1
|
Adachi Y, Sato N, Oba T, Amaike T, Kudo Y, Kohi S, Nakayama T, Hirata K. Prognostic and functional role of hyaluronan‑binding protein 1 in pancreatic ductal adenocarcinoma. Oncol Lett 2022; 24:222. [PMID: 35720501 PMCID: PMC9178692 DOI: 10.3892/ol.2022.13343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/06/2022] [Indexed: 12/24/2022] Open
Abstract
Hyaluronan-binding protein 1 (HABP1) is among the molecules known to bind to hyaluronan and is involved in a variety of cellular processes, including cell proliferation and migration. HABP1 has been implicated in the progression of various cancers; however, there have been (to the best of our knowledge) few studies on the expression and function of HABP1 in pancreatic ductal adenocarcinoma (PDAC), a topic that is examined in the present study. Immunohistochemical analysis of HABP1 protein was conducted in archival tissues from 105 patients with PDAC. Furthermore, the functional effect of HABP1 on proliferation, colony formation, and migration in PDAC cells was examined by knockdown of HABP1. It was revealed that HABP1 was overexpressed in 49 (46.2%) out of 105 patients with PDAC. Overall survival was significantly shorter in patients with high HABP1 expression than in those with low HABP1 expression (median survival time of 12.8 months vs. 28.5 months; log-rank test, P=0.004). Knockdown of HABP1 expression in PDAC cells resulted in decreased cell proliferation, colony formation, and cell migration activity. Thus, HABP1 may serve as a prognostic factor in PDAC and may be of use as a novel therapeutic target.
Collapse
Affiliation(s)
- Yasuhiro Adachi
- Department of Surgery I, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Norihiro Sato
- Department of Surgery I, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Takuya Oba
- Department of Surgery I, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Takao Amaike
- Department of Surgery I, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Yuzan Kudo
- Department of Surgery I, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Shiro Kohi
- Department of Surgery I, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Toshiyuki Nakayama
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Keiji Hirata
- Department of Surgery I, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| |
Collapse
|
2
|
Molecular targets and therapeutics in chemoresistance of triple-negative breast cancer. Med Oncol 2021; 39:14. [PMID: 34812991 DOI: 10.1007/s12032-021-01610-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/03/2021] [Indexed: 02/06/2023]
Abstract
Triple-negative breast cancer (TNBC) is a specific subtype of breast cancer (BC), which shows immunohistochemically negative expression of hormone receptor i.e., Estrogen receptor and Progesterone receptor along with the absence of Human Epidermal Growth Factor Receptor-2 (HER2/neu). In Indian scenario the prevalence of BC is 26.3%, whereas, in West Bengal the cases are of 18.4%. But the rate of TNBC has increased up to 31% and shows 27% of total BC. Conventional chemotherapy is effective only in the initial stages but with progression of the disease the effectivity gets reduced and shown almost no effect in later or advanced stages of TNBC. Thus, TNBC patients frequently develop resistance and metastasis, due to its peculiar triple-negative nature most of the hormonal therapies also fails. Development of chemoresistance may involve various factors, such as, TNBC heterogeneity, cancer stem cells (CSCs), signaling pathway deregulation, DNA repair mechanism, hypoxia, and other molecular factors. To overcome the challenges to treat TNBC various targets and molecules have been exploited including CSCs modulator, drug efflux transporters, hypoxic factors, apoptotic proteins, and regulatory signaling pathways. Moreover, to improve the targets and efficacy of treatments researchers are emphasizing on targeted therapy for TNBC. In this review, an effort has been made to focus on phenotypic and molecular variations in TNBC along with the role of conventional as well as newly identified pathways and strategies to overcome challenge of chemoresistance.
Collapse
|
3
|
Saha P, Kumar S, Datta K, Tyagi RK. Upsurge in autophagy, associated with mifepristone-treated polycystic ovarian condition, is reversed upon thymoquinone treatment. J Steroid Biochem Mol Biol 2021; 208:105823. [PMID: 33484844 DOI: 10.1016/j.jsbmb.2021.105823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/14/2020] [Accepted: 01/04/2021] [Indexed: 01/31/2023]
Abstract
Polycystic ovarian syndrome (PCOS) is a multi-factorial gynecological endocrine disorder. It affects fertility in women and also predisposes to insulin resistance, type 2 diabetes mellitus, obesity etc. Earlier, significance of autophagy has been explored in PCOS-related metabolic disorders and during normal folliculogenesis. Increasing evidences reveal connection of autophagy with chronic inflammatory behaviour, an associated phenomena in polycystic ovaries. However, understanding of the association of autophagy with PCOS is still obscure. This study reveals that increased autophagy in mifepristone (RU486) treated KK-1 cells and in vivo PCO rat model is characterized by upregulated Androgen Receptor (AR) expression and downregulated PCO biomarker aromatase. The prevalence of autophagy has been observed to be concomitant with increased expression of two autophagic markers Beclin1 and MAP-LC3-II while the autophagy substrate p62/SQSTM1 was downregulated. Immunohistochemical staining revealed increased localization of MAP-LC3 in the compacted granulosa layers of the follicular cysts in the PCO model. The PCO rat models also demonstrated augmented levels of p65, the active subunit of NF-κB, which acts as a transcriptional regulator of several pro-inflammatory factors. NF-κB repressor and anti-inflammatory herbal drug thymoquinone, known to alleviate PCO condition, downregulated autophagy modules substantially. Pre-treatment with thymoquinone upregulated aromatase, reduced AR levels and decreased autophagic markers as well as p65 levels, simulating super-ovulated condition. In conclusion, the anti-inflammatory phytochemical thymoquinone alleviated PCO condition.
Collapse
Affiliation(s)
- Paramita Saha
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India; Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Sudhir Kumar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Kasturi Datta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India; Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rakesh K Tyagi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
4
|
Wu H, Chu Y, Sun S, Li G, Xu S, Zhang X, Jiang Y, Gao S, Wang Q, Zhang J, Pang D. Hypoxia-Mediated Complement 1q Binding Protein Regulates Metastasis and Chemoresistance in Triple-Negative Breast Cancer and Modulates the PKC-NF-κB-VCAM-1 Signaling Pathway. Front Cell Dev Biol 2021; 9:607142. [PMID: 33708767 PMCID: PMC7940382 DOI: 10.3389/fcell.2021.607142] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/29/2021] [Indexed: 12/24/2022] Open
Abstract
Objectives Complement 1q binding protein (C1QBP/HABP1/p32/gC1qR) has been found to be overexpressed in triple-negative breast cancer (TNBC). However, the underlying mechanisms of high C1QBP expression and its role in TNBC remain largely unclear. Hypoxia is a tumor-associated microenvironment that promotes metastasis and paclitaxel (PTX) chemoresistance in tumor cells. In this study, we aimed to assess C1QBP expression and explore its role in hypoxia-related metastasis and chemoresistance in TNBC. Materials and Methods RNA-sequencing of TNBC cells under hypoxia was performed to identify C1QBP. The effect of hypoxia inducible factor 1 subunit alpha (HIF-1α) on C1QBP expression was investigated using chromatin immunoprecipitation (ChIP) assay. The role of C1QBP in mediating metastasis, chemoresistance to PTX, and regulation of metastasis-linked vascular cell adhesion molecule 1 (VCAM-1) expression were studied using in vitro and in vivo experiments. Clinical tissue microarrays were used to verify the correlation of C1QBP with the expression of HIF-1α, VCAM-1, and RELA proto-oncogene nuclear factor-kappa B subunit (P65). Results We found that hypoxia-induced HIF-1α upregulated C1QBP. The inhibition of C1QBP notably blocked metastasis of TNBC cells and increased their sensitivity to PTX under hypoxic conditions. Depletion of C1QBP decreased VCAM-1 expression by reducing the amount of P65 in the nucleus and suppressed the activation of hypoxia-induced protein kinase C-nuclear factor-kappa B (PKC-NF-κB) signaling.immunohistochemistry (IHC) staining of the tissue microarray showed positive correlations between the C1QBP level and those of HIF-1α, P65, and VCAM-1. Conclusion Targeting C1QBP along with PTX treatment might be a potential treatment for TNBC patients.
Collapse
Affiliation(s)
- Hao Wu
- Sino-Russian Medical Research Center, Harbin Medical University Cancer Hospital, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yijun Chu
- Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shanshan Sun
- Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Guozheng Li
- Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shouping Xu
- Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xianyu Zhang
- Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yongdong Jiang
- Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Song Gao
- Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qin Wang
- Sino-Russian Medical Research Center, Harbin Medical University Cancer Hospital, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Jian Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Da Pang
- Sino-Russian Medical Research Center, Harbin Medical University Cancer Hospital, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
5
|
Liu J, Li X, Huang J, Liu Y. Matrix Metalloproteinase 2 Knockdown Suppresses the Proliferation of HepG2 and Huh7 Cells and Enhances the Cisplatin Effect. Open Med (Wars) 2019; 14:384-391. [PMID: 31157304 PMCID: PMC6534103 DOI: 10.1515/med-2019-0039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/18/2019] [Indexed: 12/22/2022] Open
Abstract
Background This study evaluated the functions of matrix metalloproteinase 2 (MMP2) in hepatocellular carcinoma (HCC) cells and assessed the effects of MMP2 on HCC cell sensitivity to cisplatin. Methodology HepG2 and Huh7 cells were cultured. A pre-experiment was performed to explore the optimal transduction conditions of the MMP2-siRNA lentivirus (si-MMP2). Quantitative real-time PCR and western blot assays were performed to measure the expression levels of MMP2 in HepG2 and Huh7 cells. An MTT assay was used to evaluate cell proliferation, and flow cytometry analysis was applied to examine cell apoptosis. A Transwell assay was carried out to assess cell invasion. Results The optimal virus:cell ratio was 100 multiplicity of infection (MOI) for both cells, and the optimal transduction times for HepG2 and Huh7 cells were 48 h and 72 h, respectively. MMP2 knockdown significantly decreased the mRNA and protein levels of MMP2 in both cell lines (P<0.01). MMP2 knockdown significantly decreased the proliferation and increased the apoptosis of HepG2 and Huh7 cells (P<0.01). Co-treatment with si-MMP2 and cisplatin significantly increased the sensitivity of HepG2 and Huh7 cells to cisplatin (P<0.01). Conclusion MMP2 may act as an oncogene and may be a potential therapeutic target in HCC.
Collapse
Affiliation(s)
- Jiangwei Liu
- Department of Hepatobiliary Surgery, Guizhou Provincial People's Hospital, No. 1 Baoshan South Road, Guizhou 550002, China
| | - Xiaocheng Li
- Department of Hepatobiliary Surgery, Guizhou Provincial People's Hospital, No. 1 Baoshan South Road, Guizhou 550002, China
| | - Jianzhao Huang
- Department of Hepatobiliary Surgery, Guizhou Provincial People's Hospital, No. 1 Baoshan South Road, Guizhou 550002, China
| | - Yan Liu
- Department of Hepatobiliary Surgery, Guizhou Provincial People's Hospital, No. 1 Baoshan South Road, Guizhou 550002, China
| |
Collapse
|
6
|
Woelflingseder L, Del Favero G, Blažević T, Heiss EH, Haider M, Warth B, Adam G, Marko D. Impact of glutathione modulation on the toxicity of the Fusarium mycotoxins deoxynivalenol (DON), NX-3 and butenolide in human liver cells. Toxicol Lett 2018; 299:104-117. [PMID: 30244016 DOI: 10.1016/j.toxlet.2018.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/07/2018] [Accepted: 09/17/2018] [Indexed: 12/21/2022]
Abstract
DON, NX-3 and butenolide (BUT) are secondary metabolites formed by Fusarium graminearum. Evidence for formation of DON-glutathione adducts exists in plants, and also in human liver (HepG2) cells mass spectrometric evidence for GSH-adduct formation was reported. NX-3 is a DON derivative lacking structural features for Thiol-Michael addition, while BUT has the structural requirements (conjugated double bond and keto group). In the present study, we addressed whether these structural differences affect levels of intracellular reactive oxygen species in HepG2 cells, and if intracellular GSH levels influence toxic effects induced by DON, NX-3 and BUT. Pre-treatment with an inhibitor of GSH bio-synthesis, L-buthionine-[S,R]-sulfoximine, aggravated substantially BUT-induced cytotoxicity (≥50 μM, 24 h), but only marginally affected the cytotoxicity of DON and NX-3 indicating that GSH-mediated detoxification is of minor importance in HepG2 cells. We further investigated whether BUT, a compound inducing alone low oral toxicity, might affect the toxicity of DON. Under different experimental designs with respect to pre- and/or co-incubations, BUT was found to contribute to the combinatorial cytotoxicity, exceeding the toxic effect of DON alone. The observed combinatorial effects underline the potential contribution of secondary metabolites like BUT, considered to be alone of low toxicological relevance, to the toxicity of DON or structurally related trichothecenes, arguing for further studies on the toxicological relevance of naturally occurring mixtures.
Collapse
Affiliation(s)
- Lydia Woelflingseder
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstrasse 38, 1090 Vienna, Austria.
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstrasse 38, 1090 Vienna, Austria.
| | - Tina Blažević
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Elke H Heiss
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Maximilian Haider
- Institute for Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163, 1060 Vienna, Austria.
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstrasse 38, 1090 Vienna, Austria.
| | - Gerhard Adam
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria.
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstrasse 38, 1090 Vienna, Austria.
| |
Collapse
|
7
|
Senthil Kumar S, Muthuselvam P, Pugalenthi V, Subramanian N, Ramkumar KM, Suresh T, Suzuki T, Rajaguru P. Toxicoproteomic analysis of human lung epithelial cells exposed to steel industry ambient particulate matter (PM) reveals possible mechanism of PM related carcinogenesis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 239:483-492. [PMID: 29684875 DOI: 10.1016/j.envpol.2018.04.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/25/2018] [Accepted: 04/09/2018] [Indexed: 06/08/2023]
Abstract
Toxicoproteomic analysis of steel industry ambient particulate matter (PM) that contain high concentrations of PAHs and metals was done by treating human lung cancer cell-line, A549 and the cell lysates were analysed using quantitative label-free nano LC-MS/MS. A total of 18,562 peptides representing 1576 proteins were identified and quantified, with 196 proteins had significantly altered expression in the treated cells. Enrichment analyses revealed that proteins associated to redox homeostsis, metabolism, and cellular energy generation were inhibited while, proteins related to DNA damage and repair and other stresses were over expressed. Altered activities of several tumor associated proteins were observed. Protein-protein interaction network and biological pathway analysis of these differentially expressed proteins were carried out to obtain a systems level view of proteome changes. Together it could be inferred that PM exposure induced oxidative stress which could have lead into DNA damage and tumor related changes. However, lowering of cellular metabolism, and energy production could reduce its ability to overcome these stress. This kind of disequilibrium between the DNA damage and ability of the cells to repair the DNA damage may lead into genomic instability that is capable of acting as the driving force during PM induced carcinogenesis.
Collapse
Affiliation(s)
- S Senthil Kumar
- Bharathidasan Institute of Technology, Anna University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - P Muthuselvam
- Bharathidasan Institute of Technology, Anna University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - V Pugalenthi
- Bharathidasan Institute of Technology, Anna University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - N Subramanian
- Bharathidasan Institute of Technology, Anna University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - K M Ramkumar
- SRM Research Institute, SRM University, Kattankulathur, 603203, Tamil Nadu, India
| | - T Suresh
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Tokyo, 250-9501, Japan
| | - T Suzuki
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Tokyo, 250-9501, Japan
| | - P Rajaguru
- Bharathidasan Institute of Technology, Anna University, Tiruchirappalli, 620024, Tamil Nadu, India.
| |
Collapse
|
8
|
Ghose S, Biswas S, Datta K, Tyagi RK. Dynamic Hyaluronan drives liver endothelial cells towards angiogenesis. BMC Cancer 2018; 18:648. [PMID: 29890947 PMCID: PMC5996548 DOI: 10.1186/s12885-018-4532-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 05/18/2018] [Indexed: 12/19/2022] Open
Abstract
Background Angiogenesis, the formation of new blood vessels from pre-existing vasculature is essential in a number of physiological processes such as embryonic development, wound healing as well as pathological conditions like, tumor growth and metastasis. Hyaluronic acid (HA), a high molecular weight polysaccharide, major component of extracellular matrix is known to associate with malignant phenotypes in melanomas and various other carcinomas. Hyaluronic acid binding protein 1 (HABP1) has been previously reported to trigger enhanced cellular proliferation in human liver cancer cells upon its over-expression. In the present study, we have identified the HA mediated cellular behaviour of liver endothelial cells during angiogenesis. Methods Endothelial cells have been isolated from perfused liver of mice. Cell proliferation was studied using microwell plates with tetrazole dye. Cell migration was evaluated by measuring endothelial monolayer wound repair as well as through transwell migration assay. Alterations in proteins and mRNA expression were estimated by immunobloting and quantitative real time PCR using Applied Biosystems. The paraformaldehyde fixed endothelial cells were used for immuno- florescence staining and F-actin detection with conjugated antibodies. The images were captured by using Olympus florescence microscope (IX71). Results We observed that administration of HA enhanced cell proliferation, adhesion, tubular sprout formation as well as migration of liver endothelial cells (ECs). The effect of HA in the rearrangement of the actins confirmed HA -mediated cytoskeleton re-organization and cell migration. Further, we confirmed enhanced expression of angiogenic factors like VEGF-A and VEGFR1 in endothelial cells upon HA treatment. HA supplementation led to elevated expression of HABP1 in murine endothelial cells. It was interesting to note that, although protein levels of β- catenin remained unaltered, but translocation of this protein from membrane to nucleus was observed upon HA treatment, suggesting its role not only in vessel formation but also its involvement in angiogenesis signalling. Conclusions The elucidation of molecular mechanism (s) responsible for HA mediated regulation of endothelial cells and angiogenesis contributes not only to our understanding the mechanism of disease progression but also offer new avenues for therapeutic intervention. Electronic supplementary material The online version of this article (10.1186/s12885-018-4532-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sampa Ghose
- Department of Medical Oncology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India. .,Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.
| | - Subhrajit Biswas
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh (AUUP), Sector 125, NOIDA, Uttar Pradesh, 201313, India.
| | - Kasturi Datta
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rakesh K Tyagi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
9
|
Saha P, Datta K. Multi-functional, multicompartmental hyaluronan-binding protein 1 (HABP1/p32/gC1qR): implication in cancer progression and metastasis. Oncotarget 2018. [PMID: 29535843 PMCID: PMC5828189 DOI: 10.18632/oncotarget.24082] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Cancer is a complex, multi-factorial, multi-stage disease and a global threat to human health. Early detection of nature and stage of cancer is highly crucial for disease management. Recent studies have proved beyond any doubt about the involvement of the ubiquitous, myriad ligand binding, multi-functional human protein, hyaluronan-binding protein 1 (HABP1), which is identical to the splicing factor associated protein (p32) and the receptor of the globular head of the complement component (gC1qR) in tumorigenesis and cancer metastasis. Simultaneously three laboratories have discovered and named this protein separately as mentioned. Subsequently, different scientists have worked on the distinct functions in cellular processes ranging from immunological response, splicing mechanism, sperm-oocyte interactions, cell cycle regulation to cancer and have concentrated in their respective area of interest, referring it as either p32 or gC1qR or HABP1. HABP1 overexpression has been reported in almost all the tissue-specific forms of cancer and correlated with stage and poor prognosis in patients. In order to tackle this deadly disease and for therapeutic intervention, it is imperative to focus on all the regulatory aspects of this protein. Hence, this work is an attempt to combine an assortment of information on this protein to have an overview, which suggests its use as a diagnostic marker for cancer. The knowledge might assist in the designing of drugs for therapeutic intervention of HABP1/p32/gC1qR regulated specific ligand mediated pathways in cancer.
Collapse
Affiliation(s)
- Paramita Saha
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Kasturi Datta
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
10
|
Saha P, Kaul R, Datta K. Human gene encoding hyaluronan binding protein 1 (HABP1/p32/gC1qR): involvement in signaling cascade. THE NUCLEUS 2017. [DOI: 10.1007/s13237-017-0207-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
11
|
Gao H, Yao Q, Lan X, Li S, Wu J, Zeng G, Xue Y. Elevated HABP1 protein expression correlates with progression and poor survival in patients with gastric cancer. Onco Targets Ther 2016; 9:6711-6718. [PMID: 27826197 PMCID: PMC5096779 DOI: 10.2147/ott.s114756] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Hyaluronic acid-binding protein 1 (HABP1/gC1qR/p32) has been recently implicated in oncogenesis and cancer progression in various malignancies; however, its clinical role in gastric cancer (GC) is still unclear. PATIENTS AND METHODS First, HABP1 expression was determined by Western blot analysis and immunohistochemistry. Then, we evaluated the expression of HABP1 and its clinical significance in tumor tissues from 181 patients with GC. RESULTS Expression of HABP1 protein in GC tissues was noticeably higher than that in adjacent nonneoplastic tissues (P=0.018). Increased HABP1 expression was significantly associated with tumor, node, and metastasis (TNM) stage (P=0.006), depth of invasion (P=0.001), lymph node metastasis (P=0.001), liver metastasis (P=0.024), and peritoneum metastasis (P=0.009). Patients with high expression of HABP1 had poor overall survival rate (P<0.001). In addition, histologic grade (P=0.017), TNM stage (P<0.001), Borrmann grouping (P<0.001), depth of invasion (P<0.001), lymph node metastasis (P<0.001), liver metastasis (P=0.010), and tumor size (P<0.001) were independent prognostic factors for overall survival. Multivariate Cox regression analysis revealed that HABP1 (P=0.004), histologic grade (P=0.047), TNM stage (P<0.001), Borrmann grouping (P<0.001), and liver metastasis (P=0.038) were independent factors for overall survival in patients with GC. CONCLUSION These findings demonstrated that HABP1 was an indicator for GC progression and poor survival, which highlighted its potential role as a therapeutic target for GCs.
Collapse
Affiliation(s)
| | - Qiang Yao
- Department of Gastroenterologic Surgery
| | | | - Sen Li
- Department of Gastroenterologic Surgery
| | - Junlong Wu
- Department of Pathology, The Affiliated Tumor Hospital, Harbin Medical University, Harbin, People's Republic of China
| | - Guangchun Zeng
- Department of Pathology, The Affiliated Tumor Hospital, Harbin Medical University, Harbin, People's Republic of China
| | | |
Collapse
|
12
|
Fahie K, Zachara NE. Molecular Functions of Glycoconjugates in Autophagy. J Mol Biol 2016; 428:3305-3324. [PMID: 27345664 DOI: 10.1016/j.jmb.2016.06.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 05/27/2016] [Accepted: 06/16/2016] [Indexed: 02/07/2023]
Abstract
Glycoconjugates, glycans, carbohydrates, and sugars: these terms encompass a class of biomolecules that are diverse in both form and function ranging from free oligosaccharides, glycoproteins, and proteoglycans, to glycolipids that make up a complex glycan code that impacts normal physiology and disease. Recent data suggest that one mechanism by which glycoconjugates impact physiology is through the regulation of the process of autophagy. Autophagy is a degradative pathway necessary for differentiation, organism development, and the maintenance of cell and tissue homeostasis. In this review, we will highlight what is known about the regulation of autophagy by glycoconjugates focusing on signaling mechanisms from the extracellular surface and the regulatory roles of intracellular glycans. Glycan signaling from the extracellular matrix converges on "master" regulators of autophagy including AMPK and mTORC1, thus impacting their localization, activity, and/or expression. Within the intracellular milieu, gangliosides are constituents of the autophagosome membrane, a subset of proteins composing the autophagic machinery are regulated by glycosylation, and oligosaccharide exposure in the cytosol triggers an autophagic response. The examples discussed provide some mechanistic insights into glycan regulation of autophagy and reveal areas for future investigation.
Collapse
Affiliation(s)
- Kamau Fahie
- Department of Biological Chemistry, The Johns Hopkins University, School of Medicine, 725 N. Wolfe St, Baltimore, MD 21205-2185, USA
| | - Natasha E Zachara
- Department of Biological Chemistry, The Johns Hopkins University, School of Medicine, 725 N. Wolfe St, Baltimore, MD 21205-2185, USA.
| |
Collapse
|
13
|
Elevated expression of HABP1 is a novel prognostic indicator in triple-negative breast cancers. Tumour Biol 2015; 36:4793-9. [DOI: 10.1007/s13277-015-3131-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/19/2015] [Indexed: 12/21/2022] Open
|