1
|
Błońska E, Jankowiak R, Lasota J, Krzemińska N, Zbyryt A, Ciach M. The role of chemical properties of the material deposited in nests of white stork in shaping enzymatic activity and fungal diversity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:2583-2594. [PMID: 38066283 PMCID: PMC10791925 DOI: 10.1007/s11356-023-31383-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 12/01/2023] [Indexed: 01/18/2024]
Abstract
Organic debris accumulated in bird nests creates a unique environment for organisms, including microbes. Built from various plant materials that are typically enriched by animal residues, bird nest favours the development of various fungal groups. The aim of this study was to investigate the chemical properties of the material deposited in the white stork Ciconia ciconia nests and the link between extracellular enzyme activity and the diversity and composition of culturable fungi. Our findings revealed low C/P and N/P ratio values in the nest materials, which indicate a high P availability. Nest material C/N/P ratio ranged from 67/8/1 to 438/33/1. Enzymatic activity strongly correlated with the content of carbon, nitrogen, and pH of the material deposited in the nests. A total of 2726 fungal isolates were obtained from the nests, from which 82 taxa were identified based on morphology and DNA sequence data. The study indicates that white stork nests are microhabitat characterised by diverse chemical and biochemical properties. We found relationship between the fungal richness and diversity and the C/P and N/P ratios of materials from the nests. Our study showed that culturable fungi occurred frequently in materials with high levels of C, N, and P, as well as high concentrations of base alkaline elements (Ca, Mg, and K).
Collapse
Affiliation(s)
- Ewa Błońska
- Department of Ecology and Silviculture, Faculty of Forestry, University of Agriculture, Al. 29 Listopada 46, 31-425, Krakow, Poland.
| | - Robert Jankowiak
- Department of Forest Ecosystem Protection, University of Agriculture, 29 Listopada 46, 31-425, Krakow, Poland
| | - Jarosław Lasota
- Department of Ecology and Silviculture, Faculty of Forestry, University of Agriculture, Al. 29 Listopada 46, 31-425, Krakow, Poland
| | - Natalia Krzemińska
- Department of Forest Ecosystem Protection, University of Agriculture, 29 Listopada 46, 31-425, Krakow, Poland
| | - Adam Zbyryt
- Faculty of Biology, University of Białystok, Ciołkowskiego 1J, 15-245, Białystok, Poland
| | - Michał Ciach
- Department of Forest Biodiversity, Faculty of Forestry, University of Agriculture, Al. 29 Listopada 46, 31-425, Krakow, Poland
| |
Collapse
|
2
|
Luláková P, Šantrůčková H, Elster J, Hanáček M, Kotas P, Meador T, Tejnecký V, Bárta J. Mineral substrate quality determines the initial soil microbial development in front of the Nordenskiöldbreen, Svalbard. FEMS Microbiol Ecol 2023; 99:fiad104. [PMID: 37660279 PMCID: PMC10689212 DOI: 10.1093/femsec/fiad104] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/03/2023] [Accepted: 08/31/2023] [Indexed: 09/04/2023] Open
Abstract
Substrate geochemistry is an important factor influencing early microbial development after glacial retreat on nutrient-poor geological substrates in the High Arctic. It is often difficult to separate substrate influence from climate because study locations are distant. Our study in the retreating Nordenskiöldbreen (Svalbard) is one of the few to investigate biogeochemical and microbial succession in two adjacent forefields, which share the same climatic conditions but differ in their underlying geology. The northern silicate forefield evolved in a classical chronosequence, where most geochemical and microbial parameters increased gradually with time. In contrast, the southern carbonate forefield exhibited high levels of nutrients and microbial biomass at the youngest sites, followed by a significant decline and then a gradual increase, which caused a rearrangement in the species and functional composition of the bacterial and fungal communities. This shuffling in the early stages of succession suggests that high nutrient availability in the bedrock could have accelerated early soil succession after deglaciation and thereby promoted more rapid stabilization of the soil and production of higher quality organic matter. Most chemical parameters and bacterial taxa converged with time, while fungi showed no clear pattern.
Collapse
Affiliation(s)
- Petra Luláková
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 31a, 37005 České Budějovice, Czech Republic
| | - Hana Šantrůčková
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 31a, 37005 České Budějovice, Czech Republic
| | - Josef Elster
- Institute of Botany ASCR, Dukelská 135, Třeboň, Czech Republic
- Centre for Polar Ecology, Faculty of Science, University of South Bohemia, Na Zlaté Stoce 3, 37005 České Budějovice, Czech Republic
| | - Martin Hanáček
- Polar-Geo-Lab, Department of Geography, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech Republic
- Centre for Polar Ecology, Faculty of Science, University of South Bohemia, Na Zlaté Stoce 3, 37005 České Budějovice, Czech Republic
| | - Petr Kotas
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 31a, 37005 České Budějovice, Czech Republic
| | - Travis Meador
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 31a, 37005 České Budějovice, Czech Republic
- Institute of Soil Biology and Biogeochemistry, Biology Centre Czech Academy of Sciences, Na Sádkách 702/2, 37005 České Budějovice, Czech Republic
| | - Václav Tejnecký
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences in Prague, Kamýcká 129, Prague, Czech Republic
| | - Jiří Bárta
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 31a, 37005 České Budějovice, Czech Republic
- Centre for Polar Ecology, Faculty of Science, University of South Bohemia, Na Zlaté Stoce 3, 37005 České Budějovice, Czech Republic
| |
Collapse
|
3
|
Graham EB, Knelman JE. Implications of Soil Microbial Community Assembly for Ecosystem Restoration: Patterns, Process, and Potential. MICROBIAL ECOLOGY 2023; 85:809-819. [PMID: 36735065 DOI: 10.1007/s00248-022-02155-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/02/2022] [Indexed: 05/04/2023]
Abstract
While it is now widely accepted that microorganisms provide essential functions in restoration ecology, the nature of relationships between microbial community assembly and ecosystem recovery remains unclear. There has been a longstanding challenge to decipher whether microorganisms facilitate or simply follow ecosystem recovery, and evidence for each is mixed at best. We propose that understanding microbial community assembly processes is critical to understanding the role of microorganisms during ecosystem restoration and thus optimizing management strategies. We examine how the connection between environment, community structure, and function is fundamentally underpinned by the processes governing community assembly of these microbial communities. We review important factors to consider in evaluating microbial community structure in the context of ecosystem recovery as revealed in studies of microbial succession: (1) variation in community assembly processes, (2) linkages to ecosystem function, and (3) measurable microbial community attributes. We seek to empower restoration ecology with microbial assembly and successional understandings that can generate actionable insights and vital contexts for ecosystem restoration efforts.
Collapse
Affiliation(s)
- Emily B Graham
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
- School of Biological Sciences, Washington State University, Richland, WA, USA.
| | - Joseph E Knelman
- Institute for Arctic and Alpine Research, University of Colorado, Boulder, CO, USA
| |
Collapse
|
4
|
Rare Bacteria Can Be Used as Ecological Indicators of Grassland Degradation. Microorganisms 2023; 11:microorganisms11030754. [PMID: 36985327 PMCID: PMC10058834 DOI: 10.3390/microorganisms11030754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Grassland degradation is a major ecological problem at present, leading to changes in the grassland environment and the soil microbial community. Here, based on full-length 16S rRNA gene sequencing, we highlight the importance of small-scale environmental changes on the Qinghai-Tibet Plateau grassland for the composition and assembly processes of abundant and rare bacterial taxa. The results showed that grassland vegetation coverage affected the taxonomic and phylogenetic composition of rare bacterial taxa more than abundant bacterial taxa. The taxonomic composition and phylogenetic composition of rare bacterial taxa were also affected by soil nutrients. The relative contribution of deterministic processes (variable selection and homogeneous selection) to rare bacterial taxa was higher than that of the abundant bacterial taxa. The competitive potential within rare bacterial taxa was lower than that of the competitive potential between rare and non-rare bacterial taxa or within non-rare bacterial taxa. The assembly of rare bacterial taxa was more susceptible to environmental changes caused by grassland degradation than the abundant bacterial taxa. Furthermore, the distribution of rare bacterial taxa in the different degraded grassland soil was more local than that of abundant bacterial taxa. Thus, rare bacterial taxa could be considered an ecological indicator of grassland degradation. These findings help to improve our understanding of the composition and assembly mechanism of the bacterial communities in degraded grassland and provide a basis for the establishment of the grassland degradation management strategy.
Collapse
|
5
|
Díaz M, Monfort-Lanzas P, Quiroz-Moreno C, Rivadeneira E, Castillejo P, Arnau V, Díaz W, Agathos SN, Sangari FJ, Jarrín-V P, Molina CA. The microbiome of the ice-capped Cayambe Volcanic Complex in Ecuador. Front Microbiol 2023; 14:1154815. [PMID: 37213502 PMCID: PMC10196084 DOI: 10.3389/fmicb.2023.1154815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/17/2023] [Indexed: 05/23/2023] Open
Abstract
A major challenge in microbial ecology is to understand the principles and processes by which microbes associate and interact in community assemblages. Microbial communities in mountain glaciers are unique as first colonizers and nutrient enrichment drivers for downstream ecosystems. However, mountain glaciers have been distinctively sensitive to climate perturbations and have suffered a severe retreat over the past 40 years, compelling us to understand glacier ecosystems before their disappearance. This is the first study in an Andean glacier in Ecuador offering insights into the relationship of physicochemical variables and altitude on the diversity and structure of bacterial communities. Our study covered extreme Andean altitudes at the Cayambe Volcanic Complex, from 4,783 to 5,583 masl. Glacier soil and ice samples were used as the source for 16S rRNA gene amplicon libraries. We found (1) effects of altitude on diversity and community structure, (2) the presence of few significantly correlated nutrients to community structure, (3) sharp differences between glacier soil and glacier ice in diversity and community structure, where, as quantified by the Shannon γ-diversity distribution, the meta-community in glacier soil showed more diversity than in glacier ice; this pattern was related to the higher variability of the physicochemical distribution of variables in the former substrate, and (4) significantly abundant genera associated with either high or low altitudes that could serve as biomarkers for studies on climate change. Our results provide the first assessment of these unexplored communities, before their potential disappearance due to glacier retreat and climate change.
Collapse
Affiliation(s)
- Magdalena Díaz
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
- Instituto de Investigación en Zoonosis (CIZ), Universidad Central del Ecuador, Quito, Ecuador
- Facultad de Ingeniería Química, Universidad Central del Ecuador, Quito, Ecuador
- Institute of Integrative Systems Biology (ISysBio), University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
- *Correspondence: Magdalena Díaz,
| | - Pablo Monfort-Lanzas
- Institute of Integrative Systems Biology (ISysBio), University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Cristian Quiroz-Moreno
- Department of Horticulture and Crop Science, Ohio State University, Columbus, OH, United States
| | - Erika Rivadeneira
- Instituto de Investigación en Zoonosis (CIZ), Universidad Central del Ecuador, Quito, Ecuador
| | - Pablo Castillejo
- Grupo de Investigación en Biodiversidad, Medio Ambiente y Salud (BIOMAS), Universidad de las Américas, Quito, Ecuador
- Facultad de Ingeniería y Ciencias Aplicadas, Universidad Internacional SEK, Quito, Ecuador
| | - Vicente Arnau
- Institute of Integrative Systems Biology (ISysBio), University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Wladimiro Díaz
- Institute of Integrative Systems Biology (ISysBio), University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Spiros N. Agathos
- Earth and Life Institute (ELI), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Félix J. Sangari
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC – Universidad de Cantabria, Santander, Spain
| | - Pablo Jarrín-V
- Dirección de Innovación, Instituto Nacional de Biodiversidad INABIO, Quito, Ecuador
| | - C. Alfonso Molina
- Instituto de Investigación en Zoonosis (CIZ), Universidad Central del Ecuador, Quito, Ecuador
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito, Ecuador
- C. Alfonso Molina,
| |
Collapse
|
6
|
Wang J, Peipoch M, Guo X, Kan J. Convergence of biofilm successional trajectories initiated during contrasting seasons. Front Microbiol 2022; 13:991816. [PMID: 36187986 PMCID: PMC9522907 DOI: 10.3389/fmicb.2022.991816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/26/2022] [Indexed: 12/02/2022] Open
Abstract
Biofilm communities play a major role in explaining the temporal variation of biogeochemical conditions in freshwater ecosystems, and yet we know little about how these complex microbial communities change over time (aka succession), and from different initial conditions, in comparison to other stream communities. This has resulted in limited knowledge on how biofilm community structure and microbial colonization vary over relevant time scales to become mature biofilms capable of significant alteration of the freshwater environment in which they live. Here, we monitored successional trajectories of biofilm communities from summer and winter in a headwater stream and evaluated their structural state over time by DNA high-throughput sequencing. Significant differences in biofilm composition were observed when microbial colonization started in the summer vs. winter seasons, with higher percentage of algae (Bacillariophyta) and Bacteroidetes in winter-initiated samples but higher abundance of Proteobacteria (e.g., Rhizobiales, Rhodobacterales, Sphingomonadales, and Burkholderiales), Actinobacteria, and Chloroflexi in summer-initiated samples. Interestingly, results showed that despite seasonal effects on early biofilm succession, biofilm community structures converged after 70 days, suggesting the existence of a stable, mature community in the stream that is independent of the environmental conditions during biofilm colonization. Overall, our results show that algae are important in the early development of biofilm communities during winter, while heterotrophic bacteria play a more critical role during summer colonization and development of biofilms.
Collapse
Affiliation(s)
- Jing Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
- Stroud Water Research Center, Avondale, PA, United States
| | - Marc Peipoch
- Stroud Water Research Center, Avondale, PA, United States
| | - Xiaoxiao Guo
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Jinjun Kan
- Stroud Water Research Center, Avondale, PA, United States
- *Correspondence: Jinjun Kan,
| |
Collapse
|
7
|
Sterling JJ, Sakihara TS, Brannock PM, Pearson ZG, Maclaine KD, Santos SR, Havird JC. Primary microbial succession in the anchialine ecosystem. Integr Comp Biol 2022; 62:275-287. [PMID: 35687002 DOI: 10.1093/icb/icac087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/01/2022] [Accepted: 06/05/2022] [Indexed: 11/13/2022] Open
Abstract
When new land is created, initial microbial colonization lays the foundation for further ecological succession of plant and animal communities. Primary microbial succession of new aquatic habitats formed during volcanic activity has received little attention. The anchialine ecosystem, which includes coastal ponds in young lava flows, offers an opportunity to examine this process. Here, we characterized microbial communities of anchialine habitats in Hawaii that were created during volcanic eruptions in 2018. Benthic samples from three habitats were collected ∼2 years after their formation and at later time points spanning ∼1 year. Sequence profiling (16S and 18S) of prokaryotic and eukaryotic communities was used to test whether communities were similar to those from older, established anchialine habitats, and if community structure changed over time. Results show that microbial communities from the new habitats were unlike any from established anchialine microbial communities, having higher proportions of Planctomycetota and Chloroflexi but lower proportions of green algae. Each new habitat also harbored its own unique community relative to other habitats. While community composition in each habitat underwent statistically significant changes over time, they remained distinctive from established anchialine habitats. New habitats also had highly elevated temperatures compared to other habitats. These results suggest idiosyncratic microbial consortia form during early succession of Hawaiian anchialine habitats. Future monitoring will reveal whether the early communities described here remain stable after temperatures decline and macro-organisms become more abundant, or if microbial communities will continue to change and eventually resemble those of established habitats. This work is a key first step in examining primary volcanic succession in aquatic habitats and suggests young anchialine habitats may warrant special conservation status.
Collapse
Affiliation(s)
- James J Sterling
- Dept. of Integrative Biology, The University of Texas at Austin, Austin, TX
| | - Troy S Sakihara
- Division of Aquatic Resources, Department of Land and Natural Resources, State of Hawaii Hilo, HI, USA
| | | | - Zoe G Pearson
- Dept. of Biology, Rollins College, Winter Park, FL, USA
| | - Kendra D Maclaine
- Dept. of Integrative Biology, The University of Texas at Austin, Austin, TX
| | - Scott R Santos
- Dept. of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Justin C Havird
- Dept. of Integrative Biology, The University of Texas at Austin, Austin, TX
| |
Collapse
|
8
|
Tree Cover Species Modify the Diversity of Rhizosphere-Associated Microorganisms in Nothofagus obliqua (Mirb.) Oerst Temperate Forests in South-Central Chile. FORESTS 2022. [DOI: 10.3390/f13050756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chilean native forests have been subjected to several types of disturbances, with one of them being the replacement by exotic species. Pinus radiata D. Don is a widespread exotic tree that forms extensive plantations in southern Chile. It covers extended areas, affecting the landscape, biodiversity, and ecosystem services associated with native forest ecosystems. Although advances in assessing the impact of exotic plant species have been conducted, few studies have focused on the alteration of soil microorganisms. This study aimed to characterize the rhizosphere bacterial and fungal communities associated with the tree species Nothofagus obliqua inside a native forest stand and within a P. radiata plantation growing nearby. We used a 16S rRNA gene and ITS region metabarcoding approach. Using bioinformatics, diversity indices, relative abundance, preferential taxa, and predicted functions and guilds were estimated. The β-diversity analysis showed that both factors, the type of soil (rhizosphere or bulk soil) and the type of site (native forest or P. radiata plantation), were significant, with the site explaining most of the variation among bacterial and fungal communities. Proteobacteria and Basidiomycota were the most abundant bacterial and fungal phyla in both types of soil and sites. Similarly, bacteria showed similar abundant taxa at the family level, independent of the soil type or the site. The main fungal taxa associated with native forests were Tricholomataceae and Cantharellales, whereas in P. radiata plantations, Russulaceae and Hyaloscyphaceae were the most abundant families. The main bacteria functional groups were chemoheterotrophy and aerobic chemoheterotrophy, without significant differences between the type of soil or sites. Overall, these results demonstrate that the composition and diversity of bacterial and fungal communities associated with native N. obliqua forest are influenced by the surrounding forest, and mainly depend on the site’s characteristics, such as the lignin-rich wood source. These results improve our understanding of the impact of native forest replacement on soil microbial communities, which can alter microbial-related soil ecosystem services.
Collapse
|
9
|
Soil microbial community is resilient to thinning disturbance. Trop Ecol 2022. [DOI: 10.1007/s42965-022-00243-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Kracmarova M, Uhlik O, Strejcek M, Szakova J, Cerny J, Balik J, Tlustos P, Kohout P, Demnerova K, Stiborova H. Soil microbial communities following 20 years of fertilization and crop rotation practices in the Czech Republic. ENVIRONMENTAL MICROBIOME 2022; 17:13. [PMID: 35346385 PMCID: PMC8962459 DOI: 10.1186/s40793-022-00406-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/08/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND Although fertilization and crop rotation practices are commonly used worldwide in agriculture to maximize crop yields, their long-term effect on the structures of soil microorganisms is still poorly understood. This study investigated the long-term impact of fertilization and crop rotation on soil microbial diversity and the microbial community structure in four different locations with three soil types. Since 1996, manure (MF; 330 kg N/ha), sewage sludge (SF; 330 and SF3x; 990 kg N/ha), and NPK (NPK; 330 kg N/ha) fertilizers were periodically applied to the soils classified as chernozem, luvisol and cambisol, which are among the most abundant or fertile soils used for agricultural purposes in the world. In these soils, potato (Solanum tuberosum L.), winter wheat (Triticum aestivum L.), and spring barley (Hordeum vulgare L.) were rotated every three years. RESULTS Soil chemistry, which was significantly associated with location, fertilization, crop rotation, and the interaction of fertilization and location, was the dominant driver of soil microbial communities, both prokaryotic and fungal. A direct effect of long-term crop rotation and fertilization on the structure of their communities was confirmed, although there was no evidence of their influence on microbial diversity. Fungal and bacterial communities responded differently to fertilization treatments; prokaryotic communities were only significantly different from the control soil (CF) in soils treated with MF and SF3x, while fungal communities differed across all treatments. Indicator genera were identified for different treatments. These taxa were either specific for their decomposition activities or fungal plant pathogens. Sequential rotation of the three crops restricted the growth of several of the indicator plant pathogens. CONCLUSIONS Long-term fertilization and crop rotation significantly altered microbial community structure in the soil. While fertilization affected soil microorganisms mainly through changes in nutrient profile, crop rotations lead to the attraction and repulsion of specific plant pathogens. Such changes in soil microbial communities need to be considered when planning soil management.
Collapse
Affiliation(s)
- Martina Kracmarova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28, Prague 6, Czech Republic.
| | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28, Prague 6, Czech Republic
| | - Michal Strejcek
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28, Prague 6, Czech Republic
| | - Jirina Szakova
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 21, Prague - Suchdol, Czech Republic
| | - Jindrich Cerny
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 21, Prague - Suchdol, Czech Republic
| | - Jiri Balik
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 21, Prague - Suchdol, Czech Republic
| | - Pavel Tlustos
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 21, Prague - Suchdol, Czech Republic
| | - Petr Kohout
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Videnska 1083, 142 20, Praha 4, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Vinicna 5, 128 44, Praha 2, Czech Republic
| | - Katerina Demnerova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28, Prague 6, Czech Republic
| | - Hana Stiborova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28, Prague 6, Czech Republic.
| |
Collapse
|
11
|
Chen X, Zhang Z, Han X, Hao X, Lu X, Yan J, Biswas A, Dunfield K, Zou W. Impacts of land-use changes on the variability of microbiomes in soil profiles. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5056-5066. [PMID: 33570760 DOI: 10.1002/jsfa.11150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/01/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The conversion of arable land to grassland and/or forested land is a common strategy of restoration because the development of plant communities can inhibit the erosion of soil, increase biodiversity and improve associated ecosystem services. The vertical profiles of microbial communities, however, have not been well characterized and their variability after land conversion is not well understood. We assessed the effects of the conversion of arable land (AL) to grassland (GL) and forested land (FL) on bacterial communities as old as 29 years in 0-200-cm profiles of a Chinese Mollisol. RESULTS The soil in AL has been a stable ecosystem and changes in the assembly of soil microbiomes tended to be larger in the topsoil. The soil properties and microbial biodiversity of arable land were larger following revegetation and reforestation. The conversion caused a more complex coupling among microbes, and negative interactions and average connectivity were stronger in the 0-20-cm layers in GL and in the 20-60-cm layers in FL. The land use dramatically influenced the assembly of the microbial communities more in GL than AL and FL. The bacterial diversity was an important component of soil multinutrient cycling in the profiles and microbial functions were not as affected by changes in land use. CONCLUSION The spatial variation of the microbiomes provided critical information on below-ground soil ecology and the ability of the soil to provide crucial ecosystem services. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xu Chen
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Zhiming Zhang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Xiaozeng Han
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Xiangxiang Hao
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Xinchun Lu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Jun Yan
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Asim Biswas
- School of Environmental Sciences, University of Gulph, Ottawa, Canada
| | - Kari Dunfield
- School of Environmental Sciences, University of Gulph, Ottawa, Canada
| | - Wenxiu Zou
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| |
Collapse
|
12
|
Cerro-Gálvez E, Dachs J, Lundin D, Fernández-Pinos MC, Sebastián M, Vila-Costa M. Responses of Coastal Marine Microbiomes Exposed to Anthropogenic Dissolved Organic Carbon. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9609-9621. [PMID: 33606522 PMCID: PMC8491159 DOI: 10.1021/acs.est.0c07262] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/04/2021] [Accepted: 02/04/2021] [Indexed: 05/23/2023]
Abstract
Coastal seawaters receive thousands of organic pollutants. However, we have little understanding of the response of microbiomes to this pool of anthropogenic dissolved organic carbon (ADOC). In this study, coastal microbial communities were challenged with ADOC at environmentally relevant concentrations. Experiments were performed at two Mediterranean sites with different impact by pollutants and nutrients: off the Barcelona harbor ("BCN"), and at the Blanes Bay ("BL"). ADOC additions stimulated prokaryotic leucine incorporation rates at both sites, indicating the use of ADOC as growth substrate. The percentage of "membrane-compromised" cells increased with increasing ADOC, indicating concurrent toxic effects of ADOC. Metagenomic analysis of the BCN community challenged with ADOC showed a significant growth of Methylophaga and other gammaproteobacterial taxa belonging to the rare biosphere. Gene expression profiles showed a taxon-dependent response, with significantly enrichments of transcripts from SAR11 and Glaciecola spp. in BCN and BL, respectively. Further, the relative abundance of transposon-related genes (in BCN) and transcripts (in BL) correlated with the number of differentially abundant genes (in BCN) and transcripts (in BLA), suggesting that microbial responses to pollution may be related to pre-exposure to pollutants, with transposons playing a role in adaptation to ADOC. Our results point to a taxon-specific response to low concentrations of ADOC that impact the functionality, structure and plasticity of the communities in coastal seawaters. This work contributes to address the influence of pollutants on microbiomes and their perturbation to ecosystem services and ocean health.
Collapse
Affiliation(s)
- Elena Cerro-Gálvez
- Department
of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalunya 08034, Spain
| | - Jordi Dachs
- Department
of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalunya 08034, Spain
| | - Daniel Lundin
- Centre
for Ecology and Evolution in Microbial Model Systems, EEMiS, Linnaeus University, Kalmar 35195, Sweden
| | | | - Marta Sebastián
- Department
of Marine Biology and Oceanography, ICM-CSIC, Barcelona, Catalunya 08003, Spain
| | - Maria Vila-Costa
- Department
of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalunya 08034, Spain
| |
Collapse
|
13
|
Takahashi Y, Shiojiri K, Yamawo A. Aboveground plant-to-plant communication reduces root nodule symbiosis and soil nutrient concentrations. Sci Rep 2021; 11:12675. [PMID: 34135405 PMCID: PMC8209107 DOI: 10.1038/s41598-021-92123-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/28/2021] [Indexed: 11/08/2022] Open
Abstract
Aboveground communication between plants is well known to change defense traits in leaves, but its effects on belowground plant traits and soil characteristics have not been elucidated. We hypothesized that aboveground plant-to-plant communication reduces root nodule symbiosis via induction of bactericidal chemical defense substances and changes the soil nutrient environment. Soybean plants were exposed to the volatile organic compounds (VOCs) from damaged shoots of Solidago canadensis var. scabra, and leaf defense traits (total phenolics, saponins), root saponins, and root nodule symbiosis traits (number and biomass of root nodules) were measured. Soil C/N ratios and mineral concentrations were also measured to estimate the effects of resource uptake by the plants. We found that total phenolics were not affected. However, plants that received VOCs had higher saponin concentrations in both leaves and roots, and fewer root nodules than untreated plants. Although the concentrations of soil minerals did not differ between treatments, soil C/N ratio was significantly higher in the soil of communicated plants. Thus, the aboveground plant-to-plant communication led to reductions in root nodule symbiosis and soil nutrient concentrations. Our results suggest that there are broader effects of induced chemical defenses in aboveground plant organs upon belowground microbial interactions and soil nutrients, and emphasize that plant response based on plant-to-plant communications are a bridge between above- and below-ground ecosystems.
Collapse
Affiliation(s)
- Yuta Takahashi
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 1 Bunkyo-cho, Hirosaki, 036-8560, Japan
| | - Kaori Shiojiri
- Faculty of Agriculture, Ryukoku University, Otsu, Shiga, 520-2194, Japan
| | - Akira Yamawo
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 1 Bunkyo-cho, Hirosaki, 036-8560, Japan.
| |
Collapse
|
14
|
Iwaniec DM, Gooseff M, Suding KN, Samuel Johnson D, Reed DC, Peters DPC, Adams B, Barrett JE, Bestelmeyer BT, Castorani MCN, Cook EM, Davidson MJ, Groffman PM, Hanan NP, Huenneke LF, Johnson PTJ, McKnight DM, Miller RJ, Okin GS, Preston DL, Rassweiler A, Ray C, Sala OE, Schooley RL, Seastedt T, Spasojevic MJ, Vivoni ER. Connectivity: insights from the U.S. Long Term Ecological Research Network. Ecosphere 2021. [DOI: 10.1002/ecs2.3432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- David M. Iwaniec
- Urban Studies Institute Andrew Young School of Policy Studies Georgia State University Atlanta Georgia30303USA
| | - Michael Gooseff
- Institute of Arctic and Alpine Research University of Colorado Boulder Colorado80309USA
| | - Katharine N. Suding
- Institute of Arctic and Alpine Research University of Colorado Boulder Colorado80309USA
| | - David Samuel Johnson
- Virginia Institute of Marine Science William & Mary Gloucester Point Virginia23062USA
| | - Daniel C. Reed
- Marine Science Institute University of California Santa Barbara California93106USA
| | - Debra P. C. Peters
- US Department of Agriculture Agricultural Research Service Jornada Experimental Range Unit Las Cruces New Mexico88003‐0003USA
- Jornada Basin Long Term Ecological Research Program New Mexico State University Las Cruces New Mexico88003USA
| | - Byron Adams
- Department of Biology and Monte L. Bean Museum Brigham Young University Provo Utah84602USA
| | - John E. Barrett
- Department of Biological Sciences Virginia Tech University Blacksburg Virginia24061USA
| | - Brandon T. Bestelmeyer
- US Department of Agriculture Agricultural Research Service Jornada Experimental Range Unit Las Cruces New Mexico88003‐0003USA
- Jornada Basin Long Term Ecological Research Program New Mexico State University Las Cruces New Mexico88003USA
| | - Max C. N. Castorani
- Department of Environmental Sciences University of Virginia Charlottesville Virginia22904USA
| | - Elizabeth M. Cook
- Environmental Sciences Department Barnard College New York New York10027USA
| | - Melissa J. Davidson
- School Sustainability and Julie Ann Wrigley Global Institute of Sustainability Arizona State University Tempe Arizona85287USA
| | - Peter M. Groffman
- City University of New York Advanced Science Research Center at the Graduate Center New York New York10031USA
- Cary Institute of Ecosystem Studies Millbrook New York12545USA
| | - Niall P. Hanan
- Jornada Basin Long Term Ecological Research Program New Mexico State University Las Cruces New Mexico88003USA
- Department of Plant and Environmental Sciences New Mexico State University Las Cruces New Mexico88003USA
| | - Laura F. Huenneke
- Jornada Basin Long Term Ecological Research Program New Mexico State University Las Cruces New Mexico88003USA
- School of Earth and Sustainability Northern Arizona University Flagstaff Arizona86011USA
| | - Pieter T. J. Johnson
- Department of Ecology and Evolutionary Biology University of Colorado Boulder Colorado80309USA
| | - Diane M. McKnight
- Civil, Environmental and Architectural Engineering University of Colorado Boulder Colorado80309USA
| | - Robert J. Miller
- Marine Science Institute University of California Santa Barbara California93106USA
| | - Gregory S. Okin
- Jornada Basin Long Term Ecological Research Program New Mexico State University Las Cruces New Mexico88003USA
- Department of Geography University of California Los Angeles California90095USA
| | - Daniel L. Preston
- Department of Fish, Wildlife, and Conservation Biology Colorado State University Fort Collins Colorado80523USA
| | - Andrew Rassweiler
- Department of Biological Science Florida State University Tallahassee Florida32304USA
| | - Chris Ray
- Institute of Arctic and Alpine Research University of Colorado Boulder Colorado80309USA
| | - Osvaldo E. Sala
- Jornada Basin Long Term Ecological Research Program New Mexico State University Las Cruces New Mexico88003USA
- Global Drylands Center School of Life Sciences and School of Sustainability Arizona State University Tempe Arizona85287USA
| | - Robert L. Schooley
- Jornada Basin Long Term Ecological Research Program New Mexico State University Las Cruces New Mexico88003USA
- Department of Natural Resources and Environmental Sciences University of Illinois Urbana Illinois61801USA
| | - Timothy Seastedt
- Institute of Arctic and Alpine Research University of Colorado Boulder Colorado80309USA
| | - Marko J. Spasojevic
- Department of Evolution, Ecology, and Organismal Biology University of California Riverside Riverside California92521USA
| | - Enrique R. Vivoni
- Jornada Basin Long Term Ecological Research Program New Mexico State University Las Cruces New Mexico88003USA
- School of Earth and Space Exploration and School of Sustainable Engineering and the Built Environment Arizona State University Tempe Arizona85287USA
| |
Collapse
|
15
|
Rosier CL, Polson SW, D’Amico V, Kan J, Trammell TLE. Urbanization pressures alter tree rhizosphere microbiomes. Sci Rep 2021; 11:9447. [PMID: 33941814 PMCID: PMC8093231 DOI: 10.1038/s41598-021-88839-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 04/13/2021] [Indexed: 02/02/2023] Open
Abstract
The soil microbial community (SMC) provides critical ecosystem services including organic matter decomposition, soil structural formation, and nutrient cycling. Studies suggest plants, specifically trees, act as soil keystone species controlling SMC structure via multiple mechanisms (e.g., litter chemistry, root exudates, and canopy alteration of precipitation). Tree influence on SMC is shaped by local/regional climate effects on forested environments and the connection of forests to surrounding landscapes (e.g., urbanization). Urban soils offer an ideal analog to assess the influence of environmental conditions versus plant species-specific controls on SMC. We used next generation high throughput sequencing to characterize the SMC of specific tree species (Fagus grandifolia [beech] vs Liriodendron tulipifera [yellow poplar]) across an urban-rural gradient. Results indicate SMC dissimilarity within rural forests suggests the SMC is unique to individual tree species. However, greater urbanization pressure increased SMC similarity between tree species. Relative abundance, species richness, and evenness suggest that increases in similarity within urban forests is not the result of biodiversity loss, but rather due to greater overlap of shared taxa. Evaluation of soil chemistry across the rural-urban gradient indicate pH, Ca+, and organic matter are largely responsible for driving relative abundance of specific SMC members.
Collapse
Affiliation(s)
- Carl L. Rosier
- grid.33489.350000 0001 0454 4791Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716 USA
| | - Shawn W. Polson
- grid.33489.350000 0001 0454 4791Center for Bioinformatics and Computational Biology, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19713 USA ,grid.33489.350000 0001 0454 4791Department of Computer and Information Sciences, University of Delaware, Newark, DE 19716 USA
| | - Vincent D’Amico
- grid.33489.350000 0001 0454 4791US Forest Service, Northern Research Station, Department of Entomology and Wildlife Ecology, University of Delaware, Newark, DE 19716 USA
| | - Jinjun Kan
- grid.274177.00000 0000 9615 2850Department of Microbiology, Stroud Water Research Center, Avondale, PA 19311 USA
| | - Tara L. E. Trammell
- grid.33489.350000 0001 0454 4791Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716 USA
| |
Collapse
|
16
|
Hu W, Schmidt SK, Sommers P, Darcy JL, Porazinska DL. Multiple‐trophic patterns of primary succession following retreat of a high‐elevation glacier. Ecosphere 2021. [DOI: 10.1002/ecs2.3400] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Weiming Hu
- Department of Entomology and Nematology University of Florida Gainesville Florida32611USA
| | - Steven K. Schmidt
- Department of Ecology and Evolutionary Biology University of Colorado, Boulder Boulder Colorado80309USA
| | - Pacifica Sommers
- Department of Ecology and Evolutionary Biology University of Colorado, Boulder Boulder Colorado80309USA
| | - John L. Darcy
- Anschutz Medical Campus University of Colorado, Denver Denver Colorado80204USA
| | - Dorota L. Porazinska
- Department of Entomology and Nematology University of Florida Gainesville Florida32611USA
- Department of Ecology and Evolutionary Biology University of Colorado, Boulder Boulder Colorado80309USA
| |
Collapse
|
17
|
Shifts in Bacterial Diversity During the Spontaneous Fermentation of Maize Meal as Revealed by Targeted Amplicon Sequencing. Curr Microbiol 2021; 78:1177-1187. [PMID: 33620555 DOI: 10.1007/s00284-021-02367-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/05/2021] [Indexed: 10/22/2022]
Abstract
Maize meal was allowed to undergo uncontrolled fermentation in the laboratory, in simulation of the traditional method of fermentation as practised in most African households. During the fermentation process, samples were collected daily for 11 days. Physico-chemical analysis of the fermenting slurry and metagenomics analysis of the microbial community using 16S rRNA demonstrated an interrelationship between the changes in the properties of the fermentation environment and the successional interplay of the microbial community. The first 24 h of fermentation at pH of 6.5 was characterised by the proliferation of probiotic Lactobacillus and Bifidobacterium, with their relative abundance being 40.7% and 29.9%, respectively. However, prolonged fermentation and a drop in pH from 5.3 to 3.7 caused a decline and finally an absence of these probiotic bacteria which were replaced by Clostridium spp. with a relative abundance of between 97% and 99% from day 5 to day 11. This study demonstrated that prolonged fermentation of maize meal is not ideally suited for the proliferation of probiotic nutritionally beneficial bacteria.
Collapse
|
18
|
Juvigny-Khenafou NPD, Piggott JJ, Atkinson D, Zhang Y, Wu N, Matthaei CD. Fine sediment and flow velocity impact bacterial community and functional profile more than nutrient enrichment. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02212. [PMID: 32754996 DOI: 10.1002/eap.2212] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Freshwater ecosystems face many simultaneous pressures due to human activities. Consequently, there has been a rapid loss of freshwater biodiversity and an increase in biomonitoring programs. Our study assessed the potential of benthic stream bacterial communities as indicators of multiple-stressor impacts associated with urbanization and agricultural intensification. We conducted a fully crossed four-factor experiment in 64 flow-through mesocosms fed by a pristine montane stream (21 d of colonization, 21 d of manipulations) and investigated the effects of nutrient enrichment, flow-velocity reduction and added fine sediment after 2 and 3 weeks of stressor exposure. We used high-throughput sequencing and metabarcoding techniques (16S rRNA genes), as well as curated biological databases (METAGENassit, MetaCyc), to identify changes in bacterial relative abundances and predicted metabolic functional profile. Sediment addition and flow-velocity reduction were the most pervasive stressors. They both increased α-diversity and had strong taxon-specific effects on community composition and predicted functions. Sediment and flow velocity also interacted frequently, with 88% of all bacterial response variables showing two-way interactions and 33% showing three-way interactions including nutrient enrichment. Changes in relative abundances of common taxa were associated with shifts in dominant predicted functions, which can be extrapolated to underlaying stream-wide mechanisms such as carbon use and bacterial energy production pathways. Observed changes were largely stable over time and occurred after just 2 weeks of exposure, demonstrating that bacterial communities can be well-suited for early detection of multiple stressors. Overall, added sediment and reduced flow velocity impacted both bacterial community structure and predicted function more than nutrient enrichment. In future research and stream management, a holistic approach to studying multiple-stressor impacts should include multiple trophic levels with their functional responses, to enhance our mechanistic understanding of complex stressor effects and promote establishment of more efficient biomonitoring programs.
Collapse
Affiliation(s)
- Noël P D Juvigny-Khenafou
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB, UK
- Department of Health and Environmental Science, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road Suzhou, Jiangsu, 215123, China
| | - Jeremy J Piggott
- Trinity Centre for the Environment & Department of Zoology, School of Natural Sciences, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - David Atkinson
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB, UK
| | - Yixin Zhang
- Department of Landscape Architecture, Soochow University, Suzhou, 215123, China
| | - Naicheng Wu
- Department of Health and Environmental Science, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road Suzhou, Jiangsu, 215123, China
| | - Christoph D Matthaei
- Department of Zoology, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| |
Collapse
|
19
|
Carrias JF, Gerphagnon M, Rodríguez-Pérez H, Borrel G, Loiseau C, Corbara B, Céréghino R, Mary I, Leroy C. Resource availability drives bacterial succession during leaf-litter decomposition in a bromeliad ecosystem. FEMS Microbiol Ecol 2020; 96:5807077. [PMID: 32175561 DOI: 10.1093/femsec/fiaa045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 03/13/2020] [Indexed: 12/23/2022] Open
Abstract
Despite the growing number of investigations on microbial succession during the last decade, most of our knowledge on primary succession of bacteria in natural environments comes from conceptual models and/or studies of chronosequences. Successional patterns of litter-degrading bacteria remain poorly documented, especially in undisturbed environments. Here we conducted an experiment with tank bromeliads as natural freshwater microcosms to assess major trends in bacterial succession on two leaf-litter species incubated with or without animal exclusion. We used amplicon sequencing and a co-occurrence network to assess changes in bacterial community structure according to treatments. Alpha-diversity and community complexity displayed the same trends regardless of the treatments, highlighting that primary succession of detrital-bacteria is subject to resource limitation and biological interactions, much like macro-organisms. Shifts in bacterial assemblages along the succession were characterized by an increase in uncharacterized taxa and potential N-fixing bacteria, the latter being involved in positive co-occurrence between taxa. These findings support the hypothesis of interdependence between taxa as a significant niche-based process shaping bacterial communities during the advanced stage of succession.
Collapse
Affiliation(s)
- Jean-François Carrias
- Université Clermont-Auvergne, CNRS, LMGE (Laboratoire Microorganismes: Génome et Environnement), F-63000 Clermont-Ferrand, France
| | - Mélanie Gerphagnon
- Université Clermont-Auvergne, CNRS, LMGE (Laboratoire Microorganismes: Génome et Environnement), F-63000 Clermont-Ferrand, France
| | - Héctor Rodríguez-Pérez
- UMR EcoFoG, CNRS, CIRAD, INRA, AgroParisTech, Université des Antilles, Université de Guyane, 97310 Kourou, France
| | - Guillaume Borrel
- Institut Pasteur, Department of Microbiology, Unité de Biologie Évolutive de la Cellule Microbienne, Paris, France
| | - Camille Loiseau
- Université Clermont-Auvergne, CNRS, LMGE (Laboratoire Microorganismes: Génome et Environnement), F-63000 Clermont-Ferrand, France
| | - Bruno Corbara
- Université Clermont-Auvergne, CNRS, LMGE (Laboratoire Microorganismes: Génome et Environnement), F-63000 Clermont-Ferrand, France
| | - Régis Céréghino
- Ecolab, Laboratoire Ecologie Fonctionnelle et Environnement, CNRS, Université de Toulouse, 118 route de Narbonne, 31062 Toulouse, France
| | - Isabelle Mary
- Université Clermont-Auvergne, CNRS, LMGE (Laboratoire Microorganismes: Génome et Environnement), F-63000 Clermont-Ferrand, France
| | - Céline Leroy
- UMR EcoFoG, CNRS, CIRAD, INRA, AgroParisTech, Université des Antilles, Université de Guyane, 97310 Kourou, France.,AMAP, IRD, CIRAD, CNRS, INRA, Université Montpellier, Montpellier, France
| |
Collapse
|
20
|
Vimercati L, Bueno de Mesquita CP, Schmidt SK. Limited Response of Indigenous Microbes to Water and Nutrient Pulses in High-Elevation Atacama Soils: Implications for the Cold-Dry Limits of Life on Earth. Microorganisms 2020; 8:E1061. [PMID: 32708721 PMCID: PMC7409055 DOI: 10.3390/microorganisms8071061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 01/05/2023] Open
Abstract
Soils on the world's highest volcanoes in the Atacama region represent some of the harshest ecosystems yet discovered on Earth. Life in these environments must cope with high UV flux, extreme diurnal freeze-thaw cycles, low atmospheric pressure and extremely low nutrient and water availability. Only a limited spectrum of bacterial and fungal lineages seems to have overcome the harshness of this environment and may have evolved the ability to function in situ. However, these communities may lay dormant for most of the time and spring to life only when enough water and nutrients become available during occasional snowfalls and aeolian depositions. We applied water and nutrients to high-elevation soils (5100 meters above sea level) from Volcán Llullaillaco, both in lab microcosms and in the field, to investigate how microbial communities respond when resource limitations are alleviated. The dominant taxon in these soils, the extremophilic yeast Naganishia sp., increased in relative sequence abundance and colony-forming unit counts after water + nutrient additions in microcosms, and marginally in the field after only 6 days. Among bacteria, only a Noviherbaspirillum sp. (Oxalobacteraceae) significantly increased in relative abundance both in the lab and field in response to water addition but not in response to water and nutrients together, indicating that it might be an oligotroph uniquely suited to this extreme environment. The community structure of both bacteria and eukaryotes changed significantly with water and water + nutrient additions in the microcosms and taxonomic richness declined with amendments to water and nutrients. These results indicate that only a fraction of the detected community is able to become active when water and nutrients limitations are alleviated in lab microcosms, and that water alone can dramatically change community structure. Our study sheds light on which extremophilic organisms are likely to respond when favorable conditions occur in extreme earthly environments and perhaps in extraterrestrial environments as well.
Collapse
Affiliation(s)
- Lara Vimercati
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA; (L.V.); (C.P.B.d.M.)
| | - Clifton P. Bueno de Mesquita
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA; (L.V.); (C.P.B.d.M.)
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO 80309-0450, USA
| | - Steven K. Schmidt
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA; (L.V.); (C.P.B.d.M.)
| |
Collapse
|
21
|
Juvigny-Khenafou NPD, Zhang Y, Piggott JJ, Atkinson D, Matthaei CD, Van Bael SA, Wu N. Anthropogenic stressors affect fungal more than bacterial communities in decaying leaf litter: A stream mesocosm experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:135053. [PMID: 31859062 DOI: 10.1016/j.scitotenv.2019.135053] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
Despite the progress made in environmental microbiology techniques and knowledge, the succession and functional changes of the microbial community under multiple stressors are still poorly understood. This is a substantial knowledge gap as microbial communities regulate the biogeochemistry of stream ecosystems. Our study assessed the structural and temporal changes in stream fungal and bacterial communities associated with decomposing leaf litter under a multiple-stressor scenario. We conducted a fully crossed 4-factor experiment in 64 flow-through mesocosms fed by a pristine montane stream (21 days of colonisation, 21 days of manipulations) and investigated the effects of nutrient enrichment, flow velocity reduction and sedimentation after 2 and 3 weeks of stressor exposure. We used high-throughput sequencing and metabarcoding techniques (16S and 18S rRNA genes) to identify changes in microbial community composition. Our results indicate that (1) shifts in relative abundances of the pre-existing terrestrial microbial community, rather than changes in community identity, drove the observed responses to stressors; (2) changes in relative abundances within the microbial community paralleled decomposition rate patterns with time; (3) both fungal and bacterial communities had a certain resistance to stressors, as indicated by relatively minor changes in alpha diversity or multivariate community structure; (4) overall, stressor interactions were more common than stressor main effects when affecting microbial diversity metrics or abundant individual genera; and (5) stressor effects on microbes often changed from 2 weeks to 3 weeks of stressor exposure, with several response patterns being reversed. Our study suggests that future research should focus more on understanding the temporal dynamics of fungal and bacterial communities and how they relate to ecosystem processes to advance our understanding of the mechanisms associated with multiple-stressor interactions.
Collapse
Affiliation(s)
- Noël P D Juvigny-Khenafou
- Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK; Department of Health and Environmental Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
| | - Yixin Zhang
- Department of Landscape Architecture, Gold Mantis School of Architecture, Soochow University, Suzhou, China.
| | - Jeremy J Piggott
- Trinity Centre for the Environment & Department of Zoology, School of Natural Sciences, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - David Atkinson
- Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK
| | - Christoph D Matthaei
- Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Sunshine A Van Bael
- Department of Ecology and Evolutionary Biology, Tulane University, 6823 St. Charles Avenue, Boggs 400, New Orleans, LA 70118, USA
| | - Naicheng Wu
- Department of Health and Environmental Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
22
|
Garrido-Benavent I, Pérez-Ortega S, Durán J, Ascaso C, Pointing SB, Rodríguez-Cielos R, Navarro F, de los Ríos A. Differential Colonization and Succession of Microbial Communities in Rock and Soil Substrates on a Maritime Antarctic Glacier Forefield. Front Microbiol 2020; 11:126. [PMID: 32117148 PMCID: PMC7018881 DOI: 10.3389/fmicb.2020.00126] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/20/2020] [Indexed: 12/20/2022] Open
Abstract
Glacier forefields provide a unique chronosequence to assess microbial or plant colonization and ecological succession on previously uncolonized substrates. Patterns of microbial succession in soils of alpine and subpolar glacier forefields are well documented but those affecting high polar systems, including moraine rocks, remain largely unexplored. In this study, we examine succession patterns in pioneering bacterial, fungal and algal communities developing on moraine rocks and soil at the Hurd Glacier forefield (Livingston Island, Antarctica). Over time, changes were produced in the microbial community structure of rocks and soils (ice-free for different lengths of time), which differed between both substrates across the entire chronosequence, especially for bacteria and fungi. In addition, fungal and bacterial communities showed more compositional consistency in soils than rocks, suggesting community assembly in each niche could be controlled by processes operating at different temporal and spatial scales. Microscopy revealed a patchy distribution of epilithic and endolithic lithobionts, and increasing endolithic colonization and microbial community complexity along the chronosequence. We conclude that, within relatively short time intervals, primary succession processes at polar latitudes involve significant and distinct changes in edaphic and lithic microbial communities associated with soil development and cryptogamic colonization.
Collapse
Affiliation(s)
- Isaac Garrido-Benavent
- Departamento de Biogeoquímica y Ecología Microbiana, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | | | - Jorge Durán
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Carmen Ascaso
- Departamento de Biogeoquímica y Ecología Microbiana, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Stephen B. Pointing
- Yale-NUS College, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Ricardo Rodríguez-Cielos
- ETSI de Telecomunicación, Departamento de Señales, Sistemas y Radiocomunicaciones, Universidad Politécnica de Madrid, Madrid, Spain
| | - Francisco Navarro
- ETSI de Telecomunicación, Departamento de Matemática Aplicada a las TIC, Universidad Politécnica de Madrid, Madrid, Spain
| | - Asunción de los Ríos
- Departamento de Biogeoquímica y Ecología Microbiana, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| |
Collapse
|
23
|
Khan A, Kong W, Muhammad S, Wang F, Zhang G, Kang S. Contrasting environmental factors drive bacterial and eukaryotic community successions in freshly deglaciated soils. FEMS Microbiol Lett 2019; 366:5628325. [PMID: 31738416 DOI: 10.1093/femsle/fnz229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/15/2019] [Indexed: 11/14/2022] Open
Abstract
Glacier retreats expose deglaciated soils to microbial colonization and succession; however, the differences in drivers of bacterial and eukaryotic succession remain largely elusive. We explored soil bacterial and eukaryotic colonization and yearly community succession along a deglaciation chronosequence (10 years) on the Tibetan Plateau using qPCR, terminal restriction fragment length polymorphism (T-RFLP) and sequencing of clone libraries. The results exhibited that bacteria and eukaryotes rapidly colonized the soils in the first year of deglaciation, thereafter slowly increasing from 107 up to 1010 and 1011 gene copies g-1 soil, respectively. Bacterial and eukaryotic community changes were observed to group into distinct stages, including early (0-2 year old), transition (3-5 year old) and late stages (6-10 year old). Bacterial community succession was dominantly driven by soil factors (47.7%), among which soil moisture played a key role by explaining 26.9% of the variation. In contrast, eukaryotic community succession was dominantly driven by deglaciation age (22.2%). The dominant bacterial lineage was Cyanobacteria, which rapidly decreased from the early to the transition stage. Eukaryotes were dominated by glacier-originated Cercozoa in early stage soils, while green algae Chlorophyta substantially increased in late stage soils. Our findings revealed contrasting environmental factors driving bacterial and eukaryotic community successions.
Collapse
Affiliation(s)
- Ajmal Khan
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, No. 16 Lincui Road, Chaoyang District, Beijing 100101, China.,College of Resources and Environmnet, University of Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Weidong Kong
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, No. 16 Lincui Road, Chaoyang District, Beijing 100101, China.,College of Resources and Environmnet, University of Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Said Muhammad
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, No. 16 Lincui Road, Chaoyang District, Beijing 100101, China
| | - Fei Wang
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, No. 16 Lincui Road, Chaoyang District, Beijing 100101, China.,College of Resources and Environmnet, University of Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Guoshuai Zhang
- Key Laboratory of Tibetan Environmental Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, No. 16 Lincui Road, Chaoyang District, Beijing 100101, China
| | - Shichang Kang
- State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Donggang West Road 320, Lanzhou 730000, China
| |
Collapse
|
24
|
The disappearing periglacial ecosystem atop Mt. Kilimanjaro supports both cosmopolitan and endemic microbial communities. Sci Rep 2019; 9:10676. [PMID: 31337772 PMCID: PMC6650471 DOI: 10.1038/s41598-019-46521-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 06/18/2019] [Indexed: 11/08/2022] Open
Abstract
Microbial communities have not been studied using molecular approaches at high elevations on the African continent. Here we describe the diversity of microbial communities from ice and periglacial soils from near the summit of Mt. Kilimanjaro by using both Illumina and Sanger sequencing of 16S and 18S rRNA genes. Ice and periglacial soils contain unexpectedly diverse and rich assemblages of Bacteria and Eukarya indicating that there may be high rates of dispersal to the top of this tropical mountain and/or that the habitat is more conducive to microbial life than was previously thought. Most bacterial OTUs are cosmopolitan and an analysis of isolation by geographic distance patterns of the genus Polaromonas emphasized the importance of global Aeolian transport in the assembly of bacterial communities on Kilimanjaro. The eukaryotic communities were less diverse than the bacterial communities and showed more evidence of dispersal limitations and apparent endemism. Cercozoa dominated the 18S communities, including a high abundance of testate amoebae and a high diversity of endemic OTUs within the Vampyrellida. These results argue for more intense study of this unique high-elevation "island of the cryosphere" before the glaciers of Kilimanjaro disappear forever.
Collapse
|
25
|
Selection, Succession, and Stabilization of Soil Microbial Consortia. mSystems 2019; 4:mSystems00055-19. [PMID: 31098394 PMCID: PMC6517688 DOI: 10.1128/msystems.00055-19] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/24/2019] [Indexed: 12/25/2022] Open
Abstract
Soil microorganisms play fundamental roles in cycling of soil carbon, nitrogen, and other nutrients, yet we have a poor understanding of how soil microbiomes are shaped by their nutritional and physical environment. In this study, we investigated the successional dynamics of a soil microbiome during 21 weeks of enrichment on chitin and its monomer, N-acetylglucosamine. We examined succession of the soil communities in a physically heterogeneous soil matrix as well as a homogeneous liquid medium. The guiding hypothesis was that the initial species richness would influence the tendency for the selected consortia to stabilize and maintain a relatively constant community structure over time. We also hypothesized that long-term, substrate-driven growth would result in consortia with reduced species richness compared to the parent microbiome and that this process would be deterministic with relatively little variation between replicates. We found that the initial species richness does influence the long-term community stability in both liquid media and soil and that lower initial richness results in a more rapid convergence to stability. Despite use of the same soil inoculum and access to the same major substrate, the resulting community composition differed greatly in soil from that in liquid medium. Hence, distinct selective pressures in soils relative to homogenous liquid media exist and can control community succession dynamics. This difference is likely related to the fact that soil microbiomes are more likely to thrive, with fewer compositional changes, in a soil matrix than in liquid environments. IMPORTANCE The soil microbiome carries out important ecosystem functions, but interactions between soil microbial communities have been difficult to study due to the high microbial diversity and complexity of the soil habitat. In this study, we successfully obtained stable consortia with reduced complexity that contained species found in the original source soil. These consortia and the methods used to obtain them can be a valuable resource for exploration of specific mechanisms underlying soil microbial community ecology. The results of this study also provide new experimental context to better inform how soil microbial communities are shaped by new environments and how a combination of initial taxonomic structure and physical environment influences stability.
Collapse
|
26
|
Differences in Bacterial Diversity, Composition and Function due to Long-Term Agriculture in Soils in the Eastern Free State of South Africa. DIVERSITY 2019. [DOI: 10.3390/d11040061] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Land-use change from natural to managed agricultural ecosystems significantly impacts soil bacterial diversity and function. The Eastern Free State (EFS) is one of the most productive agricultural regions in South Africa. However, no studies aiming to understand the changes in bacterial diversity, composition and function due to land-use change in this area have been conducted. This study investigated, using high-throughput 16S rRNA gene amplicon sequencing, the effects of long-term agriculture on bacterial diversity, composition and putative function in the EFS by comparing microbiomes from lands that have been under agronomic activity for over 50 years to those from uncultivated land. Results indicate that agriculture increased bacterial diversity. Soil chemical analysis showed that land-use shifted soils from being oligotrophic to copiotrophic, which changed bacterial communities from being Actinobacteria dominated to Proteobacteria dominated. Predictive functional analysis using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) suggested that agricultural soil was abundant in genes associated with plant fitness and plant growth promotion, while non-agricultural soil was abundant in genes related to organic matter degradation. Together, these results suggest that edaphic factors induced by long-term agriculture resulted in shifts in bacterial diversity and putative function in the EFS.
Collapse
|
27
|
Hu P, Wu L, Hollister EB, Wang AS, Somenahally AC, Hons FM, Gentry TJ. Fungal Community Structural and Microbial Functional Pattern Changes After Soil Amendments by Oilseed Meals of Jatropha curcas and Camelina sativa: A Microcosm Study. Front Microbiol 2019; 10:537. [PMID: 30984123 PMCID: PMC6450180 DOI: 10.3389/fmicb.2019.00537] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/01/2019] [Indexed: 11/13/2022] Open
Abstract
The meals after oil extraction from many oilseed crops have nutrition and biofumigation potential for land application. Oilseed meal (SM) from the dedicated bioenergy crop Jatropha curcas were implicated to contain compounds that have antibacterial properties on some soil pathogens. However, little is known about its effect on non-targeted soil microbial community, especially on fungi. SM from Camelina sativa contains moderate level of glucosinolates (GLS) and was under studied. To investigate soil fungal community responses to jatropha and camelina SMs, we conducted a lab based microcosm study, amending soil with 1% SMs of jatropha, camelina, flax, and biomass of wheat straw. Fungal community abundance and structure were analyzed based on the ITS region using qPCR and tag-pyrosequencing. Microbial functional changes were examined by community level physiological profile (CLPP) using Biolog assay. Both SMs from jatropha and camelina showed biofumigant properties and inhibited fungal proliferation. Jatropha SM significantly altered soil fungal community structures with lower fungal biodiversity and higher Chaetomium composition. Camelina SM amended soil promoted Fusarium proliferation. CLPP indicated sequential hierarchy for C metabolism in the oilseed-amended microcosms was generally complex C > phosphate-associated C > carboxylic acids > carbohydrates > amines > amino acids. No significant difference in CLPP was detected due to the type of SM treatment. Our data indicate that both SMs of jatropha and camelina have biofumigant properties and can differentially impact soil microbial communities, and the changes were relatively persistent over time. Microbial functional patterns on the other side were not impacted by SM type. Our study revealed biofumigant and nutritional influence of SMs from dedicated biofuel plants on soil microbial community. This information will help properly using jatropha and camelina SMs for pathogen control while minimizing their negative impacts on non-target microorganisms. However, further studies in the field are demanded to investigate their influences in real practice.
Collapse
Affiliation(s)
- Ping Hu
- Key Laboratory of Environment and Health (HUST), Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liangjun Wu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Emily B. Hollister
- Baylor College of Medicine, Houston, TX, United States
- Texas Children’s Hospital, Houston, TX, United States
| | - Autumn S. Wang
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | | | - Frank M. Hons
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | - Terry J. Gentry
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
28
|
Schmidt SK, Vimercati L. Growth of cyanobacterial soil crusts during diurnal freeze-thaw cycles. J Microbiol 2019; 57:243-251. [PMID: 30721458 DOI: 10.1007/s12275-019-8359-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/16/2018] [Accepted: 10/29/2018] [Indexed: 11/27/2022]
Abstract
Various Nostoc spp. and related cyanobacteria are able to survive extreme temperatures and are among the most successful colonists of high-elevation sites being exposed due to glacial retreat. It is unclear, however, if cyanobacteria can grow during the extreme freeze-thaw cycles that occur on a year-round basis at high-elevation, peri-glacial sites or if they only grow during the rare periods when freeze-thaw cycles do not occur. We conducted several experiments to determine if cyanobacteria that form biological soil crusts (BSCs) at high-elevation sites (> 5,000 m.a.s.l.) in the Andes can grow during diurnal freeze-thaw cycles on a par with those that occur in the field. Here we show that a soil crust that had been frozen at -20°C for five years was able to increase from 40% to 100% soil coverage during a 45-day incubation during which the soil temperature cycled between -12°C and 26°C every day. In a second, experiment an undeveloped soil with no visible BSCs showed a statistically significant shift in the bacterial community from one containing few cyanobacterial sequences (8% of sequences) to one dominated (27%) by Nostoc, Microcoleus, and Leptolyngbya phylotypes during a 77-day incubation with daily freeze-thaw cycles. In addition, counts of spherical Nostoc-like colonies increased significantly on the soil surface during the experiment, especially in microcosms receiving phosphorus. Taken together these results show that freeze-thaw cycles alone do not limit the growth of BSCs in high-elevation soils, and provide new insight into how life is able to thrive in one of the most extreme terrestrial environments on Earth.
Collapse
Affiliation(s)
- Steven K Schmidt
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA.
| | - Lara Vimercati
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
| |
Collapse
|
29
|
Biologically Available Phosphorus in Biocrust-Dominated Soils of the Chihuahuan Desert. SOIL SYSTEMS 2018. [DOI: 10.3390/soilsystems2040056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In desert soils, phosphorus (P) cycling is controlled by both geochemical and biological factors and remains less studied than nitrogen and carbon. We examined these P cycling factors in the context of biological soil crusts (biocrusts), which are important drivers of nutrient cycling in drylands and have the potential to release bound labile P. We adopted the biologically-based P (BBP) method, which allows examination of biologically relevant P fractions. The BBP method incorporates four extractions: dilute calcium chloride (CaCl2), citric acid, phosphatase enzymes, and hydrochloric acid (HCl). We coupled the extractions with a 33P-labeled orthophosphate addition and incubation to assess the fate of freshly available phosphate (PO43−). Low P concentrations in the dilute CaCl2 extractions suggest that drylands lack accessible P in the soil solution, while higher amounts in the citric acid- and enzyme-extractable pools suggest that dryland microbes may acquire P through the release of organic acids and phosphatases. The addition of 33PO43− was, within 24 h, quickly adsorbed onto mineral surfaces or incorporated into hydrolysable organic compounds. Areas with biocrusts showed overall lower P concentrations across all four extractable pools. This suggests that biocrust organisms may prevent P adsorption onto mineral surfaces by incorporating P into their biomass. Overall, our results indicate that organisms may have to employ several viable strategies, including organic acid and enzyme production, to access P in dryland soils.
Collapse
|
30
|
Ortiz-Álvarez R, Fierer N, de Los Ríos A, Casamayor EO, Barberán A. Consistent changes in the taxonomic structure and functional attributes of bacterial communities during primary succession. THE ISME JOURNAL 2018. [PMID: 29463893 DOI: 10.1038/s41396-018-0076-] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Ecologists have long studied primary succession, the changes that occur in biological communities after initial colonization of an environment. Most of this work has focused on succession in plant communities, laying the conceptual foundation for much of what we currently know about community assembly patterns over time. Because of their prevalence and importance in ecosystems, an increasing number of studies have focused on microbial community dynamics during succession. Here, we conducted a meta-analysis of bacterial primary succession patterns across a range of distinct habitats, including the infant gut, plant surfaces, soil chronosequences, and aquatic environments, to determine whether consistent changes in bacterial diversity, community composition, and functional traits are evident over the course of succession. Although these distinct habitats harbor unique bacterial communities, we were able to identify patterns in community assembly that were shared across habitat types. We found an increase in taxonomic and functional diversity with time while the taxonomic composition and functional profiles of communities became less variable (lower beta diversity) in late successional stages. In addition, we found consistent decreases in the rRNA operon copy number and in the high-efficient phosphate assimilation process (Pst system) suggesting that reductions in resource availability during succession select for taxa adapted to low-resource conditions. Together, these results highlight that, like many plant communities, microbial communities also exhibit predictable patterns during primary succession.
Collapse
Affiliation(s)
- Rüdiger Ortiz-Álvarez
- Integrative Freshwater Ecology Group, Centre for Advanced Studies of Blanes (CEAB), Spanish Research Council (CSIC), Blanes, Catalonia, 17300, Spain.
| | - Noah Fierer
- Department of Ecology & Evolutionary Biology, Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, 80309, USA
| | - Asunción de Los Ríos
- Microbial Ecology and Geomicrobiology Group, Museo Nacional de Ciencias Naturales, Spanish Research Council (CSIC), Madrid, 28006, Spain
| | - Emilio O Casamayor
- Integrative Freshwater Ecology Group, Centre for Advanced Studies of Blanes (CEAB), Spanish Research Council (CSIC), Blanes, Catalonia, 17300, Spain
| | - Albert Barberán
- Department of Soil, Water, and Environmental Science, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
31
|
Darcy JL, Schmidt SK, Knelman JE, Cleveland CC, Castle SC, Nemergut DR. Phosphorus, not nitrogen, limits plants and microbial primary producers following glacial retreat. SCIENCE ADVANCES 2018; 4:eaaq0942. [PMID: 29806022 PMCID: PMC5966225 DOI: 10.1126/sciadv.aaq0942] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 04/11/2018] [Indexed: 06/08/2023]
Abstract
Current models of ecosystem development hold that low nitrogen availability limits the earliest stages of primary succession, but these models were developed from studies conducted in areas with temperate or wet climates. Global warming is now causing rapid glacial retreat even in inland areas with cold, dry climates, areas where ecological succession has not been adequately studied. We combine field and microcosm studies of both plant and microbial primary producers and show that phosphorus, not nitrogen, is the nutrient most limiting to the earliest stages of primary succession along glacial chronosequences in the Central Andes and central Alaska. We also show that phosphorus addition greatly accelerates the rate of succession for plants and for microbial phototrophs, even at the most extreme deglaciating site at over 5000 meters above sea level in the Andes of arid southern Peru. These results challenge the idea that nitrogen availability and a severe climate limit the rate of plant and microbial succession in cold-arid regions and will inform conservation efforts to mitigate the effects of global change on these fragile and threatened ecosystems.
Collapse
Affiliation(s)
- John L. Darcy
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - Steven K. Schmidt
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - Joey E. Knelman
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO 80309, USA
| | - Cory C. Cleveland
- Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, MT 59812, USA
| | - Sarah C. Castle
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55455, USA
| | | |
Collapse
|
32
|
Zhang CJ, Delgado-Baquerizo M, Drake JE, Reich PB, Tjoelker MG, Tissue DT, Wang JT, He JZ, Singh BK. Intraspecies variation in a widely distributed tree species regulates the responses of soil microbiome to different temperature regimes. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:167-178. [PMID: 29327437 DOI: 10.1111/1758-2229.12613] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 01/06/2018] [Indexed: 06/07/2023]
Abstract
Plant characteristics in different provenances within a single species may vary in response to climate change, which might alter soil microbial communities and ecosystem functions. We conducted a glasshouse experiment and grew seedlings of three provenances (temperate, subtropical and tropical origins) of a tree species (i.e., Eucalyptus tereticornis) at different growth temperatures (18, 21.5, 25, 28.5, 32 and 35.5°C) for 54 days. At the end of the experiment, bacterial and fungal community composition, diversity and abundance were characterized. Measured soil functions included surrogates of microbial respiration, enzyme activities and nutrient cycling. Using Permutation multivariate analysis of variance (PerMANOVA) and network analysis, we found that the identity of tree provenances regulated both structure and function of soil microbiomes. In some cases, tree provenances substantially affected the response of microbial communities to the temperature treatments. For example, we found significant interactions of temperature and tree provenance on bacterial community and relative abundances of Chloroflexi and Zygomycota, and inorganic nitrogen. Microbial abundance was altered in response to increasing temperature, but was not affected by tree provenances. Our study provides novel evidence that even a small variation in biotic components (i.e., intraspecies tree variation) can significantly influence the response of soil microbial community composition and specific soil functions to global warming.
Collapse
Affiliation(s)
- Cui-Jing Zhang
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales 2751, Australia
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Manuel Delgado-Baquerizo
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales 2751, Australia
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309, USA
| | - John E Drake
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales 2751, Australia
| | - Peter B Reich
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales 2751, Australia
- Department of Forest Resources, University of Minnesota, St. Paul, MN 55108, USA
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales 2751, Australia
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales 2751, Australia
| | - Jun-Tao Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ji-Zheng He
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales 2751, Australia
- Global Centre for Land Based Innovation, Western Sydney University, Locked Bag 1797, Penrith, New South Wales 2751, Australia
| |
Collapse
|
33
|
Consistent changes in the taxonomic structure and functional attributes of bacterial communities during primary succession. ISME JOURNAL 2018; 12:1658-1667. [PMID: 29463893 DOI: 10.1038/s41396-018-0076-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/11/2018] [Accepted: 01/13/2018] [Indexed: 11/09/2022]
Abstract
Ecologists have long studied primary succession, the changes that occur in biological communities after initial colonization of an environment. Most of this work has focused on succession in plant communities, laying the conceptual foundation for much of what we currently know about community assembly patterns over time. Because of their prevalence and importance in ecosystems, an increasing number of studies have focused on microbial community dynamics during succession. Here, we conducted a meta-analysis of bacterial primary succession patterns across a range of distinct habitats, including the infant gut, plant surfaces, soil chronosequences, and aquatic environments, to determine whether consistent changes in bacterial diversity, community composition, and functional traits are evident over the course of succession. Although these distinct habitats harbor unique bacterial communities, we were able to identify patterns in community assembly that were shared across habitat types. We found an increase in taxonomic and functional diversity with time while the taxonomic composition and functional profiles of communities became less variable (lower beta diversity) in late successional stages. In addition, we found consistent decreases in the rRNA operon copy number and in the high-efficient phosphate assimilation process (Pst system) suggesting that reductions in resource availability during succession select for taxa adapted to low-resource conditions. Together, these results highlight that, like many plant communities, microbial communities also exhibit predictable patterns during primary succession.
Collapse
|
34
|
Knelman JE, Graham EB, Prevéy JS, Robeson MS, Kelly P, Hood E, Schmidt SK. Interspecific Plant Interactions Reflected in Soil Bacterial Community Structure and Nitrogen Cycling in Primary Succession. Front Microbiol 2018; 9:128. [PMID: 29467741 PMCID: PMC5808232 DOI: 10.3389/fmicb.2018.00128] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/18/2018] [Indexed: 02/01/2023] Open
Abstract
Past research demonstrating the importance plant-microbe interactions as drivers of ecosystem succession has focused on how plants condition soil microbial communities, impacting subsequent plant performance and plant community assembly. These studies, however, largely treat microbial communities as a black box. In this study, we sought to examine how emblematic shifts from early successional Alnus viridus ssp. sinuata (Sitka alder) to late successional Picea sitchensis (Sitka spruce) in primary succession may be reflected in specific belowground changes in bacterial community structure and nitrogen cycling related to the interaction of these two plants. We examined early successional alder-conditioned soils in a glacial forefield to delineate how alders alter the soil microbial community with increasing dominance. Further, we assessed the impact of late-successional spruce plants on these early successional alder-conditioned microbiomes and related nitrogen cycling through a leachate addition microcosm experiment. We show how increasingly abundant alder select for particular bacterial taxa. Additionally, we found that spruce leachate significantly alters the composition of these microbial communities in large part by driving declines in taxa that are enriched by alder, including bacterial symbionts. We found these effects to be spruce specific, beyond a general leachate effect. Our work also demonstrates a unique influence of spruce on ammonium availability. Such insights bolster theory relating the importance of plant-microbe interactions with late-successional plants and interspecific plant interactions more generally.
Collapse
Affiliation(s)
- Joseph E. Knelman
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, United States
| | - Emily B. Graham
- Pacific Northwest National Laboratory (U.S. Department of Energy), Richland, WA, United States
| | - Janet S. Prevéy
- Pacific Northwest Research Station, The United States Forest Service, Olympia, WA, United States
| | - Michael S. Robeson
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Patrick Kelly
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, United States
| | - Eran Hood
- Department of Natural Sciences, University of Alaska Southeast, Juneau, AK, United States
| | - Steve K. Schmidt
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
35
|
Rainbird B, Bentham RH, Soole KL. Rhizoremediation of residual sulfonylurea herbicides in agricultural soils using Lens culinaris and a commercial supplement. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2018; 20:104-113. [PMID: 28613079 DOI: 10.1080/15226514.2017.1337070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Sulfonylureas (SU) are a popular herbicide used today for controlling weeds. While beneficial for this purpose they present a persistent problem in agricultural treated areas, with this treatment proving detrimental for successive crops. This study assessed the phytoremediative properties of lentils (Lens culinaris) grown in uncontaminated and chlorsulfuron-contaminated soil, with and without the addition of a growth supplement, PulseAider™. The results show that in the presence of lentils the degradation of chlorsulfuron is enhanced and this degradation rate is significantly increased when the PulseAider™ supplement was included during seed sowing. The supplement PulseAider™ also significantly increased shoot and root biomass, root branching, and nodule number under control conditions. While this was not so for plants grown in contaminated soils, the PulseAider™ supplement seemed to alter root branching and morphology. Most Probable Number (MPN) assays showed increased numbers of potential chlorsulfuron-degrading bacteria in soil treated with PulseAider™, although this was found to be significant only in the control soil. Sequencing of the 16S ribosomal gene showed the presence of Pseudomonas fluorescens bacterial species which is a known chlorsulfuron-degrading bacterium. This study is one of the first to address the remediation of residual SU herbicides and offers an economically feasible solution that may have an impact on global food security.
Collapse
Affiliation(s)
- B Rainbird
- a School of Biological Sciences , Flinders University , Adelaide , Australia
| | - R H Bentham
- a School of Biological Sciences , Flinders University , Adelaide , Australia
| | - K L Soole
- a School of Biological Sciences , Flinders University , Adelaide , Australia
| |
Collapse
|
36
|
Nutrient limitation of soil microbial activity during the earliest stages of ecosystem development. Oecologia 2017; 185:513-524. [DOI: 10.1007/s00442-017-3965-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 09/21/2017] [Indexed: 11/25/2022]
|
37
|
Rapid Shifts in Soil Nutrients and Decomposition Enzyme Activity in Early Succession Following Forest Fire. FORESTS 2017. [DOI: 10.3390/f8090347] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Forest productivity mitigates human disturbance effects on late-seral prey exposed to apparent competitors and predators. Sci Rep 2017; 7:6370. [PMID: 28744023 PMCID: PMC5526934 DOI: 10.1038/s41598-017-06672-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/14/2017] [Indexed: 11/08/2022] Open
Abstract
Primary production can determine the outcome of management actions on ecosystem properties, thereby defining sustainable management. Yet human agencies commonly overlook spatio-temporal variations in productivity by recommending fixed resource extraction thresholds. We studied the influence of forest productivity on habitat disturbance levels that boreal caribou – a threatened, late-seral ungulate under top-down control – should be able to withstand. Based on 10 years of boreal caribou monitoring, we found that adult survival and recruitment to populations decreased with landscape disturbance, but increased with forest productivity. This benefit of productivity reflected the net outcome of an increase in resources for apparent competitors and predators of caribou, and a more rapid return to the safety of mature conifer forests. We estimated 3-fold differences in forest harvesting levels that caribou populations could withstand due to variations in forest productivity. The adjustment of ecosystem provisioning services to local forest productivity should provide strong conservation and socio-economic advantages.
Collapse
|
39
|
Soil Bacterial and Fungal Communities Show Distinct Recovery Patterns during Forest Ecosystem Restoration. Appl Environ Microbiol 2017; 83:AEM.00966-17. [PMID: 28476769 DOI: 10.1128/aem.00966-17] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 01/06/2023] Open
Abstract
Bacteria and fungi are important mediators of biogeochemical processes and play essential roles in the establishment of plant communities, which makes knowledge about their recovery after extreme disturbances valuable for understanding ecosystem development. However, broad ecological differences between bacterial and fungal organisms, such as growth rates, stress tolerance, and substrate utilization, suggest they could follow distinct trajectories and show contrasting dynamics during recovery. In this study, we analyzed both the intra-annual variability and decade-scale recovery of bacterial and fungal communities in a chronosequence of reclaimed mined soils using next-generation sequencing to quantify their abundance, richness, β-diversity, taxonomic composition, and cooccurrence network properties. Bacterial communities shifted gradually, with overlapping β-diversity patterns across chronosequence ages, while shifts in fungal communities were more distinct among different ages. In addition, the magnitude of intra-annual variability in bacterial β-diversity was comparable to the changes across decades of chronosequence age, while fungal communities changed minimally across months. Finally, the complexity of bacterial cooccurrence networks increased with chronosequence age, while fungal networks did not show clear age-related trends. We hypothesize that these contrasting dynamics of bacteria and fungi in the chronosequence result from (i) higher growth rates for bacteria, leading to higher intra-annual variability; (ii) higher tolerance to environmental changes for fungi; and (iii) stronger influence of vegetation on fungal communities.IMPORTANCE Both bacteria and fungi play essential roles in ecosystem functions, and information about their recovery after extreme disturbances is important for understanding whole-ecosystem development. Given their many differences in phenotype, phylogeny, and life history, a comparison of different bacterial and fungal recovery patterns improves the understanding of how different components of the soil microbiota respond to ecosystem recovery. In this study, we highlight key differences between soil bacteria and fungi during the restoration of reclaimed mine soils in the form of long-term diversity patterns, intra-annual variability, and potential interaction networks. Cooccurrence networks revealed increasingly complex bacterial community interactions during recovery, in contrast to much simpler and more isolated fungal network patterns. This study compares bacterial and fungal cooccurrence networks and reveals cooccurrences persisting through successional ages.
Collapse
|
40
|
Freeze-thaw revival of rotifers and algae in a desiccated, high-elevation (5500 meters) microbial mat, high Andes, Perú. Extremophiles 2017; 21:573-580. [PMID: 28321614 DOI: 10.1007/s00792-017-0926-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/06/2017] [Indexed: 12/24/2022]
Abstract
This is the first study of the highest elevation cyanobacteria-dominated microbial mat yet described. The desiccated mat was sampled in 2010 from an ephemeral rock pool at 5500 m above sea level in the Cordillera Vilcanota of southern Perú. After being frozen for 6 years at -20 °C in the lab, pieces of the mat were sequenced to fully characterize both the 16 and 18S microbial communities and experiments were conducted to determine if organisms in the mat could revive and become active under the extreme freeze-thaw conditions that these mats experience in the field. Sequencing revealed an unexpectedly diverse, multi-trophic microbial community with 16S OTU richness comparable to similar, seasonally desiccated mats from the Dry Valleys of Antarctica and low elevation sites in the Atacama Desert region. The bacterial community of the mat was dominated by phototrophs in the Cyanobacteria (Nostoc) and the Rhodospirillales, whereas the eukaryotic community was dominated by predators such as bdelloid rotifers (Philodinidae). Microcosm experiments showed that bdelloid rotifers in the mat were able to come out of dormancy and actively forage even under realistic field conditions (diurnal temperature fluctuations of -12 °C at night to + 27 °C during the day), and after being frozen for 6 years. Our results broaden our understanding of the diversity of life in periodically desiccated, high-elevation habitats and demonstrate that extreme freeze-thaw cycles per se are not a major factor limiting the development of at least some members of these unique microbial mat systems.
Collapse
|
41
|
Yuan X, Knelman JE, Gasarch E, Wang D, Nemergut DR, Seastedt TR. Plant community and soil chemistry responses to long-term nitrogen inputs drive changes in alpine bacterial communities. Ecology 2016; 97:1543-54. [PMID: 27459784 DOI: 10.1890/15-1160.1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacterial community composition and diversity was studied in alpine tundra soils across a plant species and moisture gradient in 20 y-old experimental plots with four nutrient addition regimes (control, nitrogen (N), phosphorus (P) or both nutrients). Different bacterial communities inhabited different alpine meadows, reflecting differences in moisture, nutrients and plant species. Bacterial community alpha-diversity metrics were strongly correlated with plant richness and the production of forbs. After meadow type, N addition proved the strongest determinant of bacterial community structure. Structural Equation Modeling demonstrated that tundra bacterial community responses to N addition occur via changes in plant community composition and soil pH resulting from N inputs, thus disentangling the influence of direct (resource availability) vs. indirect (changes in plant community structure and soil pH) N effects that have remained unexplored in past work examining bacterial responses to long-term N inputs in these vulnerable environments. Across meadow types, the relative influence of these indirect N effects on bacterial community structure varied. In explicitly evaluating the relative importance of direct and indirect effects of long-term N addition on bacterial communities, this study provides new mechanistic understandings of the interaction between plant and microbial community responses to N inputs amidst environmental change.
Collapse
|
42
|
Biogeochemical Stoichiometry Reveals P and N Limitation Across the Post-glacial Landscape of Denali National Park, Alaska. Ecosystems 2016. [DOI: 10.1007/s10021-016-9992-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Li J, Liu F, Chen J. The Effects of Various Land Reclamation Scenarios on the Succession of Soil Bacteria, Archaea, and Fungi Over the Short and Long Term. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
44
|
Kohler TJ, Van Horn DJ, Darling JP, Takacs-Vesbach CD, McKnight DM. Nutrient treatments alter microbial mat colonization in two glacial meltwater streams from the McMurdo Dry Valleys, Antarctica. FEMS Microbiol Ecol 2016; 92:fiw049. [PMID: 26940086 DOI: 10.1093/femsec/fiw049] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2016] [Indexed: 01/06/2023] Open
Abstract
Microbial mats are abundant in many alpine and polar aquatic ecosystems. With warmer temperatures, new hydrologic pathways are developing in these regions and increasing dissolved nutrient fluxes. In the McMurdo Dry Valleys, thermokarsting may release both nutrients and sediment, and has the potential to influence mats in glacial meltwater streams. To test the role of nutrient inputs on community structure, we created nutrient diffusing substrata (NDS) with agar enriched in N, P and N + P, with controls, and deployed them into two Dry Valley streams. We found N amendments (N and N + P) to have greater chlorophyll-a concentrations, total algal biovolume, more fine filamentous cyanobacteria and a higher proportion of live diatoms than other treatments. Furthermore, N treatments were substantially elevated in Bacteroidetes and the small diatom, Fistulifera pelliculosa. On the other hand, species richness was almost double in P and N + P treatments over others, and coccoid green algae and Proteobacteria were more abundant in both streams. Collectively, these data suggest that nutrients have the potential to stimulate growth and alter community structure in glacial meltwater stream microbial mats, and the recent erosion of permafrost and accelerated glacial melt will likely impact resident biota in polar lotic systems here and elsewhere.
Collapse
Affiliation(s)
- Tyler J Kohler
- Institute of Arctic and Alpine Research, University of Colorado, 1560 30th Street, Boulder, CO 80303, USA Faculty of Science, Department of Ecology, Charles University in Prague, Viničná 7, 12844 Prague 2, Prague, Czech Republic
| | - David J Van Horn
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Joshua P Darling
- Institute of Arctic and Alpine Research, University of Colorado, 1560 30th Street, Boulder, CO 80303, USA
| | | | - Diane M McKnight
- Institute of Arctic and Alpine Research, University of Colorado, 1560 30th Street, Boulder, CO 80303, USA
| |
Collapse
|
45
|
Natural Recovery of Biological Soil Crusts After Disturbance. BIOLOGICAL SOIL CRUSTS: AN ORGANIZING PRINCIPLE IN DRYLANDS 2016. [DOI: 10.1007/978-3-319-30214-0_23] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
Nemergut DR, Knelman JE, Ferrenberg S, Bilinski T, Melbourne B, Jiang L, Violle C, Darcy JL, Prest T, Schmidt SK, Townsend AR. Decreases in average bacterial community rRNA operon copy number during succession. ISME JOURNAL 2015; 10:1147-56. [PMID: 26565722 PMCID: PMC5029226 DOI: 10.1038/ismej.2015.191] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 07/27/2015] [Accepted: 09/25/2015] [Indexed: 02/01/2023]
Abstract
Trait-based studies can help clarify the mechanisms driving patterns of microbial community assembly and coexistence. Here, we use a trait-based approach to explore the importance of rRNA operon copy number in microbial succession, building on prior evidence that organisms with higher copy numbers respond more rapidly to nutrient inputs. We set flasks of heterotrophic media into the environment and examined bacterial community assembly at seven time points. Communities were arrayed along a geographic gradient to introduce stochasticity via dispersal processes and were analyzed using 16 S rRNA gene pyrosequencing, and rRNA operon copy number was modeled using ancestral trait reconstruction. We found that taxonomic composition was similar between communities at the beginning of the experiment and then diverged through time; as well, phylogenetic clustering within communities decreased over time. The average rRNA operon copy number decreased over the experiment, and variance in rRNA operon copy number was lowest both early and late in succession. We then analyzed bacterial community data from other soil and sediment primary and secondary successional sequences from three markedly different ecosystem types. Our results demonstrate that decreases in average copy number are a consistent feature of communities across various drivers of ecological succession. Importantly, our work supports the scaling of the copy number trait over multiple levels of biological organization, ranging from cells to populations and communities, with implications for both microbial ecology and evolution.
Collapse
Affiliation(s)
- Diana R Nemergut
- Department of Biology, Duke University, Durham, NC, USA.,Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO, USA
| | - Joseph E Knelman
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO, USA.,Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Scott Ferrenberg
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA.,U.S. Geological Survey, Canyonlands Research Station, Moab, UT, USA
| | - Teresa Bilinski
- Department of Biological Sciences, St Edward's University, Austin, TX, USA
| | - Brett Melbourne
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Lin Jiang
- School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Cyrille Violle
- Centre d'Ecologie Fonctionnelle et Evolutive, Montpellier, France
| | - John L Darcy
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Tiffany Prest
- Department of Biology, Duke University, Durham, NC, USA
| | - Steven K Schmidt
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Alan R Townsend
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| |
Collapse
|
47
|
Santini TC, Kerr JL, Warren LA. Microbially-driven strategies for bioremediation of bauxite residue. JOURNAL OF HAZARDOUS MATERIALS 2015; 293:131-157. [PMID: 25867516 DOI: 10.1016/j.jhazmat.2015.03.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/12/2015] [Accepted: 03/12/2015] [Indexed: 06/04/2023]
Abstract
Globally, 3 Gt of bauxite residue is currently in storage, with an additional 120 Mt generated every year. Bauxite residue is an alkaline, saline, sodic, massive, and fine grained material with little organic carbon or plant nutrients. To date, remediation of bauxite residue has focused on the use of chemical and physical amendments to address high pH, high salinity, and poor drainage and aeration. No studies to date have evaluated the potential for microbial communities to contribute to remediation as part of a combined approach integrating chemical, physical, and biological amendments. This review considers natural alkaline, saline environments that present similar challenges for microbial survival and evaluates candidate microorganisms that are both adapted for survival in these environments and have the capacity to carry out beneficial metabolisms in bauxite residue. Fermentation, sulfur oxidation, and extracellular polymeric substance production emerge as promising pathways for bioremediation whether employed individually or in combination. A combination of bioaugmentation (addition of inocula from other alkaline, saline environments) and biostimulation (addition of nutrients to promote microbial growth and activity) of the native community in bauxite residue is recommended as the approach most likely to be successful in promoting bioremediation of bauxite residue.
Collapse
Affiliation(s)
- Talitha C Santini
- Centre for Mined Land Rehabilitation, Sir James Foots Building, The University of Queensland, St. Lucia, QLD 4072, Australia; School of Geography, Planning, and Environmental Management, Steele Building, The University of Queensland, St. Lucia, QLD 4072, Australia; School of Earth and Environment, The University of Western Australia, 35 Stirling Hwy Crawley, WA 6009, Australia.
| | - Janice L Kerr
- Centre for Mined Land Rehabilitation, Sir James Foots Building, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Lesley A Warren
- School of Geography and Earth Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|