Furthermore, decreased migratory activity was found for △BDNF and △TrkB cell lines. Ingenuity pathway analysis (IPA) of MDA-MB-231 cells showed that BDNF is a key factor that is able to regulate a network made up of metalloproteases and calmodulin. Protein expression levels in a tissue array of tumor slices were found to be correlated with patient prognosis and the results showed that there was significant correlation of TrkB expression, but not of BDNF. expressionwith patient DFS and OS. Conclusion Our study demonstrates that up-regulation of the BDNF signaling pathway seems tobe involved in the mechanism associated with early recurrence in triple negative breast cancer cell. In addition, BDNF can function in either an autocrine or a paracrine manner to increase the migration ability of both MDA-MB-231 cells and HUVEC cells. Finally, overexpression of TrkB, but not of BDNF, is significantly associated with a poor survival outcome for TNBC patients.
Collapse
|
17
|
Tajbakhsh A, Mokhtari-Zaer A, Rezaee M, Afzaljavan F, Rivandi M, Hassanian SM, Ferns GA, Pasdar A, Avan A. Therapeutic Potentials of BDNF/TrkB in Breast Cancer; Current Status and Perspectives. J Cell Biochem 2017; 118:2502-2515. [PMID: 28230291 DOI: 10.1002/jcb.25943] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 12/14/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is a potent neurotrophic factor that has been shown to stimulate breast cancer cell growth and metastasis via tyrosine kinase receptors TrkA, TrkB, and the p75NTR death receptor. The aberrant activation of BDNF/TrkB pathways can modulate several signaling pathways, including Akt/PI3K, Jak/STAT, NF-kB, UPAR/UPA, Wnt/β-catenin, and VEGF pathways as well as the ER receptor. Several microRNAs have been identified that are involved in the modulation of BDNF/TrkB pathways. These include miR-206, miR-204, MiR-200a/c, MiR-210, MiR-134, and MiR-191; and these may be of value as prognostic and predictive biomarkers for detecting patients at high risk of developing breast cancer. It has been also been demonstrated that a high expression of genes involved in the BDNF pathway in breast cancer is associated with poor clinical outcome and reduced survival of patients. Several approaches have been developed for targeting this pathway, for example TKr inhibitors (AZD6918, CEP-701) and RNA interference. The aim of the current review was to provide an overview of the role of BDNF/TrkB pathways in the pathogenesis of breast cancer and its value as a potential therapeutic target. J. Cell. Biochem. 118: 2502-2515, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Mokhtari-Zaer
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Centre and Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Rezaee
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fahimeh Afzaljavan
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Rivandi
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, UK
| | - Alireza Pasdar
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Division of Applied Medicine, Medical School, University of Aberdeen, Foresterhill, Aberdeen, UK.,Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
18
|
Fabijanovic D, Zunic I, Martic TN, Skenderi F, Serman L, Vranic S. The expression of SFRP1, SFRP3, DVL1, and DVL2 proteins in testicular germ cell tumors. APMIS 2016; 124:942-949. [PMID: 27599467 DOI: 10.1111/apm.12588] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/04/2016] [Indexed: 12/26/2022]
Abstract
Germ cell tumors of the testis are a heterogeneous group of neoplasms that affect male adolescents and young adults. Wnt signaling pathway components have been shown to be actively involved in normal and malignant germ cell differentiation and progression. In this study, we aimed to explore the expression patterns of the secreted frizzled-related protein (SFRP) and Disheveled protein family (DVL) in a subset of testicular germ cell tumors. Eighty-five formalin-fixed, paraffin-embedded tissue samples of the primary germ cell tumors of the testis were stained against SFRP1, SFRP3, DVL1, and DVL2 proteins using immunohistochemistry. SFRP1 and SFRP3 exhibited lower expression in both seminomas and mixed/non-seminomatous tumors, compared with atrophic/benign tissue (p < 0.001). SFRP3 expression was lower than SFRP1 expression within the seminoma group (p = 0.004), but not within the mixed/non-seminomatous group (p = 0.409). The majority of the tested cases (27/28, 96%) exhibited low DVL1 protein expression (median 0%, range 0-90%). In contrast, 20 out of 22 tested cases (91%) exhibited strong expression of DVL2 protein (median 80%, range 0-100%). No significant difference in DVL1 and DVL2 protein expression was observed between seminomas and mixed/non-seminomatous tumors (p = 0.68 and 0.29). The secreted frizzled-related protein and disheveled protein family members appear to be actively involved in the pathogenesis of primary testicular germ cell tumors.
Collapse
Affiliation(s)
- Dora Fabijanovic
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Iris Zunic
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | | | - Faruk Skenderi
- Department of Pathology, University Clinical Center Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Ljiljana Serman
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia.
| | - Semir Vranic
- Department of Pathology, University Clinical Center Sarajevo, Sarajevo, Bosnia and Herzegovina.,School of Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
19
|
Wu G, Liu A, Zhu J, Lei F, Wu S, Zhang X, Ye L, Cao L, He S. MiR-1207 overexpression promotes cancer stem cell-like traits in ovarian cancer by activating the Wnt/β-catenin signaling pathway. Oncotarget 2016; 6:28882-94. [PMID: 26337084 PMCID: PMC4745698 DOI: 10.18632/oncotarget.4921] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 08/07/2015] [Indexed: 01/09/2023] Open
Abstract
Wnt/β-catenin signaling pathway is strictly controlled by multiple negative regulators. However, how tumor cells override the negative regulatory effects to maintain constitutive activation of Wnt/β-catenin signaling, which is commonly observed in various cancers, remains puzzling. In current study, we reported that overexpression of miR-1207 in ovarian cancer activated Wnt/β-catenin signaling by directly targeting and suppressing secreted Frizzled-related protein 1 (SFRP1), AXIN2 and inhibitor of β-catenin and TCF-4 (ICAT), which are vital negative regulators of the Wnt/β-catenin pathway. We found that the expression of miR-1207 was ubiquitously upregulated in both ovarian cancer tissues and cells, which inversely correlated with patient overall survival. Furthermore, overexpression of miR-1207 enhanced, while silencing miR-1207 reduced, stem cell-like traits of ovarian cancer cells in vitro and in vivo, including tumor sphere formation capability and proportion of SP+ and CD133+ cells. Importantly, upregulating miR-1207 promoted, while silencing miR-1207 inhibited, the tumorigenicity of ovarian cancer cells. Hence, our results suggest that miR-1207 plays a vital role in promoting the cancer stem cell-like phenotype in ovarian cancer and might represent a potential target for anti-ovarian cancer therapy.
Collapse
Affiliation(s)
- Geyan Wu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510700, PR China.,State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Aibin Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510700, PR China
| | - Jinrong Zhu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510700, PR China
| | - Fangyong Lei
- State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China
| | - Shu Wu
- State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China
| | - Xin Zhang
- State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China
| | - Liping Ye
- State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China
| | - Lixue Cao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510700, PR China
| | - Shanyang He
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510700, PR China
| |
Collapse
|
20
|
Song WM, Zhang B. Multiscale Embedded Gene Co-expression Network Analysis. PLoS Comput Biol 2015; 11:e1004574. [PMID: 26618778 PMCID: PMC4664553 DOI: 10.1371/journal.pcbi.1004574] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 09/24/2015] [Indexed: 02/02/2023] Open
Abstract
Gene co-expression network analysis has been shown effective in identifying functional co-expressed gene modules associated with complex human diseases. However, existing techniques to construct co-expression networks require some critical prior information such as predefined number of clusters, numerical thresholds for defining co-expression/interaction, or do not naturally reproduce the hallmarks of complex systems such as the scale-free degree distribution of small-worldness. Previously, a graph filtering technique called Planar Maximally Filtered Graph (PMFG) has been applied to many real-world data sets such as financial stock prices and gene expression to extract meaningful and relevant interactions. However, PMFG is not suitable for large-scale genomic data due to several drawbacks, such as the high computation complexity O(|V|3), the presence of false-positives due to the maximal planarity constraint, and the inadequacy of the clustering framework. Here, we developed a new co-expression network analysis framework called Multiscale Embedded Gene Co-expression Network Analysis (MEGENA) by: i) introducing quality control of co-expression similarities, ii) parallelizing embedded network construction, and iii) developing a novel clustering technique to identify multi-scale clustering structures in Planar Filtered Networks (PFNs). We applied MEGENA to a series of simulated data and the gene expression data in breast carcinoma and lung adenocarcinoma from The Cancer Genome Atlas (TCGA). MEGENA showed improved performance over well-established clustering methods and co-expression network construction approaches. MEGENA revealed not only meaningful multi-scale organizations of co-expressed gene clusters but also novel targets in breast carcinoma and lung adenocarcinoma.
Collapse
Affiliation(s)
- Won-Min Song
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
21
|
Feng RT, Mei JZ, Li M, Zhao JZ, Bai H, Liu GJ. Effect of brain-derived neurotrophic factor on in vitro metastasis of esophageal carcinoma cell line ECa9706. Shijie Huaren Xiaohua Zazhi 2015; 23:1218-1223. [DOI: 10.11569/wcjd.v23.i8.1218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the effect of brain-derived neurotrophic factor (BDNF) on the proliferation and migration of ECa9706 cell line in vitro and the underlying mechanism.
METHODS: Cell proliferation and migration were examined by MTT assay and transwell assay, respectively. The mRNA and protein expression levels of tyrosine kinase receptor B (TrkB) and phospholipase C (PLC)-γ1 were detected by real-time quantitative polymerase chain reaction (qPCR) and Western blot.
RESULTS: BDNF enhanced the proliferation and migration of ECa9706 cells significantly in a dose-dependent manner, and this effect was blocked by K252a (a TrkB antagonist). Compared with control cells, BDNF increased the mRNA and protein expression of TrkB, and the protein expression of PLC-γ1.
CONCLUSION: BDNF/TrkB/PLC-γ1 signaling may play an important role in the migration and metastasis of esophageal carcinoma cells.
Collapse
|
22
|
Yang Y, Xing Y, Liang C, Hu L, Xu F, Chen Y. Crucial microRNAs and genes of human primary breast cancer explored by microRNA-mRNA integrated analysis. Tumour Biol 2015; 36:5571-9. [PMID: 25680412 DOI: 10.1007/s13277-015-3227-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/04/2015] [Indexed: 12/27/2022] Open
Abstract
This study aimed to screen potential microRNAs (miRNAs) and genes related to human primary breast cancer. The gene and miRNA expression profile data of GSE19783 was obtained from Gene Expression Omnibus. The matched messenger RNA (mRNA) and miRNA expression profiles of 100 human primary breast cancer samples were chosen for further analysis. The miRNA-gene regulatory modules were screened via iterative multiplicative updating algorithm. The potential functions of genes in modules were predicted by functional and pathway enrichment analysis; meanwhile, the potential functions of miRNAs were predicted by functional enrichment analysis. Furthermore, miRNA-miRNA functional synergistic network and miRNA-miRNA co-regulatory network were constructed. Totally, 16 miRNA-gene modules were screened, containing 222 miRNA-gene interactions. The genes in these modules were mainly related to breast cancer. Genes in module 6 (e.g., SFRP1) were enriched in cell junction assembly; genes in module 8 and 12 (e.g., ESR1 and ERBB4) were significantly implicated in mammary gland alveolus and lobule development. Meanwhile, genes in module 12 (e.g., ERBB4) were enriched in the pathway of endocytosis. Besides, several miRNAs (e.g., miR-375) were enriched in inflammatory cell apoptotic process; some other miRNAs (e.g., miR-139-5p and miR-9) were enriched in response to vitamin D. Additionally, miR-139-5p with several other miRNAs (e.g., miR-9) co-regulated SFRP1; miR-375, miR-592, and miR-135a co-regulated ESR1 and ERBB4. Some miRNAs (e.g., miR-139-5p and miR-9) and their target gene SFRP1, as well as several other miRNAs (e.g., miR-375, miR-592, and miR-135a) and their target genes (e.g., ESR1 and ERBB4), might be crucial in the pathogenesis of primary breast cancer.
Collapse
Affiliation(s)
- Yang Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | | | | | | | | | | |
Collapse
|
23
|
Nwabo Kamdje AH, Seke Etet PF, Vecchio L, Muller JM, Krampera M, Lukong KE. Signaling pathways in breast cancer: therapeutic targeting of the microenvironment. Cell Signal 2014; 26:2843-2856. [PMID: 25093804 DOI: 10.1016/j.cellsig.2014.07.034] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 07/28/2014] [Indexed: 02/08/2023]
Abstract
Breast cancer is the most common cancer in women worldwide. Understanding the biology of this malignant disease is a prerequisite for selecting an appropriate treatment. Cell cycle alterations are seen in many cancers, including breast cancer. Newly popular targeted agents in breast cancer include cyclin dependent kinase inhibitors (CDKIs) which are agents inhibiting the function of cyclin dependent kinases (CDKs) and agents targeting proto-oncogenic signaling pathways like Notch, Wnt, and SHH (Sonic hedgehog). CDKIs are categorized as selective and non-selective inhibitors of CDK. CDKIs have been tried as monotherapy and combination therapy. The CDKI Palbocyclib is now a promising therapeutic in breast cancer. This drug recently entered phase III trial for estrogen receptor (ER) positive breast cancer after showing encouraging results in progression free survival in a phase II trials. The tumor microenvironment is now recognized as a significant factor in cancer treatment response. The tumor microenvironment is increasingly considered as a target for combination therapy of breast cancer. Recent findings in the signaling pathways in breast cancer are herein summarized and discussed. Furthermore, the therapeutic targeting of the microenvironment in breast cancer is also considered.
Collapse
Affiliation(s)
- Armel Herve Nwabo Kamdje
- Department of Biomedical Sciences, Faculty of Sciences, University of Ngaoundéré, P.O. Box 454, Ngaoundéré, Cameroon.
| | - Paul Faustin Seke Etet
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Lorella Vecchio
- Laboratory of Cytometry, Institute of Molecular Genetics, CNR, University of Pavia, 27100 Pavia, Italy
| | - Jean Marc Muller
- Université de Poitiers, Faculté des Sciences, Pôle Biologie-Santé Bât B36, 1, rue Georges Bonnet-BP633, 86022-Poitiers cedex, France
| | - Mauro Krampera
- Department of Medicine, Section of Hematology, Stem Cell Research Laboratory, University of Verona, Verona, Italy
| | - Kiven Erique Lukong
- Department of Biochemistry, College of Medicine, Room 4D30.5 Health Sciences Bldg, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK. S7N 5E5, Canada
| |
Collapse
|
24
|
Numakawa T, Richards M, Nakajima S, Adachi N, Furuta M, Odaka H, Kunugi H. The role of brain-derived neurotrophic factor in comorbid depression: possible linkage with steroid hormones, cytokines, and nutrition. Front Psychiatry 2014; 5:136. [PMID: 25309465 PMCID: PMC4175905 DOI: 10.3389/fpsyt.2014.00136] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/12/2014] [Indexed: 01/09/2023] Open
Abstract
Increasing evidence demonstrates a connection between growth factor function (including brain-derived neurotrophic factor, BDNF), glucocorticoid levels (one of the steroid hormones), and the pathophysiology of depressive disorders. Because both BDNF and glucocorticoids regulate synaptic function in the central nervous system, their functional interaction is of major concern. Interestingly, alterations in levels of estrogen, another steroid hormone, may play a role in depressive-like behavior in postpartum females with fluctuations of BDNF-related molecules in the brain. BDNF and cytokines, which are protein regulators of inflammation, stimulate multiple intracellular signaling cascades involved in neuropsychiatric illness. Pro-inflammatory cytokines may increase vulnerability to depressive symptoms, such as the increased risk observed in patients with cancer and/or autoimmune diseases. In this review, we discuss the possible relationship between inflammation and depression, in addition to the cross-talk among cytokines, BDNF, and steroids. Further, since nutritional status has been shown to affect critical pathways involved in depression through both BDNF function and the monoamine system, we also review current evidence surrounding diet and supplementation (e.g., flavonoids) on BDNF-mediated brain functions.
Collapse
Affiliation(s)
- Tadahiro Numakawa
- Department of Mental Disorder Research, National Center of Neurology and Psychiatry, National Institute of Neuroscience , Tokyo , Japan
| | - Misty Richards
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles , Los Angeles, CA , USA
| | - Shingo Nakajima
- Department of Mental Disorder Research, National Center of Neurology and Psychiatry, National Institute of Neuroscience , Tokyo , Japan
| | - Naoki Adachi
- Department of Mental Disorder Research, National Center of Neurology and Psychiatry, National Institute of Neuroscience , Tokyo , Japan
| | - Miyako Furuta
- Department of Physiology, St. Marianna University School of Medicine , Kanagawa , Japan
| | - Haruki Odaka
- Department of Mental Disorder Research, National Center of Neurology and Psychiatry, National Institute of Neuroscience , Tokyo , Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Center of Neurology and Psychiatry, National Institute of Neuroscience , Tokyo , Japan
| |
Collapse
|