1
|
García-Mendívil L, Pérez-Zabalza M, Oliver-Gelabert A, Vallejo-Gil JM, Fañanás-Mastral J, Vázquez-Sancho M, Bellido-Morales JA, Vaca-Núñez AS, Ballester-Cuenca C, Diez E, Ordovás L, Pueyo E. Interindividual Age-Independent Differences in Human CX43 Impact Ventricular Arrhythmic Risk. RESEARCH (WASHINGTON, D.C.) 2023; 6:0254. [PMID: 38023417 PMCID: PMC10650968 DOI: 10.34133/research.0254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023]
Abstract
Connexin 43 (CX43) is one of the major components of gap junctions, the structures responsible for the intercellular communication and transmission of the electrical impulse in the left ventricle. There is limited information on the histological changes of CX43 with age and their effect on electrophysiology, especially in humans. Here, we analyzed left ventricular biopsies from living donors starting at midlife to characterize age-related CX43 remodeling. We assessed its quantity, degree of lateralization, and spatial heterogeneity together with fibrotic deposition. We observed no significant age-related remodeling of CX43. Only spatial heterogeneity increased slightly with age, and this increase was better explained by biological age than by chronological age. Importantly, we found that CX43 features varied considerably among individuals in our population with no relevant relationship to age or fibrosis content, in contrast to animal species. We used our experimental results to feed computational models of human ventricular electrophysiology and to assess the effects of interindividual differences in specific features of CX43 and fibrosis on conduction velocity, action potential duration, and arrhythmogenicity. We found that larger amounts of fibrosis were associated with the highest arrhythmic risk, with this risk being increased when fibrosis deposition was combined with a reduction in CX43 amount and/or with an increase in CX43 spatial heterogeneity. These mechanisms underlying high arrhythmic risk in some individuals were not associated with age in our study population. In conclusion, our data rule out CX43 remodeling as an age-related arrhythmic substrate in the population beyond midlife, but highlight its potential as a proarrhythmic factor at the individual level, especially when combined with increased fibrosis.
Collapse
Affiliation(s)
- Laura García-Mendívil
- Biomedical Signal Interpretation and Computational Simulation group (BSICoS), Aragón Institute of Engineering Research,
University of Zaragoza, Zaragoza 50018, Spain
- BSICoS, Instituto de Investigación Sanitaria Aragón (IISA), Zaragoza 50018, Spain
| | - María Pérez-Zabalza
- Biomedical Signal Interpretation and Computational Simulation group (BSICoS), Aragón Institute of Engineering Research,
University of Zaragoza, Zaragoza 50018, Spain
- BSICoS, Instituto de Investigación Sanitaria Aragón (IISA), Zaragoza 50018, Spain
- Centro Universitario de la Defensa (CUD), Zaragoza 50090, Spain
| | - Antoni Oliver-Gelabert
- Biomedical Signal Interpretation and Computational Simulation group (BSICoS), Aragón Institute of Engineering Research,
University of Zaragoza, Zaragoza 50018, Spain
- BSICoS, Instituto de Investigación Sanitaria Aragón (IISA), Zaragoza 50018, Spain
| | - José María Vallejo-Gil
- Department of Cardiovascular Surgery,
University Hospital Miguel Servet, Zaragoza 50009, Spain
| | - Javier Fañanás-Mastral
- Department of Cardiovascular Surgery,
University Hospital Miguel Servet, Zaragoza 50009, Spain
| | - Manuel Vázquez-Sancho
- Department of Cardiovascular Surgery,
University Hospital Miguel Servet, Zaragoza 50009, Spain
| | | | | | - Carlos Ballester-Cuenca
- Department of Cardiovascular Surgery,
University Hospital Miguel Servet, Zaragoza 50009, Spain
| | - Emiliano Diez
- Institute of Experimental Medicine and Biology of Cuyo (IMBECU), CONICET, Mendoza 5500, Argentina
| | - Laura Ordovás
- Biomedical Signal Interpretation and Computational Simulation group (BSICoS), Aragón Institute of Engineering Research,
University of Zaragoza, Zaragoza 50018, Spain
- BSICoS, Instituto de Investigación Sanitaria Aragón (IISA), Zaragoza 50018, Spain
- Fundación Agencia Aragonesa para la Investigación y el Desarrollo (ARAID), Zaragoza 50018, Spain
| | - Esther Pueyo
- Biomedical Signal Interpretation and Computational Simulation group (BSICoS), Aragón Institute of Engineering Research,
University of Zaragoza, Zaragoza 50018, Spain
- BSICoS, Instituto de Investigación Sanitaria Aragón (IISA), Zaragoza 50018, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza 50018, Spain
| |
Collapse
|
2
|
Demirel O, Berezin AE, Mirna M, Boxhammer E, Gharibeh SX, Hoppe UC, Lichtenauer M. Biomarkers of Atrial Fibrillation Recurrence in Patients with Paroxysmal or Persistent Atrial Fibrillation Following External Direct Current Electrical Cardioversion. Biomedicines 2023; 11:1452. [PMID: 37239123 PMCID: PMC10216298 DOI: 10.3390/biomedicines11051452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Atrial fibrillation (AF) is associated with atrial remodeling, cardiac dysfunction, and poor clinical outcomes. External direct current electrical cardioversion is a well-developed urgent treatment strategy for patients presenting with recent-onset AF. However, there is a lack of accurate predictive serum biomarkers to identify the risks of AF relapse after electrical cardioversion. We reviewed the currently available data and interpreted the findings of several studies revealing biomarkers for crucial elements in the pathogenesis of AF and affecting cardiac remodeling, fibrosis, inflammation, endothelial dysfunction, oxidative stress, adipose tissue dysfunction, myopathy, and mitochondrial dysfunction. Although there is ample strong evidence that elevated levels of numerous biomarkers (such as natriuretic peptides, C-reactive protein, galectin-3, soluble suppressor tumorigenicity-2, fibroblast growth factor-23, turn-over collagen biomarkers, growth differential factor-15) are associated with AF occurrence, the data obtained in clinical studies seem to be controversial in terms of their predictive ability for post-cardioversion outcomes. Novel circulating biomarkers are needed to elucidate the modality of this approach compared with conventional predictive tools. Conclusions: Biomarker-based strategies for predicting events after AF treatment require extensive investigation in the future, especially in the presence of different gender and variable comorbidity profiles. Perhaps, a multiple biomarker approach exerts more utilization for patients with different forms of AF than single biomarker use.
Collapse
Affiliation(s)
- Ozan Demirel
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (O.D.); (M.M.); (E.B.); (S.X.G.); (U.C.H.); (M.L.)
| | - Alexander E. Berezin
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (O.D.); (M.M.); (E.B.); (S.X.G.); (U.C.H.); (M.L.)
- Internal Medicine Department, Zaporozhye State Medical University, 69035 Zaporozhye, Ukraine
| | - Moritz Mirna
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (O.D.); (M.M.); (E.B.); (S.X.G.); (U.C.H.); (M.L.)
| | - Elke Boxhammer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (O.D.); (M.M.); (E.B.); (S.X.G.); (U.C.H.); (M.L.)
| | - Sarah X. Gharibeh
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (O.D.); (M.M.); (E.B.); (S.X.G.); (U.C.H.); (M.L.)
| | - Uta C. Hoppe
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (O.D.); (M.M.); (E.B.); (S.X.G.); (U.C.H.); (M.L.)
| | - Michael Lichtenauer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (O.D.); (M.M.); (E.B.); (S.X.G.); (U.C.H.); (M.L.)
| |
Collapse
|
3
|
García-Mendívil L, Pérez-Zabalza M, Mountris K, Duwé S, Smisdom N, Pérez M, Luján L, Wolfs E, Driesen RB, Vallejo-Gil JM, Fresneda-Roldán PC, Fañanás-Mastral J, Vázquez-Sancho M, Matamala-Adell M, Sorribas-Berjón JF, Bellido-Morales JA, Mancebón-Sierra FJ, Vaca-Núñez AS, Ballester-Cuenca C, Oliván-Viguera A, Diez E, Ordovás L, Pueyo E. Analysis of age-related left ventricular collagen remodeling in living donors: Implications in arrhythmogenesis. iScience 2022; 25:103822. [PMID: 35198884 PMCID: PMC8850748 DOI: 10.1016/j.isci.2022.103822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 12/14/2021] [Accepted: 01/25/2022] [Indexed: 12/18/2022] Open
Abstract
Age-related fibrosis in the left ventricle (LV) has been mainly studied in animals by assessing collagen content. Using second-harmonic generation microscopy and image processing, we evaluated amount, aggregation and spatial distribution of LV collagen in young to old pigs, and middle-age and elder living donors. All collagen features increased when comparing adult and old pigs with young ones, but not when comparing adult with old pigs or middle-age with elder individuals. Remarkably, all collagen parameters strongly correlated with lipofuscin, a biological age marker, in humans. By building patient-specific models of human ventricular tissue electrophysiology, we confirmed that amount and organization of fibrosis modulated arrhythmia vulnerability, and that distribution should be accounted for arrhythmia risk assessment. In conclusion, we characterize the age-associated changes in LV collagen and its potential implications for ventricular arrhythmia development. Consistency between pig and human results substantiate the pig as a relevant model of age-related LV collagen dynamics. Collagen remodeling traits change from youth to adulthood, not from midlife onwards In humans, collagen remodeling traits relate with the biological age-pigment lipofuscin Beyond collagen amount, its distribution also influences ventricular arrhythmogenesis Consistent age-related remodeling was observed amid healthy farm pigs and living donors
Collapse
Affiliation(s)
- Laura García-Mendívil
- Biomedical Signal Interpretation and Computational Simulation Group (BSICoS), Aragón Institute of Engineering Research, University of Zaragoza, Zaragoza 50018, Spain.,BSICoS, IIS Aragón, Zaragoza 50018, Spain
| | - María Pérez-Zabalza
- Biomedical Signal Interpretation and Computational Simulation Group (BSICoS), Aragón Institute of Engineering Research, University of Zaragoza, Zaragoza 50018, Spain.,BSICoS, IIS Aragón, Zaragoza 50018, Spain
| | - Konstantinos Mountris
- Biomedical Signal Interpretation and Computational Simulation Group (BSICoS), Aragón Institute of Engineering Research, University of Zaragoza, Zaragoza 50018, Spain.,BSICoS, IIS Aragón, Zaragoza 50018, Spain
| | - Sam Duwé
- Advanced Optical Microscopy Centre, Biomedical Research Institute, Hasselt University, Diepenbeek 3500, Belgium
| | - Nick Smisdom
- Biomedical Research Institute, Hasselt University, Diepenbeek 3500, Belgium
| | - Marta Pérez
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, Zaragoza 50013, Spain.,Instituto Universitario de Investigación Mixto Agroalimentario de Aragón (IA2), University of Zaragoza, Zaragoza 50013, Spain
| | - Lluís Luján
- Instituto Universitario de Investigación Mixto Agroalimentario de Aragón (IA2), University of Zaragoza, Zaragoza 50013, Spain.,Department of Animal Pathology, University of Zaragoza, Zaragoza 50013, Spain
| | - Esther Wolfs
- Biomedical Research Institute, Hasselt University, Diepenbeek 3500, Belgium
| | - Ronald B Driesen
- Biomedical Research Institute, Hasselt University, Diepenbeek 3500, Belgium
| | - José María Vallejo-Gil
- Department of Cardiovascular Surgery, University Hospital Miguel Servet, Zaragoza 50009, Spain
| | | | - Javier Fañanás-Mastral
- Department of Cardiovascular Surgery, University Hospital Miguel Servet, Zaragoza 50009, Spain
| | - Manuel Vázquez-Sancho
- Department of Cardiovascular Surgery, University Hospital Miguel Servet, Zaragoza 50009, Spain
| | - Marta Matamala-Adell
- Department of Cardiovascular Surgery, University Hospital Miguel Servet, Zaragoza 50009, Spain
| | | | | | | | | | - Carlos Ballester-Cuenca
- Department of Cardiovascular Surgery, University Hospital Miguel Servet, Zaragoza 50009, Spain
| | - Aida Oliván-Viguera
- Biomedical Signal Interpretation and Computational Simulation Group (BSICoS), Aragón Institute of Engineering Research, University of Zaragoza, Zaragoza 50018, Spain.,BSICoS, IIS Aragón, Zaragoza 50018, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza 50018, Spain
| | - Emiliano Diez
- Institute of Experimental Medicine and Biology of Cuyo (IMBECU), CONICET, Mendoza 5500, Argentina
| | - Laura Ordovás
- Biomedical Signal Interpretation and Computational Simulation Group (BSICoS), Aragón Institute of Engineering Research, University of Zaragoza, Zaragoza 50018, Spain.,BSICoS, IIS Aragón, Zaragoza 50018, Spain.,ARAID Foundation, Zaragoza 50018, Spain
| | - Esther Pueyo
- Biomedical Signal Interpretation and Computational Simulation Group (BSICoS), Aragón Institute of Engineering Research, University of Zaragoza, Zaragoza 50018, Spain.,BSICoS, IIS Aragón, Zaragoza 50018, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza 50018, Spain
| |
Collapse
|
4
|
Palacio LC, Ugarte JP, Saiz J, Tobón C. The Effects of Fibrotic Cell Type and Its Density on Atrial Fibrillation Dynamics: An In Silico Study. Cells 2021; 10:cells10102769. [PMID: 34685750 PMCID: PMC8534881 DOI: 10.3390/cells10102769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/03/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Remodeling in atrial fibrillation (AF) underlines the electrical and structural changes in the atria, where fibrosis is a hallmark of arrhythmogenic structural alterations. Fibrosis is an important feature of the AF substrate and can lead to abnormal conduction and, consequently, mechanical dysfunction. The fibrotic process comprises the presence of fibrotic cells, including fibroblasts, myofibroblasts and fibrocytes, which play an important role during fibrillatory dynamics. This work assesses the effect of the diffuse fibrosis density and the intermingled presence of the three types of fibrotic cells on the dynamics of persistent AF. For this purpose, the three fibrotic cells were electrically coupled to cardiomyocytes in a 3D realistic model of human atria. Low (6.25%) and high (25%) fibrosis densities were implemented in the left atrium according to a diffuse fibrosis representation. We analyze the action potential duration, conduction velocity and fibrillatory conduction patterns. Additionally, frequency analysis was performed in 50 virtual electrograms. The tested fibrosis configurations generated a significant conduction velocity reduction, where the larger effect was observed at high fibrosis density (up to 82% reduction in the fibrocytes configuration). Increasing the fibrosis density intensifies the vulnerability to multiple re-entries, zigzag propagation, and chaotic activity in the fibrillatory conduction. The most complex propagation patterns were observed at high fibrosis densities and the fibrocytes are the cells with the largest proarrhythmic effect. Left-to-right dominant frequency gradients can be observed for all fibrosis configurations, where the fibrocytes configuration at high density generates the most significant gradients (up to 4.5 Hz). These results suggest the important role of different fibrotic cell types and their density in diffuse fibrosis on the chaotic propagation patterns during persistent AF.
Collapse
Affiliation(s)
- Laura C. Palacio
- Materiales Nanoestructurados y Biomodelación (MATBIOM), Universidad de Medellín, Medellín 050032, Colombia;
| | - Juan P. Ugarte
- Grupo de Investigación en Modelamiento y Simulación Computacional (GIMSC), Universidad de San Buenaventura, Medellín 050010, Colombia;
| | - Javier Saiz
- Centro de Investigación e Innovación en Bioingeniería (CIB), Universitat Politècnica de València, 46022 Valencia, Spain;
| | - Catalina Tobón
- Materiales Nanoestructurados y Biomodelación (MATBIOM), Universidad de Medellín, Medellín 050032, Colombia;
- Correspondence:
| |
Collapse
|
5
|
Mountris KA, Pueyo E. A dual adaptive explicit time integration algorithm for efficiently solving the cardiac monodomain equation. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3461. [PMID: 33780171 DOI: 10.1002/cnm.3461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/16/2021] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
The monodomain model is widely used in in-silico cardiology to describe excitation propagation in the myocardium. Frequently, operator splitting is used to decouple the stiff reaction term and the diffusion term in the monodomain model so that they can be solved separately. Commonly, the diffusion term is solved implicitly with a large time step while the reaction term is solved by using an explicit method with adaptive time stepping. In this work, we propose a fully explicit method for the solution of the decoupled monodomain model. In contrast to semi-implicit methods, fully explicit methods present lower memory footprint and higher scalability. However, such methods are only conditionally stable. We overcome the conditional stability limitation by proposing a dual adaptive explicit method in which adaptive time integration is applied for the solution of both the reaction and diffusion terms. We perform a set of numerical examples where cardiac propagation is simulated under physiological and pathophysiological conditions. Results show that the proposed method presents preserved accuracy and improved computational efficiency as compared to standard operator splitting-based methods.
Collapse
Affiliation(s)
- Konstantinos A Mountris
- Aragón Institute of Engineering Research, IIS Aragón, , University of Zaragoza, Zaragoza, Spain
- CIBER in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Esther Pueyo
- Aragón Institute of Engineering Research, IIS Aragón, , University of Zaragoza, Zaragoza, Spain
- CIBER in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
6
|
Mortensen P, Gao H, Smith G, Simitev RD. Action potential propagation and block in a model of atrial tissue with myocyte-fibroblast coupling. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2021; 38:106-131. [PMID: 33412587 DOI: 10.1093/imammb/dqaa014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/20/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023]
Abstract
The electrical coupling between myocytes and fibroblasts and the spacial distribution of fibroblasts within myocardial tissues are significant factors in triggering and sustaining cardiac arrhythmias, but their roles are poorly understood. This article describes both direct numerical simulations and an asymptotic theory of propagation and block of electrical excitation in a model of atrial tissue with myocyte-fibroblast coupling. In particular, three idealized fibroblast distributions are introduced: uniform distribution, fibroblast barrier and myocyte strait-all believed to be constituent blocks of realistic fibroblast distributions. Primary action potential biomarkers including conduction velocity, peak potential and triangulation index are estimated from direct simulations in all cases. Propagation block is found to occur at certain critical values of the parameters defining each idealized fibroblast distribution, and these critical values are accurately determined. An asymptotic theory proposed earlier is extended and applied to the case of a uniform fibroblast distribution. Biomarker values are obtained from hybrid analytical-numerical solutions of coupled fast-time and slow-time periodic boundary value problems and compare well to direct numerical simulations. The boundary of absolute refractoriness is determined solely by the fast-time problem and is found to depend on the values of the myocyte potential and on the slow inactivation variable of the sodium current ahead of the propagating pulse. In turn, these quantities are estimated from the slow-time problem using a regular perturbation expansion to find the steady state of the coupled myocyte-fibroblast kinetics. The asymptotic theory gives a simple analytical expression that captures with remarkable accuracy the block of propagation in the presence of fibroblasts.
Collapse
Affiliation(s)
- Peter Mortensen
- School of Mathematics and Statistics, University of Glasgow, Glasgow G12 8QQ, UK, and Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Hao Gao
- School of Mathematics and Statistics, University of Glasgow, Glasgow G12 8QQ, UK
| | - Godfrey Smith
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Radostin D Simitev
- School of Mathematics and Statistics, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
7
|
Sánchez J, Gomez JF, Martinez-Mateu L, Romero L, Saiz J, Trenor B. Heterogeneous Effects of Fibroblast-Myocyte Coupling in Different Regions of the Human Atria Under Conditions of Atrial Fibrillation. Front Physiol 2019; 10:847. [PMID: 31333496 PMCID: PMC6620707 DOI: 10.3389/fphys.2019.00847] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 06/19/2019] [Indexed: 12/19/2022] Open
Abstract
Background: Atrial fibrillation (AF), the most common cardiac arrhythmia, is characterized by alteration of the action potential (AP) propagation. Under persistent AF, myocytes undergo electrophysiological and structural remodeling, which involves fibroblast proliferation and differentiation, modifying the substrate for AP propagation. The aim of this study was to analyze the effects on the AP of fibroblast-myocyte coupling during AF and its propagation in different regions of the atria. Methods: Isolated myocytes were coupled to different numbers of fibroblasts using the established AP models and tissue simulations were performed by randomly distributing fibroblasts. Fibroblast formulations were updated to match recent experimental data. Major ion current conductances of the myocyte model were modified to simulate AP heterogeneity in four different atrial regions (right atrium posterior wall, crista terminalis, left atrium posterior wall, and pulmonary vein) according to experimental and computational studies. Results: The results of the coupled myocyte-fibroblast simulations suggest that a more depolarized membrane potential and higher fibroblast membrane capacitance have a greater impact on AP duration and myocyte maximum depolarization velocity. The number of coupled fibroblasts and the stimulation frequency are determining factors in altering myocyte AP. Strand simulations show that conduction velocity tends to homogenize in all regions, while the left atrium is more likely to be affected by fibroblast and AP propagation block is more likely to occur. The pulmonary vein is the most affected region, even at low fibroblast densities. In 2D sheets with randomly placed fibroblasts, wavebreaks are observed in the low density (10%) central fibrotic zone and when fibroblast density increases (40%) propagation in the fibrotic region is practically blocked. At densities of 10 and 20% the width of the vulnerable window increases with respect to control but is decreased at 40%. Conclusion: Myocyte-fibroblast coupling characteristics heterogeneously affect AP propagation and features in the different atrial zones, and myocytes from the left atria are more sensitive to fibroblast coupling.
Collapse
Affiliation(s)
- Jorge Sánchez
- Centre for Research and Innovation in Bioengineering, Universitat Politècnica de València, Valencia, Spain
| | - Juan F Gomez
- Centre for Research and Innovation in Bioengineering, Universitat Politècnica de València, Valencia, Spain
| | - Laura Martinez-Mateu
- Centre for Research and Innovation in Bioengineering, Universitat Politècnica de València, Valencia, Spain
| | - Lucia Romero
- Centre for Research and Innovation in Bioengineering, Universitat Politècnica de València, Valencia, Spain
| | - Javier Saiz
- Centre for Research and Innovation in Bioengineering, Universitat Politècnica de València, Valencia, Spain
| | - Beatriz Trenor
- Centre for Research and Innovation in Bioengineering, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
8
|
Mora MT, Gomez JF, Morley G, Ferrero JM, Trenor B. Mechanistic investigation of Ca2+ alternans in human heart failure and its modulation by fibroblasts. PLoS One 2019; 14:e0217993. [PMID: 31211790 PMCID: PMC6581251 DOI: 10.1371/journal.pone.0217993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/22/2019] [Indexed: 11/18/2022] Open
Abstract
Background Heart failure (HF) is characterized, among other factors, by a progressive loss of contractile function and by the formation of an arrhythmogenic substrate, both aspects partially related to intracellular Ca2+ cycling disorders. In failing hearts both electrophysiological and structural remodeling, including fibroblast proliferation, contribute to changes in Ca2+ handling which promote the appearance of Ca2+ alternans (Ca-alt). Ca-alt in turn give rise to repolarization alternans, which promote dispersion of repolarization and contribute to reentrant activity. The computational analysis of the incidence of Ca2+ and/or repolarization alternans under HF conditions in the presence of fibroblasts could provide a better understanding of the mechanisms leading to HF arrhythmias and contractile function disorders. Methods and findings The goal of the present study was to investigate in silico the mechanisms leading to the formation of Ca-alt in failing human ventricular myocytes and tissues with disperse fibroblast distributions. The contribution of ionic currents variability to alternans formation at the cellular level was analyzed and the results show that in normal ventricular tissue, altered Ca2+ dynamics lead to Ca-alt, which precede APD alternans and can be aggravated by the presence of fibroblasts. Electrophysiological remodeling of failing tissue alone is sufficient to develop alternans. The incidence of alternans is reduced when fibroblasts are present in failing tissue due to significantly depressed Ca2+ transients. The analysis of the underlying ionic mechanisms suggests that Ca-alt are driven by Ca2+-handling protein and Ca2+ cycling dysfunctions in the junctional sarcoplasmic reticulum and that their contribution to alternans occurrence depends on the cardiac remodeling conditions and on myocyte-fibroblast interactions. Conclusion It can thus be concluded that fibroblasts modulate the formation of Ca-alt in human ventricular tissue subjected to heart failure-related electrophysiological remodeling. Pharmacological therapies should thus consider the extent of both the electrophysiological and structural remodeling present in the failing heart.
Collapse
Affiliation(s)
- Maria T. Mora
- Centro de Insvestigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
| | - Juan F. Gomez
- Centro de Insvestigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
| | - Gregory Morley
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, United States of America
| | - Jose M. Ferrero
- Centro de Insvestigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
| | - Beatriz Trenor
- Centro de Insvestigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
- * E-mail:
| |
Collapse
|
9
|
Lopez-Perez A, Sebastian R, Izquierdo M, Ruiz R, Bishop M, Ferrero JM. Personalized Cardiac Computational Models: From Clinical Data to Simulation of Infarct-Related Ventricular Tachycardia. Front Physiol 2019; 10:580. [PMID: 31156460 PMCID: PMC6531915 DOI: 10.3389/fphys.2019.00580] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 04/25/2019] [Indexed: 12/20/2022] Open
Abstract
In the chronic stage of myocardial infarction, a significant number of patients develop life-threatening ventricular tachycardias (VT) due to the arrhythmogenic nature of the remodeled myocardium. Radiofrequency ablation (RFA) is a common procedure to isolate reentry pathways across the infarct scar that are responsible for VT. Unfortunately, this strategy show relatively low success rates; up to 50% of patients experience recurrent VT after the procedure. In the last decade, intensive research in the field of computational cardiac electrophysiology (EP) has demonstrated the ability of three-dimensional (3D) cardiac computational models to perform in-silico EP studies. However, the personalization and modeling of certain key components remain challenging, particularly in the case of the infarct border zone (BZ). In this study, we used a clinical dataset from a patient with a history of infarct-related VT to build an image-based 3D ventricular model aimed at computational simulation of cardiac EP, including detailed patient-specific cardiac anatomy and infarct scar geometry. We modeled the BZ in eight different ways by combining the presence or absence of electrical remodeling with four different levels of image-based patchy fibrosis (0, 10, 20, and 30%). A 3D torso model was also constructed to compute the ECG. Patient-specific sinus activation patterns were simulated and validated against the patient's ECG. Subsequently, the pacing protocol used to induce reentrant VTs in the EP laboratory was reproduced in-silico. The clinical VT was induced with different versions of the model and from different pacing points, thus identifying the slow conducting channel responsible for such VT. Finally, the real patient's ECG recorded during VT episodes was used to validate our simulation results and to assess different strategies to model the BZ. Our study showed that reduced conduction velocities and heterogeneity in action potential duration in the BZ are the main factors in promoting reentrant activity. Either electrical remodeling or fibrosis in a degree of at least 30% in the BZ were required to initiate VT. Moreover, this proof-of-concept study confirms the feasibility of developing 3D computational models for cardiac EP able to reproduce cardiac activation in sinus rhythm and during VT, using exclusively non-invasive clinical data.
Collapse
Affiliation(s)
- Alejandro Lopez-Perez
- Center for Research and Innovation in Bioengineering (Ci2B), Universitat Politècnica de València, Valencia, Spain
| | - Rafael Sebastian
- Computational Multiscale Simulation Lab (CoMMLab), Universitat de València, Valencia, Spain
| | - M Izquierdo
- INCLIVA Health Research Institute, Valencia, Spain.,Arrhythmia Unit, Cardiology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Ricardo Ruiz
- INCLIVA Health Research Institute, Valencia, Spain.,Arrhythmia Unit, Cardiology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Martin Bishop
- Division of Imaging Sciences & Biomedical Engineering, Department of Biomedical Engineering, King's College London, London, United Kingdom
| | - Jose M Ferrero
- Center for Research and Innovation in Bioengineering (Ci2B), Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
10
|
Esposito A, Palmisano A, Antunes S, Colantoni C, Rancoita PMV, Vignale D, Baratto F, Della Bella P, Del Maschio A, De Cobelli F. Assessment of Remote Myocardium Heterogeneity in Patients with Ventricular Tachycardia Using Texture Analysis of Late Iodine Enhancement (LIE) Cardiac Computed Tomography (cCT) Images. Mol Imaging Biol 2019. [PMID: 29536321 PMCID: PMC6153681 DOI: 10.1007/s11307-018-1175-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Purpose Diffuse remodeling of myocardial extra-cellular matrix is largely responsible for left ventricle (LV) dysfunction and arrhythmias. Our hypothesis is that the texture analysis of late iodine enhancement (LIE) cardiac computed tomography (cCT) images may improve characterization of the diffuse extra-cellular matrix changes. Our aim was to extract volumetric extracellular volume (ECV) and LIE texture features of non-scarred (remote) myocardium from cCT of patients with recurrent ventricular tachycardia (rVT), and to compare these radiomic features with LV-function, LV-remodeling, and underlying cardiac disease. Procedures Forty-eight patients suffering from rVT were prospectively enrolled: 5/48 with idiopathic VT (IVT), 23/48 with post-ischemic dilated cardiomyopathy (ICM), 9/48 with idiopathic dilated cardiomyopathy (IDCM), and 11/48 with scars from a previous healed myocarditis (MYO). All patients underwent echocardiography to assess LV systolic and diastolic function and cCT with pre-contrast, angiographic, and LIE scan to obtain end-diastolic volume (EDV), ECV, and first-order texture parameters of Hounsfield Unit (HU) of remote myocardium in LIE [energy, entropy, HU-mean, HU-median, standard deviation (SD), and mean absolute deviation (MAD)]. Results Energy, HU mean, and HU median by cCT texture analysis correlated with ECV (rho = 0.5650, rho = 0.5741, rho = 0.5068; p < 0.0005). cCT-derived ECV, HU-mean, HU-median, SD, and MAD correlated directly to EDV by cCT and inversely to ejection fraction by echocardiography (p < 0.05). SD and MAD correlated with diastolic function by echocardiography (rho = 0.3837, p = 0.0071; rho = 0.3330, p = 0.0208). MYO and IVT patients were characterized by significantly lower values of SD and MAD when compared with ICM and IDCM patients, independently of LV-volume systolic and diastolic function. Conclusions Texture analysis of LIE may expand cCT capability of myocardial characterization. Myocardial heterogeneity (SD and MAD) was associated with LV dilatation, systolic and diastolic function, and is able to potentially identify the different patterns of structural remodeling characterizing patients with rVT of different etiology.
Collapse
Affiliation(s)
- Antonio Esposito
- Clinical and Experimental Radiology Unit, Experimental Imaging Center, San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy. .,Vita-Salute San Raffaele University, Milan, Italy.
| | - Anna Palmisano
- Clinical and Experimental Radiology Unit, Experimental Imaging Center, San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Sofia Antunes
- Images Post-Processing and Analysis Unit, Experimental Imaging Center, San Raffaele Scientific Institute, Milan, Italy
| | - Caterina Colantoni
- Clinical and Experimental Radiology Unit, Experimental Imaging Center, San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Paola Maria Vittoria Rancoita
- University Centre for Statistics in the Biomedical Sciences (CUSSB), Vita-Salute San Raffaele University, Milan, Italy
| | - Davide Vignale
- Clinical and Experimental Radiology Unit, Experimental Imaging Center, San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Francesca Baratto
- Arrhythmia Unit and Electrophysiology Laboratories, San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Della Bella
- Arrhythmia Unit and Electrophysiology Laboratories, San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Del Maschio
- Clinical and Experimental Radiology Unit, Experimental Imaging Center, San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Francesco De Cobelli
- Clinical and Experimental Radiology Unit, Experimental Imaging Center, San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
11
|
Mora MT, Ferrero JM, Gomez JF, Sobie EA, Trenor B. Ca 2+ Cycling Impairment in Heart Failure Is Exacerbated by Fibrosis: Insights Gained From Mechanistic Simulations. Front Physiol 2018; 9:1194. [PMID: 30190684 PMCID: PMC6116328 DOI: 10.3389/fphys.2018.01194] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/08/2018] [Indexed: 12/28/2022] Open
Abstract
Heart failure (HF) is characterized by altered Ca2+ cycling, resulting in cardiac contractile dysfunction. Failing myocytes undergo electrophysiological remodeling, which is known to be the main cause of abnormal Ca2+ homeostasis. However, structural remodeling, specifically proliferating fibroblasts coupled to myocytes in the failing heart, could also contribute to Ca2+ cycling impairment. The goal of the present study was to systematically analyze the mechanisms by which myocyte–fibroblast coupling could affect Ca2+ dynamics in normal conditions and in HF. Simulations of healthy and failing human myocytes were performed using established mathematical models, and cells were either isolated or coupled to fibroblasts. Univariate and multivariate sensitivity analyses were performed to quantify effects of ion transport pathways on biomarkers computed from intracellular [Ca2+] waveforms. Variability in ion channels and pumps was imposed and populations of models were analyzed to determine effects on Ca2+ dynamics. Our results suggest that both univariate and multivariate sensitivity analyses are valuable methodologies to shed light into the ionic mechanisms underlying Ca2+ impairment in HF, although differences between the two methodologies are observed at high parameter variability. These can result from either the fact that multivariate analyses take into account ion channels or non-linear effects of ion transport pathways on Ca2+ dynamics. Coupling either healthy or failing myocytes to fibroblasts decreased Ca2+ transients due to an indirect sink effect on action potential (AP) and thus on Ca2+ related currents. Simulations that investigated restoration of normal physiology in failing myocytes showed that Ca2+ cycling can be normalized by increasing SERCA and L-type Ca2+ current activity while decreasing Na+–Ca2+ exchange and SR Ca2+ leak. Changes required to normalize APs in failing myocytes depended on whether myocytes were coupled to fibroblasts. In conclusion, univariate and multivariate sensitivity analyses are helpful tools to understand how Ca2+ cycling is impaired in HF and how this can be exacerbated by coupling of myocytes to fibroblasts. The design of pharmacological actions to restore normal activity should take into account the degree of fibrosis in the failing heart.
Collapse
Affiliation(s)
- Maria T Mora
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
| | - Jose M Ferrero
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
| | - Juan F Gomez
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
| | - Eric A Sobie
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Beatriz Trenor
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
12
|
Morotti S, Grandi E. Quantitative systems models illuminate arrhythmia mechanisms in heart failure: Role of the Na + -Ca 2+ -Ca 2+ /calmodulin-dependent protein kinase II-reactive oxygen species feedback. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2018; 11:e1434. [PMID: 30015404 DOI: 10.1002/wsbm.1434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/29/2018] [Accepted: 06/16/2018] [Indexed: 12/22/2022]
Abstract
Quantitative systems modeling aims to integrate knowledge in different research areas with models describing biological mechanisms and dynamics to gain a better understanding of complex clinical syndromes. Heart failure (HF) is a chronic complex cardiac disease that results from structural or functional disorders impairing the ability of the ventricle to fill with or eject blood. Highly interactive and dynamic changes in mechanical, structural, neurohumoral, metabolic, and electrophysiological properties collectively predispose the failing heart to cardiac arrhythmias, which are responsible for about a half of HF deaths. Multiscale cardiac modeling and simulation integrate structural and functional data from HF experimental models and patients to improve our mechanistic understanding of this complex arrhythmia syndrome. In particular, they allow investigating how disease-induced remodeling alters the coupling of electrophysiology, Ca2+ and Na+ handling, contraction, and energetics that lead to rhythm derangements. The Ca2+ /calmodulin-dependent protein kinase II, which expression and activity are enhanced in HF, emerges as a critical hub that modulates the feedbacks between these various subsystems and promotes arrhythmogenesis. This article is categorized under: Physiology > Mammalian Physiology in Health and Disease Models of Systems Properties and Processes > Mechanistic Models Models of Systems Properties and Processes > Cellular Models Models of Systems Properties and Processes > Organ, Tissue, and Physiological Models.
Collapse
Affiliation(s)
- Stefano Morotti
- Department of Pharmacology, University of California Davis, Davis, California
| | - Eleonora Grandi
- Department of Pharmacology, University of California Davis, Davis, California
| |
Collapse
|
13
|
Mayourian J, Cashman TJ, Ceholski DK, Johnson BV, Sachs D, Kaji DA, Sahoo S, Hare JM, Hajjar RJ, Sobie EA, Costa KD. Experimental and Computational Insight Into Human Mesenchymal Stem Cell Paracrine Signaling and Heterocellular Coupling Effects on Cardiac Contractility and Arrhythmogenicity. Circ Res 2017. [PMID: 28642329 DOI: 10.1161/circresaha.117.310796] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Myocardial delivery of human mesenchymal stem cells (hMSCs) is an emerging therapy for treating the failing heart. However, the relative effects of hMSC-mediated heterocellular coupling (HC) and paracrine signaling (PS) on human cardiac contractility and arrhythmogenicity remain unresolved. OBJECTIVE The objective is to better understand hMSC PS and HC effects on human cardiac contractility and arrhythmogenicity by integrating experimental and computational approaches. METHODS AND RESULTS Extending our previous hMSC-cardiomyocyte HC computational model, we incorporated experimentally calibrated hMSC PS effects on cardiomyocyte L-type calcium channel/sarcoendoplasmic reticulum calcium-ATPase activity and cardiac tissue fibrosis. Excitation-contraction simulations of hMSC PS-only and combined HC+PS effects on human cardiomyocytes were representative of human engineered cardiac tissue (hECT) contractile function measurements under matched experimental treatments. Model simulations and hECTs both demonstrated that hMSC-mediated effects were most pronounced under PS-only conditions, where developed force increased ≈4-fold compared with non-hMSC-supplemented controls during physiological 1-Hz pacing. Simulations predicted contractility of isolated healthy and ischemic adult human cardiomyocytes would be minimally sensitive to hMSC HC, driven primarily by PS. Dominance of hMSC PS was also revealed in simulations of fibrotic cardiac tissue, where hMSC PS protected from potential proarrhythmic effects of HC at various levels of engraftment. Finally, to study the nature of the hMSC paracrine effects on contractility, proteomic analysis of hECT/hMSC conditioned media predicted activation of PI3K/Akt signaling, a recognized target of both soluble and exosomal fractions of the hMSC secretome. Treating hECTs with exosome-enriched, but not exosome-depleted, fractions of the hMSC secretome recapitulated the effects observed with hMSC conditioned media on hECT-developed force and expression of calcium-handling genes (eg, SERCA2a, L-type calcium channel). CONCLUSIONS Collectively, this integrated experimental and computational study helps unravel relative hMSC PS and HC effects on human cardiac contractility and arrhythmogenicity, and provides novel insight into the role of exosomes in hMSC paracrine-mediated effects on contractility.
Collapse
Affiliation(s)
- Joshua Mayourian
- From the Cardiovascular Research Center (J.M., T.J.C., D.K.C., D.S., S.S., R.J.H., K.D.C.), Department of Developmental and Regenerative Biology (D.A.K.), and Department of Pharmacology and Systems Therapeutics (E.A.S.), Icahn School of Medicine at Mount Sinai, New York; Department of Medicine, University of Washington Seattle (B.V.J.); and The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, FL (J.M.H.)
| | - Timothy J Cashman
- From the Cardiovascular Research Center (J.M., T.J.C., D.K.C., D.S., S.S., R.J.H., K.D.C.), Department of Developmental and Regenerative Biology (D.A.K.), and Department of Pharmacology and Systems Therapeutics (E.A.S.), Icahn School of Medicine at Mount Sinai, New York; Department of Medicine, University of Washington Seattle (B.V.J.); and The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, FL (J.M.H.)
| | - Delaine K Ceholski
- From the Cardiovascular Research Center (J.M., T.J.C., D.K.C., D.S., S.S., R.J.H., K.D.C.), Department of Developmental and Regenerative Biology (D.A.K.), and Department of Pharmacology and Systems Therapeutics (E.A.S.), Icahn School of Medicine at Mount Sinai, New York; Department of Medicine, University of Washington Seattle (B.V.J.); and The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, FL (J.M.H.)
| | - Bryce V Johnson
- From the Cardiovascular Research Center (J.M., T.J.C., D.K.C., D.S., S.S., R.J.H., K.D.C.), Department of Developmental and Regenerative Biology (D.A.K.), and Department of Pharmacology and Systems Therapeutics (E.A.S.), Icahn School of Medicine at Mount Sinai, New York; Department of Medicine, University of Washington Seattle (B.V.J.); and The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, FL (J.M.H.)
| | - David Sachs
- From the Cardiovascular Research Center (J.M., T.J.C., D.K.C., D.S., S.S., R.J.H., K.D.C.), Department of Developmental and Regenerative Biology (D.A.K.), and Department of Pharmacology and Systems Therapeutics (E.A.S.), Icahn School of Medicine at Mount Sinai, New York; Department of Medicine, University of Washington Seattle (B.V.J.); and The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, FL (J.M.H.)
| | - Deepak A Kaji
- From the Cardiovascular Research Center (J.M., T.J.C., D.K.C., D.S., S.S., R.J.H., K.D.C.), Department of Developmental and Regenerative Biology (D.A.K.), and Department of Pharmacology and Systems Therapeutics (E.A.S.), Icahn School of Medicine at Mount Sinai, New York; Department of Medicine, University of Washington Seattle (B.V.J.); and The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, FL (J.M.H.)
| | - Susmita Sahoo
- From the Cardiovascular Research Center (J.M., T.J.C., D.K.C., D.S., S.S., R.J.H., K.D.C.), Department of Developmental and Regenerative Biology (D.A.K.), and Department of Pharmacology and Systems Therapeutics (E.A.S.), Icahn School of Medicine at Mount Sinai, New York; Department of Medicine, University of Washington Seattle (B.V.J.); and The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, FL (J.M.H.)
| | - Joshua M Hare
- From the Cardiovascular Research Center (J.M., T.J.C., D.K.C., D.S., S.S., R.J.H., K.D.C.), Department of Developmental and Regenerative Biology (D.A.K.), and Department of Pharmacology and Systems Therapeutics (E.A.S.), Icahn School of Medicine at Mount Sinai, New York; Department of Medicine, University of Washington Seattle (B.V.J.); and The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, FL (J.M.H.)
| | - Roger J Hajjar
- From the Cardiovascular Research Center (J.M., T.J.C., D.K.C., D.S., S.S., R.J.H., K.D.C.), Department of Developmental and Regenerative Biology (D.A.K.), and Department of Pharmacology and Systems Therapeutics (E.A.S.), Icahn School of Medicine at Mount Sinai, New York; Department of Medicine, University of Washington Seattle (B.V.J.); and The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, FL (J.M.H.)
| | - Eric A Sobie
- From the Cardiovascular Research Center (J.M., T.J.C., D.K.C., D.S., S.S., R.J.H., K.D.C.), Department of Developmental and Regenerative Biology (D.A.K.), and Department of Pharmacology and Systems Therapeutics (E.A.S.), Icahn School of Medicine at Mount Sinai, New York; Department of Medicine, University of Washington Seattle (B.V.J.); and The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, FL (J.M.H.)
| | - Kevin D Costa
- From the Cardiovascular Research Center (J.M., T.J.C., D.K.C., D.S., S.S., R.J.H., K.D.C.), Department of Developmental and Regenerative Biology (D.A.K.), and Department of Pharmacology and Systems Therapeutics (E.A.S.), Icahn School of Medicine at Mount Sinai, New York; Department of Medicine, University of Washington Seattle (B.V.J.); and The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, FL (J.M.H.).
| |
Collapse
|
14
|
Cai L, Wang Y, Gao H, Li Y, Luo X. A mathematical model for active contraction in healthy and failing myocytes and left ventricles. PLoS One 2017; 12:e0174834. [PMID: 28406991 PMCID: PMC5391010 DOI: 10.1371/journal.pone.0174834] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/15/2017] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease is one of the leading causes of death worldwide, in particular myocardial dysfunction, which may lead to heart failure eventually. Understanding the electro-mechanics of the heart will help in developing more effective clinical treatments. In this paper, we present a multi-scale electro-mechanics model of the left ventricle (LV). The Holzapfel-Ogden constitutive law was used to describe the passive myocardial response in tissue level, a modified Grandi-Pasqualini-Bers model was adopted to model calcium dynamics in individual myocytes, and the active tension was described using the Niederer-Hunter-Smith myofilament model. We first studied the electro-mechanics coupling in a single myocyte in the healthy and diseased left ventricle, and then the single cell model was embedded in a dynamic LV model to investigate the compensation mechanism of LV pump function due to myocardial dysfunction caused by abnormality in cellular calcium dynamics. The multi-scale LV model was solved using an in-house developed hybrid immersed boundary method with finite element extension. The predictions of the healthy LV model agreed well with the clinical measurements and other studies, and likewise, the results in the failing states were also consistent with clinical observations. In particular, we found that a low level of intracellular Ca2+ transient in myocytes can result in LV pump function failure even with increased myocardial contractility, decreased systolic blood pressure, and increased diastolic filling pressure, even though they will increase LV stroke volume. Our work suggested that treatments targeted at increased contractility and lowering the systolic blood pressure alone are not sufficient in preventing LV pump dysfunction, restoring a balanced physiological Ca2+ handling mechanism is necessary.
Collapse
Affiliation(s)
- Li Cai
- NPU-UoG International Cooperative Lab for Computation & Application in Cardiology, Northwestern Polytechnical University, Xi’an, Shanxi Province, China
| | - Yongheng Wang
- NPU-UoG International Cooperative Lab for Computation & Application in Cardiology, Northwestern Polytechnical University, Xi’an, Shanxi Province, China
| | - Hao Gao
- School of Mathematics and Statistics, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Yiqiang Li
- NPU-UoG International Cooperative Lab for Computation & Application in Cardiology, Northwestern Polytechnical University, Xi’an, Shanxi Province, China
| | - Xiaoyu Luo
- School of Mathematics and Statistics, University of Glasgow, Glasgow, Scotland, United Kingdom
| |
Collapse
|
15
|
Chiamvimonvat N, Chen-Izu Y, Clancy CE, Deschenes I, Dobrev D, Heijman J, Izu L, Qu Z, Ripplinger CM, Vandenberg JI, Weiss JN, Koren G, Banyasz T, Grandi E, Sanguinetti MC, Bers DM, Nerbonne JM. Potassium currents in the heart: functional roles in repolarization, arrhythmia and therapeutics. J Physiol 2017; 595:2229-2252. [PMID: 27808412 DOI: 10.1113/jp272883] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/11/2016] [Indexed: 12/19/2022] Open
Abstract
This is the second of the two White Papers from the fourth UC Davis Cardiovascular Symposium Systems Approach to Understanding Cardiac Excitation-Contraction Coupling and Arrhythmias (3-4 March 2016), a biennial event that brings together leading experts in different fields of cardiovascular research. The theme of the 2016 symposium was 'K+ channels and regulation', and the objectives of the conference were severalfold: (1) to identify current knowledge gaps; (2) to understand what may go wrong in the diseased heart and why; (3) to identify possible novel therapeutic targets; and (4) to further the development of systems biology approaches to decipher the molecular mechanisms and treatment of cardiac arrhythmias. The sessions of the Symposium focusing on the functional roles of the cardiac K+ channel in health and disease, as well as K+ channels as therapeutic targets, were contributed by Ye Chen-Izu, Gideon Koren, James Weiss, David Paterson, David Christini, Dobromir Dobrev, Jordi Heijman, Thomas O'Hara, Crystal Ripplinger, Zhilin Qu, Jamie Vandenberg, Colleen Clancy, Isabelle Deschenes, Leighton Izu, Tamas Banyasz, Andras Varro, Heike Wulff, Eleonora Grandi, Michael Sanguinetti, Donald Bers, Jeanne Nerbonne and Nipavan Chiamvimonvat as speakers and panel discussants. This article summarizes state-of-the-art knowledge and controversies on the functional roles of cardiac K+ channels in normal and diseased heart. We endeavour to integrate current knowledge at multiple scales, from the single cell to the whole organ levels, and from both experimental and computational studies.
Collapse
Affiliation(s)
- Nipavan Chiamvimonvat
- Department of Internal Medicine, University of California, Davis, Genome and Biomedical Science Facility, Rm 6315, Davis, CA, 95616, USA.,Department of Veterans Affairs, Northern California Health Care System, Mather, CA, 95655, USA
| | - Ye Chen-Izu
- Department of Internal Medicine, University of California, Davis, Genome and Biomedical Science Facility, Rm 6315, Davis, CA, 95616, USA.,Department of Pharmacology, University of California, Davis, Genome and Biomedical Science Facility, Rm 3503, Davis, CA, 95616, USA.,Department of Biomedical Engineering, University of California, Davis, Genome and Biomedical Science Facility, Rm 2303, Davis, CA, 95616, USA
| | - Colleen E Clancy
- Department of Pharmacology, University of California, Davis, Genome and Biomedical Science Facility, Rm 3503, Davis, CA, 95616, USA
| | - Isabelle Deschenes
- Department of Physiology and Biophysics, and Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44109, USA.,Heart and Vascular Research Center, MetroHealth Medical Center, Cleveland, OH, 44109, USA
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Leighton Izu
- Department of Pharmacology, University of California, Davis, Genome and Biomedical Science Facility, Rm 3503, Davis, CA, 95616, USA
| | - Zhilin Qu
- Division of Cardiology, Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, 3645 MRL, Los Angeles, CA, 90095, USA
| | - Crystal M Ripplinger
- Department of Pharmacology, University of California, Davis, Genome and Biomedical Science Facility, Rm 3503, Davis, CA, 95616, USA
| | - Jamie I Vandenberg
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW, 2010, Australia
| | - James N Weiss
- Division of Cardiology, Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, 3645 MRL, Los Angeles, CA, 90095, USA
| | - Gideon Koren
- Cardiovascular Research Center, Rhode Island Hospital and the Cardiovascular Institute, The Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Tamas Banyasz
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Eleonora Grandi
- Department of Pharmacology, University of California, Davis, Genome and Biomedical Science Facility, Rm 3503, Davis, CA, 95616, USA
| | - Michael C Sanguinetti
- Department of Internal Medicine, University of Utah, Nora Eccles Harrison Cardiovascular Research & Training Institute, Salt Lake City, UT, 84112, USA
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis, Genome and Biomedical Science Facility, Rm 3503, Davis, CA, 95616, USA
| | - Jeanne M Nerbonne
- Departments of Developmental Biology and Internal Medicine, Cardiovascular Division, Washington University Medical School, St Louis, MO, 63110, USA
| |
Collapse
|
16
|
Cardona K, Trenor B, Giles WR. Changes in Intracellular Na+ following Enhancement of Late Na+ Current in Virtual Human Ventricular Myocytes. PLoS One 2016; 11:e0167060. [PMID: 27875582 PMCID: PMC5119830 DOI: 10.1371/journal.pone.0167060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/08/2016] [Indexed: 12/19/2022] Open
Abstract
The slowly inactivating or late Na+ current, INa-L, can contribute to the initiation of both atrial and ventricular rhythm disturbances in the human heart. However, the cellular and molecular mechanisms that underlie these pro-arrhythmic influences are not fully understood. At present, the major working hypothesis is that the Na+ influx corresponding to INa-L significantly increases intracellular Na+, [Na+]i; and the resulting reduction in the electrochemical driving force for Na+ reduces and (may reverse) Na+/Ca2+ exchange. These changes increase intracellular Ca2+, [Ca2+]i; which may further enhance INa-L due to calmodulin-dependent phosphorylation of the Na+ channels. This paper is based on mathematical simulations using the O'Hara et al (2011) model of baseline or healthy human ventricular action potential waveforms(s) and its [Ca2+]i homeostasis mechanisms. Somewhat surprisingly, our results reveal only very small changes (≤ 1.5 mM) in [Na+]i even when INa-L is increased 5-fold and steady-state stimulation rate is approximately 2 times the normal human heart rate (i.e. 2 Hz). Previous work done using well-established models of the rabbit and human ventricular action potential in heart failure settings also reported little or no change in [Na+]i when INa-L was increased. Based on our simulations, the major short-term effect of markedly augmenting INa-L is a significant prolongation of the action potential and an associated increase in the likelihood of reactivation of the L-type Ca2+ current, ICa-L. Furthermore, this action potential prolongation does not contribute to [Na+]i increase.
Collapse
Affiliation(s)
- Karen Cardona
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
| | - Beatriz Trenor
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
- * E-mail:
| | - Wayne R. Giles
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
17
|
Mayourian J, Savizky RM, Sobie EA, Costa KD. Modeling Electrophysiological Coupling and Fusion between Human Mesenchymal Stem Cells and Cardiomyocytes. PLoS Comput Biol 2016; 12:e1005014. [PMID: 27454812 PMCID: PMC4959759 DOI: 10.1371/journal.pcbi.1005014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 06/08/2016] [Indexed: 01/16/2023] Open
Abstract
Human mesenchymal stem cell (hMSC) delivery has demonstrated promise in preclinical and clinical trials for myocardial infarction therapy; however, broad acceptance is hindered by limited understanding of hMSC-human cardiomyocyte (hCM) interactions. To better understand the electrophysiological consequences of direct heterocellular connections between hMSCs and hCMs, three original mathematical models were developed, representing an experimentally verified triad of hMSC families with distinct functional ion channel currents. The arrhythmogenic risk of such direct electrical interactions in the setting of healthy adult myocardium was predicted by coupling and fusing these hMSC models to the published ten Tusscher midcardial hCM model. Substantial variations in action potential waveform—such as decreased action potential duration (APD) and plateau height—were found when hCMs were coupled to the two hMSC models expressing functional delayed rectifier-like human ether à-go-go K+ channel 1 (hEAG1); the effects were exacerbated for fused hMSC-hCM hybrid cells. The third family of hMSCs (Type C), absent of hEAG1 activity, led to smaller single-cell action potential alterations during coupling and fusion, translating to longer tissue-level mean action potential wavelength. In a simulated 2-D monolayer of cardiac tissue, re-entry vulnerability with low (5%) hMSC insertion was approximately eight-fold lower with Type C hMSCs compared to hEAG1-functional hMSCs. A 20% decrease in APD dispersion by Type C hMSCs compared to hEAG1-active hMSCs supports the claim of reduced arrhythmogenic potential of this cell type with low hMSC insertion. However, at moderate (15%) and high (25%) hMSC insertion, the vulnerable window increased independent of hMSC type. In summary, this study provides novel electrophysiological models of hMSCs, predicts possible arrhythmogenic effects of hMSCs when directly coupled to healthy hCMs, and proposes that isolating a subset of hMSCs absent of hEAG1 activity may offer increased safety as a cell delivery cardiotherapy at low levels of hMSC-hCM coupling. Myocardial infarction—better known as a heart attack—strikes on average every 43 seconds in America. An emerging approach to treat myocardial infarction patients involves the delivery of human mesenchymal stem cells (hMSCs) to the damaged heart. While clinical trials of this therapeutic approach have yet to report adverse effects on heart electrical rhythm, such consequences have been implicated in simpler experimental systems and thus remain a concern. In this study, we utilized mathematical modeling to simulate electrical interactions arising from direct coupling between hMSCs and human heart cells to develop insight into the possible adverse effects of this therapeutic approach on human heart electrical activity, and to assess a novel strategy for reducing some potential risks of this therapy. We developed the first mathematical models of electrical activity of three families of hMSCs based on published experimental data, and integrated these with previously established mathematical models of human heart cell electrical activity. Our computer simulations demonstrated that one particular family of hMSCs minimized the disturbances in cardiac electrical activity both at the single-cell and tissue levels, suggesting that isolating this specific sub-population of hMSCs for myocardial delivery could potentially increase the safety of future hMSC-based heart therapies.
Collapse
Affiliation(s)
- Joshua Mayourian
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ruben M. Savizky
- Department of Chemistry, The Cooper Union, New York, New York, United States of America
| | - Eric A. Sobie
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Kevin D. Costa
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
18
|
Electrophysiology of Heart Failure Using a Rabbit Model: From the Failing Myocyte to Ventricular Fibrillation. PLoS Comput Biol 2016; 12:e1004968. [PMID: 27336310 PMCID: PMC4919062 DOI: 10.1371/journal.pcbi.1004968] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 05/05/2016] [Indexed: 02/07/2023] Open
Abstract
Heart failure is a leading cause of death, yet its underlying electrophysiological (EP) mechanisms are not well understood. In this study, we use a multiscale approach to analyze a model of heart failure and connect its results to features of the electrocardiogram (ECG). The heart failure model is derived by modifying a previously validated electrophysiology model for a healthy rabbit heart. Specifically, in accordance with the heart failure literature, we modified the cell EP by changing both membrane currents and calcium handling. At the tissue level, we modeled the increased gap junction lateralization and lower conduction velocity due to downregulation of Connexin 43. At the biventricular level, we reduced the apex-to-base and transmural gradients of action potential duration (APD). The failing cell model was first validated by reproducing the longer action potential, slower and lower calcium transient, and earlier alternans characteristic of heart failure EP. Subsequently, we compared the electrical wave propagation in one dimensional cables of healthy and failing cells. The validated cell model was then used to simulate the EP of heart failure in an anatomically accurate biventricular rabbit model. As pacing cycle length decreases, both the normal and failing heart develop T-wave alternans, but only the failing heart shows QRS alternans (although moderate) at rapid pacing. Moreover, T-wave alternans is significantly more pronounced in the failing heart. At rapid pacing, APD maps show areas of conduction block in the failing heart. Finally, accelerated pacing initiated wave reentry and breakup in the failing heart. Further, the onset of VF was not observed with an upregulation of SERCA, a potential drug therapy, using the same protocol. The changes introduced at the cell and tissue level have increased the failing heart’s susceptibility to dynamic instabilities and arrhythmias under rapid pacing. However, the observed increase in arrhythmogenic potential is not due to a steepening of the restitution curve (not present in our model), but rather to a novel blocking mechanism. Ventricular fibrillation (VF) is one of the leading causes of sudden death. During VF, the electrical wave of activation in the heart breaks up chaotically. Consequently, the heart is unable to contract synchronously and pump blood to the rest of the body. In our work we formulate and validate a model of heart failure (HF) that allows us to evaluate the arrhythmogenic potential of individual and combined electrophysiological changes. In diagnostic cardiology, the electrocardiogram (ECG) is one of the most commonly used tools for detecting abnormalities in the heart electrophysiology. One of our goals is to use our numerical model to link changes at the cellular and tissue level in a failing heart to a numerically computed ECG. This allows us to characterize the precursor to and the risk of VF. In order to understand the mechanisms underlying VF in HF, we design a test that simulates a HF patient performing physical exercise. We show that under fast heart rates with changes in pacing, HF patients are more prone to VF due to a new conduction blocking mechanism. In the long term, our mathematical model is suitable for investigating the effect of drug therapies in HF.
Collapse
|
19
|
Greisas A, Zlochiver S. The Multi-Domain Fibroblast/Myocyte Coupling in the Cardiac Tissue: A Theoretical Study. Cardiovasc Eng Technol 2016; 7:290-304. [PMID: 27150222 DOI: 10.1007/s13239-016-0266-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/29/2016] [Indexed: 02/02/2023]
Abstract
Cardiac fibroblast proliferation and concomitant collagenous matrix accumulation (fibrosis) develop during multiple cardiac pathologies. Recent studies have demonstrated direct electrical coupling between myocytes and fibroblasts in vitro, and assessed the electrophysiological implications of such coupling. However, in the living tissues, such coupling has not been demonstrated, and only indirect coupling via the extracellular space is likely to exist. In this study we employed a multi-domain model to assess the modulation of the cardiac electrophysiological properties by neighboring fibroblasts assuming only indirect coupling. Numerical simulations in 1D and 2D human atrial models showed that extracellular coupling sustains a significant impact on conduction velocity (CV) and a less significant effect on the action potential duration. Both CV and the slope of the CV restitution increased with increasing fibroblast density. This effect was more substantial for lower extracellular conductance. In 2D, spiral waves exhibited reduced frequency with increasing fibroblast density, and the propensity of wavebreaks and complex dynamics at high pacing rates significantly increased.
Collapse
Affiliation(s)
- Ariel Greisas
- Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Ramat-Aviv, 69978, Tel-Aviv, Israel
| | - Sharon Zlochiver
- Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Ramat-Aviv, 69978, Tel-Aviv, Israel.
| |
Collapse
|
20
|
Gomez JF, Cardona K, Trenor B. Lessons learned from multi-scale modeling of the failing heart. J Mol Cell Cardiol 2015; 89:146-59. [PMID: 26476237 DOI: 10.1016/j.yjmcc.2015.10.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/07/2015] [Accepted: 10/14/2015] [Indexed: 12/26/2022]
Abstract
Heart failure constitutes a major public health problem worldwide. Affected patients experience a number of changes in the electrical function of the heart that predispose to potentially lethal cardiac arrhythmias. Due to the multitude of electrophysiological changes that may occur during heart failure, the scientific literature is complex and sometimes ambiguous, perhaps because these findings are highly dependent on the etiology, the stage of heart failure, and the experimental model used to study these changes. Nevertheless, a number of common features of failing hearts have been documented. Prolongation of the action potential (AP) involving ion channel remodeling and alterations in calcium handling have been established as the hallmark characteristics of myocytes isolated from failing hearts. Intercellular uncoupling and fibrosis are identified as major arrhythmogenic factors. Multi-scale computational simulations are a powerful tool that complements experimental and clinical research. The development of biophysically detailed computer models of single myocytes and cardiac tissues has contributed greatly to our understanding of processes underlying excitation and repolarization in the heart. The electrical, structural, and metabolic remodeling that arises in cardiac tissues during heart failure has been addressed from different computational perspectives to further understand the arrhythmogenic substrate. This review summarizes the contributions from computational modeling and simulation to predict the underlying mechanisms of heart failure phenotypes and their implications for arrhythmogenesis, ranging from the cellular level to whole-heart simulations. The main aspects of heart failure are presented in several related sections. An overview of the main electrophysiological and structural changes that have been observed experimentally in failing hearts is followed by the description and discussion of the simulation work in this field at the cellular level, and then in 2D and 3D cardiac structures. The implications for arrhythmogenesis in heart failure are also discussed including therapeutic measures, such as drug effects and cardiac resynchronization therapy. Finally, the future challenges in heart failure modeling and simulation will be discussed.
Collapse
Affiliation(s)
- Juan F Gomez
- Instituto de Investigación Interuniversitario en Bioingeniería y Tecnología Orientada, al Ser Humano (I3BH), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| | - Karen Cardona
- Instituto de Investigación Interuniversitario en Bioingeniería y Tecnología Orientada, al Ser Humano (I3BH), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| | - Beatriz Trenor
- Instituto de Investigación Interuniversitario en Bioingeniería y Tecnología Orientada, al Ser Humano (I3BH), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| |
Collapse
|
21
|
Computational Approaches to Understanding the Role of Fibroblast-Myocyte Interactions in Cardiac Arrhythmogenesis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:465714. [PMID: 26601107 PMCID: PMC4637154 DOI: 10.1155/2015/465714] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/10/2015] [Accepted: 04/29/2015] [Indexed: 11/18/2022]
Abstract
The adult heart is composed of a dense network of cardiomyocytes surrounded by nonmyocytes, the most
abundant of which are cardiac fibroblasts. Several cardiac diseases, such as myocardial infarction or dilated
cardiomyopathy, are associated with an increased density of fibroblasts, that is, fibrosis. Fibroblasts play a
significant role in the development of electrical and mechanical dysfunction of the heart; however the underlying
mechanisms are only partially understood. One widely studied mechanism suggests that fibroblasts produce
excess extracellular matrix, resulting in collagenous septa. These collagenous septa slow propagation, cause
zig-zag conduction paths, and decouple cardiomyocytes resulting in a substrate for arrhythmia. Another
emerging mechanism suggests that fibroblasts promote arrhythmogenesis through direct electrical interactions
with cardiomyocytes via gap junctions. Due to the challenges of investigating fibroblast-myocyte coupling in
native cardiac tissue, computational modeling and in vitro experiments have facilitated the investigation into the
mechanisms underlying fibroblast-mediated changes in cardiomyocyte action potential morphology, conduction
velocity, spontaneous excitability, and vulnerability to reentry. In this paper, we summarize the major findings of
the existing computational studies investigating the implications of fibroblast-myocyte interactions in the normal
and diseased heart. We then present investigations from our group into the potential role of voltage-dependent
gap junctions in fibroblast-myocyte interactions.
Collapse
|
22
|
Tian S, Liu Q, Gnatovskiy L, Ma PX, Wang Z. Heart Regeneration with Embryonic Cardiac Progenitor Cells and Cardiac Tissue Engineering. ACTA ACUST UNITED AC 2015; 1. [PMID: 26744736 DOI: 10.19104/jstb.2015.104] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Myocardial infarction (MI) is the leading cause of death worldwide. Recent advances in stem cell research hold great potential for heart tissue regeneration through stem cell-based therapy. While multiple cell types have been transplanted into MI heart in preclinical studies or clinical trials, reduction of scar tissue and restoration of cardiac function have been modest. Several challenges hamper the development and application of stem cell-based therapy for heart regeneration. Application of cardiac progenitor cells (CPCs) and cardiac tissue engineering for cell therapy has shown great promise to repair damaged heart tissue. This review presents an overview of the current applications of embryonic CPCs and the development of cardiac tissue engineering in regeneration of functional cardiac tissue and reduction of side effects for heart regeneration. We aim to highlight the benefits of the cell therapy by application of CPCs and cardiac tissue engineering during heart regeneration.
Collapse
Affiliation(s)
- Shuo Tian
- Department of Cardiac Surgery, Cardiovascular Center, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Qihai Liu
- Department of Biologic and Materials Sciences, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Leonid Gnatovskiy
- Department of Cardiac Surgery, Cardiovascular Center, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter X Ma
- Department of Biologic and Materials Sciences, The University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, The University of Michigan, Ann Arbor, MI 48109, USA; Macromolecular Science and Engineering Center, The University of Michigan, Ann Arbor, MI 48109, USA; Department of Materials Science and Engineering, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhong Wang
- Department of Cardiac Surgery, Cardiovascular Center, The University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
23
|
Correction: Electrophysiological and structural remodeling in heart failure modulate arrhythmogenesis. 2D simulation study. PLoS One 2015; 10:e0117883. [PMID: 25659097 PMCID: PMC4319786 DOI: 10.1371/journal.pone.0117883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pone.0103273.].
Collapse
|
24
|
Gomez JF, Cardona K, Romero L, Ferrero JM, Trenor B. Electrophysiological and structural remodeling in heart failure modulate arrhythmogenesis. 1D simulation study. PLoS One 2014; 9:e106602. [PMID: 25191998 PMCID: PMC4156355 DOI: 10.1371/journal.pone.0106602] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 08/05/2014] [Indexed: 01/24/2023] Open
Abstract
Background Heart failure is a final common pathway or descriptor for various cardiac pathologies. It is associated with sudden cardiac death, which is frequently caused by ventricular arrhythmias. Electrophysiological remodeling, intercellular uncoupling, fibrosis and autonomic imbalance have been identified as major arrhythmogenic factors in heart failure etiology and progression. Objective In this study we investigate in silico the role of electrophysiological and structural heart failure remodeling on the modulation of key elements of the arrhythmogenic substrate, i.e., electrophysiological gradients and abnormal impulse propagation. Methods Two different mathematical models of the human ventricular action potential were used to formulate models of the failing ventricular myocyte. This provided the basis for simulations of the electrical activity within a transmural ventricular strand. Our main goal was to elucidate the roles of electrophysiological and structural remodeling in setting the stage for malignant life-threatening arrhythmias. Results Simulation results illustrate how the presence of M cells and heterogeneous electrophysiological remodeling in the human failing ventricle modulate the dispersion of action potential duration and repolarization time. Specifically, selective heterogeneous remodeling of expression levels for the Na+/Ca2+ exchanger and SERCA pump decrease these heterogeneities. In contrast, fibroblast proliferation and cellular uncoupling both strongly increase repolarization heterogeneities. Conduction velocity and the safety factor for conduction are also reduced by the progressive structural remodeling during heart failure. Conclusion An extensive literature now establishes that in human ventricle, as heart failure progresses, gradients for repolarization are changed significantly by protein specific electrophysiological remodeling (either homogeneous or heterogeneous). Our simulations illustrate and provide new insights into this. Furthermore, enhanced fibrosis in failing hearts, as well as reduced intercellular coupling, combine to increase electrophysiological gradients and reduce electrical propagation. In combination these changes set the stage for arrhythmias.
Collapse
Affiliation(s)
- Juan F. Gomez
- Instituto de Investigación en Ingeniería Biomédica, Universitat Politècnica de València, Valencia, Spain
| | - Karen Cardona
- Instituto de Investigación en Ingeniería Biomédica, Universitat Politècnica de València, Valencia, Spain
| | - Lucia Romero
- Instituto de Investigación en Ingeniería Biomédica, Universitat Politècnica de València, Valencia, Spain
| | - Jose M. Ferrero
- Instituto de Investigación en Ingeniería Biomédica, Universitat Politècnica de València, Valencia, Spain
| | - Beatriz Trenor
- Instituto de Investigación en Ingeniería Biomédica, Universitat Politècnica de València, Valencia, Spain
- * E-mail:
| |
Collapse
|