1
|
Wei Y, Zhang Y, Sun J, Li W, Zhao X, Tian N, Cao Y, Xie J. Modulation of the receptor for advanced glycation end products pathway by natural polyphenols: A therapeutic approach to neurodegenerative diseases. FOOD BIOSCI 2024; 62:105511. [DOI: 10.1016/j.fbio.2024.105511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Santini BL, Wendel S, Halbwedl N, Knipp A, Zacharias M. cPEPmatch Webserver: A comprehensive tool and database to aid rational design of cyclic peptides for drug discovery. Comput Struct Biotechnol J 2024; 23:3155-3162. [PMID: 39253058 PMCID: PMC11381751 DOI: 10.1016/j.csbj.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 09/11/2024] Open
Abstract
Cyclic peptides have emerged as versatile scaffolds in drug discovery due to their stability and specificity. Here, we present the cPEPmatch webserver (accessible at https://t38webservices.nat.tum.de/cpepmatch/), an easy-to-use interface for the rational design of cyclic peptides targeting protein-protein interactions combined with a semi-quantitative evaluation of binding stability. This platform also offers access to a comprehensive database of cyclic peptide crystal structures. We demonstrate the webserver's utility through a series of case studies involving medically relevant protein systems, highlighting its potential to significantly advance drug discovery efforts.
Collapse
Affiliation(s)
- Brianda L Santini
- Center for Functional Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Straße 8, Garching, Germany
| | - Stephanie Wendel
- Center for Functional Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Straße 8, Garching, Germany
| | - Niklas Halbwedl
- Center for Functional Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Straße 8, Garching, Germany
| | - Asha Knipp
- Center for Functional Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Straße 8, Garching, Germany
| | - Martin Zacharias
- Center for Functional Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Straße 8, Garching, Germany
| |
Collapse
|
3
|
Lancaster T, Tabrizi MEA, Repici M, Gupta J, Gross SR. An Extracellular/Membrane-Bound S100P Pool Regulates Motility and Invasion of Human Extravillous Trophoblast Lines and Primary Cells. Biomolecules 2023; 13:1231. [PMID: 37627296 PMCID: PMC10452538 DOI: 10.3390/biom13081231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/17/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Whilst S100P has been shown to be a marker for carcinogenesis, we have shown, in non-physio-pathological states, that its expression promotes trophoblast motility and invasion but the mechanisms explaining these cellular processes are unknown. Here we identify the presence of S100P in the plasma membrane/cell surface of all trophoblast cells tested, whether lines, primary extravillous (EVT) cells, or section tissue samples using either biochemical purification of plasma membrane material, cell surface protein isolation through biotinylation, or microscopy analysis. Using extracellular loss of function studies, through addition of a specific S100P antibody, our work shows that inhibiting the cell surface/membrane-bound or extracellular S100P pools significantly reduces, but importantly only in part, both cell motility and cellular invasion in different trophoblastic cell lines, as well as primary EVTs. Interestingly, this loss in cellular motility/invasion did not result in changes to the overall actin organisation and focal adhesion complexes. These findings shed new light on at least two newly characterized pathways by which S100P promotes trophoblast cellular motility and invasion. One where cellular S100P levels involve the remodelling of focal adhesions whilst another, an extracellular pathway, appears to be focal adhesion independent. Both pathways could lead to the identification of novel targets that may explain why significant numbers of confirmed human pregnancies suffer complications through poor placental implantation.
Collapse
Affiliation(s)
- Tara Lancaster
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (T.L.); (M.E.A.T.); (M.R.)
| | - Maral E. A. Tabrizi
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (T.L.); (M.E.A.T.); (M.R.)
| | - Mariaelena Repici
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (T.L.); (M.E.A.T.); (M.R.)
| | - Janesh Gupta
- Institute of Metabolism and Systems Research, The University of Birmingham, Birmingham B15 2TT, UK;
- Fetal Medicine Centre, Birmingham Women’s NHS Foundation Trust, Birmingham B15 2TT, UK
| | - Stephane R. Gross
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (T.L.); (M.E.A.T.); (M.R.)
| |
Collapse
|
4
|
Song J, Jeong BS, Kim SW, Im SB, Kim S, Lai CJ, Cho W, Jung JU, Ahn MJ, Oh BH. Noncovalent antibody catenation on a target surface greatly increases the antigen-binding avidity. eLife 2023; 12:e81646. [PMID: 37249578 PMCID: PMC10229114 DOI: 10.7554/elife.81646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 05/11/2023] [Indexed: 05/31/2023] Open
Abstract
Immunoglobulin G (IgG) antibodies are widely used for diagnosis and therapy. Given the unique dimeric structure of IgG, we hypothesized that, by genetically fusing a homodimeric protein (catenator) to the C-terminus of IgG, reversible catenation of antibody molecules could be induced on a surface where target antigen molecules are abundant, and that it could be an effective way to greatly enhance the antigen-binding avidity. A thermodynamic simulation showed that quite low homodimerization affinity of a catenator, e.g. dissociation constant of 100 μM, can enhance nanomolar antigen-binding avidity to a picomolar level, and that the fold enhancement sharply depends on the density of the antigen. In a proof-of-concept experiment where antigen molecules are immobilized on a biosensor tip, the C-terminal fusion of a pair of weakly homodimerizing proteins to three different antibodies enhanced the antigen-binding avidity by at least 110 or 304 folds from the intrinsic binding avidity. Compared with the mother antibody, Obinutuzumab(Y101L) which targets CD20, the same antibody with fused catenators exhibited significantly enhanced binding to SU-DHL5 cells. Together, the homodimerization-induced antibody catenation would be a new powerful approach to improve antibody applications, including the detection of scarce biomarkers and targeted anticancer therapies.
Collapse
Affiliation(s)
- Jinyeop Song
- Department of Physics, Korea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
| | - Bo-Seong Jeong
- Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
| | - Seong-Woo Kim
- Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
| | - Seong-Bin Im
- Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
| | - Seonghoon Kim
- Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
| | - Chih-Jen Lai
- Cancer Biology Department, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Wonki Cho
- Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
| | - Jae U Jung
- Cancer Biology Department, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Myung-Ju Ahn
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoulRepublic of Korea
| | - Byung-Ha Oh
- Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
| |
Collapse
|
5
|
Kazakov AS, Deryusheva EI, Permyakova ME, Sokolov AS, Rastrygina VA, Uversky VN, Permyakov EA, Permyakov SE. Calcium-Bound S100P Protein Is a Promiscuous Binding Partner of the Four-Helical Cytokines. Int J Mol Sci 2022; 23:ijms231912000. [PMID: 36233301 PMCID: PMC9569990 DOI: 10.3390/ijms231912000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
S100 proteins are multifunctional calcium-binding proteins of vertebrates that act intracellularly, extracellularly, or both, and are engaged in the progression of many socially significant diseases. Their extracellular action is typically mediated by the recognition of specific receptor proteins. Recent studies indicate the ability of some S100 proteins to affect cytokine signaling through direct interaction with cytokines. S100P was shown to be the S100 protein most actively involved in interactions with some four-helical cytokines. To assess the selectivity of the S100P protein binding to four-helical cytokines, we have probed the interaction of Ca2+-bound recombinant human S100P with a panel of 32 four-helical human cytokines covering all structural families of this fold, using surface plasmon resonance spectroscopy. A total of 22 cytokines from all families of four-helical cytokines are S100P binders with the equilibrium dissociation constants, Kd, ranging from 1 nM to 3 µM (below the Kd value for the S100P complex with the V domain of its conventional receptor, receptor for advanced glycation end products, RAGE). Molecular docking and mutagenesis studies revealed the presence in the S100P molecule of a cytokine-binding site, which overlaps with the RAGE-binding site. Since S100 binding to four-helical cytokines inhibits their signaling in some cases, the revealed ability of the S100P protein to interact with ca. 71% of the four-helical cytokines indicates that S100P may serve as a poorly selective inhibitor of their action.
Collapse
Affiliation(s)
- Alexey S. Kazakov
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Evgenia I. Deryusheva
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Maria E. Permyakova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Andrey S. Sokolov
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Victoria A. Rastrygina
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Vladimir N. Uversky
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Correspondence: (V.N.U.); (S.E.P.); Tel.: +7-(495)-143-7740 (S.E.P.); Fax: +7-(4967)-33-05-22 (S.E.P.)
| | - Eugene A. Permyakov
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Sergei E. Permyakov
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia
- Correspondence: (V.N.U.); (S.E.P.); Tel.: +7-(495)-143-7740 (S.E.P.); Fax: +7-(4967)-33-05-22 (S.E.P.)
| |
Collapse
|
6
|
Dong H, Zhang Y, Huang Y, Deng H. Pathophysiology of RAGE in inflammatory diseases. Front Immunol 2022; 13:931473. [PMID: 35967420 PMCID: PMC9373849 DOI: 10.3389/fimmu.2022.931473] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/06/2022] [Indexed: 12/24/2022] Open
Abstract
The receptor for advanced glycation end products (RAGE) is a non-specific multi-ligand pattern recognition receptor capable of binding to a range of structurally diverse ligands, expressed on a variety of cell types, and performing different functions. The ligand-RAGE axis can trigger a range of signaling events that are associated with diabetes and its complications, neurological disorders, cancer, inflammation and other diseases. Since RAGE is involved in the pathophysiological processes of many diseases, targeting RAGE may be an effective strategy to block RAGE signaling.
Collapse
|
7
|
Singh H, Agrawal DK. Therapeutic potential of targeting the receptor for advanced glycation end products (RAGE) by small molecule inhibitors. Drug Dev Res 2022; 83:1257-1269. [PMID: 35781678 PMCID: PMC9474610 DOI: 10.1002/ddr.21971] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/06/2022] [Accepted: 06/12/2022] [Indexed: 01/05/2023]
Abstract
Receptor for advanced glycation end products (RAGE) is a 45 kDa transmembrane receptor of immunoglobulin family that can bind to various endogenous and exogenous ligands and initiate the inflammatory downstream signaling pathways. RAGE is involved in various disorders including cardiovascular and neurodegenerative diseases, cancer, and diabetes. This review summarizes the structural features of RAGE and its various isoforms along with their pathological effects. Mainly, the article emphasized on the translational significance of antagonizing the interactions of RAGE with its ligands using small molecules reported in the last 5 years and discusses future approaches that could be employed to block the interactions in the treatment of chronic inflammatory ailments. The RAGE inhibitors described in this article could prove as a powerful approach in the management of immune‐inflammatory diseases. A critical review of the literature suggests that there is a dire need to dive deeper into the molecular mechanism of action to resolve critical issues that must be addressed to understand RAGE‐targeting therapy and long‐term blockade of RAGE in human diseases.
Collapse
Affiliation(s)
- Harbinder Singh
- Department of Translational Research, College of Osteopathic Medicine of the Pacific Western University of Health Sciences, Pomona, California, USA
| | - Devendra K Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific Western University of Health Sciences, Pomona, California, USA
| |
Collapse
|
8
|
Schmid F, Dahlmann M, Röhrich H, Kobelt D, Hoffmann J, Burock S, Walther W, Stein U. Calcium-binding protein S100P is a new target gene of MACC1, drives colorectal cancer metastasis and serves as a prognostic biomarker. Br J Cancer 2022; 127:675-685. [PMID: 35597866 PMCID: PMC9381557 DOI: 10.1038/s41416-022-01833-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 01/05/2023] Open
Abstract
Background The metastasis inducing gene MACC1 is a prognostic and predictive biomarker for metastasis in several cancers. Its mechanism of inducing metastasis includes the transcriptional control of other cancer-related target genes. Here, we investigate the interplay with the metastasis driver S100P in CRC progression. Methods MACC1-dependent S100P expression was analysed by qRT-PCR. The binding of MACC1 to the S100P promoter was determined by ChIP. Alterations in cell proliferation and motility were determined by functional in vitro assays. In vivo metastasis after intrasplenic transplantation was assessed by bioluminescence imaging and evaluation of tumour growth and liver metastasis. The prognostic value of S100P was determined in CRC patients by ROC-based Kaplan–Meier analyses. Results Expression of S100P and MACC1 correlated positively in CRC cells and colorectal tumours. MACC1 was found binding to the S100P promoter and induces its expression. The overexpression of S100P increased proliferation, migration and invasion in vitro and significantly induced liver metastasis in vivo. S100P expression was significantly elevated in metachronously metastasising CRC and was associated with shorter metastasis-free survival. Conclusions We identified S100P as a transcriptional target gene of MACC1. Expression of S100P increases the metastatic potential of CRC cells in vitro and in vivo, and serves as a prognostic biomarker for metastasis-free survival of CRC patients, emphasising novel therapeutic interventions targeting S100P.
Collapse
Affiliation(s)
- Felicitas Schmid
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Experimental and Clinical Research Center of the Charité - Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Mathias Dahlmann
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Experimental and Clinical Research Center of the Charité - Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125, Berlin, Germany.,German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Hanna Röhrich
- Experimental and Clinical Research Center of the Charité - Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Dennis Kobelt
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Experimental and Clinical Research Center of the Charité - Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Jens Hoffmann
- Experimental Pharmacology and Oncology Berlin-Buch GmbH, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Susen Burock
- Charité Comprehensive Cancer Center, Invalidenstraße 80, 10117, Berlin, Germany
| | - Wolfgang Walther
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Experimental and Clinical Research Center of the Charité - Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Ulrike Stein
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany. .,Experimental and Clinical Research Center of the Charité - Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125, Berlin, Germany. .,German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
9
|
The COVID-19 Cell Signalling Problem: Spike, RAGE, PKC, p38, NFκB & IL-6 Hyper-Expression and the Human Ezrin Peptide, VIP, PKA-CREB Solution. IMMUNO 2022. [DOI: 10.3390/immuno2020017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
SARS-CoV-2 infection inhibits interferon expression, while hyper-activating innate-immune signalling and expression of pro-inflammatory cytokines. SARS-CoV-2 proteins: Spike, M and nsp6, nsp12 and nsp13 inhibit IFR3-mediated Type-1-interferon defence, but hyper-activate intracellular signalling, which leads to dysfunctional expression of pro-inflammatory cytokines, particularly IL-1β IL-6, IL-8, and TNFα. Ezrin, a sub-membrane adaptor-protein, organises multi-protein-complexes such as ezrin+NHERF1+NHE+CFTR, which control the density and location of ACE2 receptor expression on the luminal surface of airway-epithelial-cells, as well as determining susceptibility to SARS-CoV-2 infection. This protein complex is vital for lung-surfactant production for efficient gas-exchange. Ezrin also forms multi-protein-complexes that regulate signalling kinases; Ras, PKC, PI3K, and PKA. m-RAGE is a pattern-recognition-receptor of the innate immune system that is triggered by AGEs, which are chemically modified proteins common in the elderly and obese. m-RAGE forms multi-protein complexes with ezrin and TIRAP, a toll-like-receptor adaptor-protein. The main cause of COVID-19 is not viral infection but pro-inflammatory p38MAPK signalling mediated by TLRs and RAGE. In contrast, it appears that activated ezrin+PKA signalling results in the activation of transcription-factor CREB, which suppresses NFκB mediated pro-inflammatory cytokine expression. In addition, competition between ezrin and TIRAP to form multi-protein-complexes on membrane PIP2-lipid-rafts is a macromolecular-switch that changes the priority from innate immune activation programs to adaptive immune activation programs. Human Vasoactive Intestinal Peptide (VIP), and Human Ezrin Peptides (HEP-1 and RepG3) probably inhibit COVID-19 by activating the ezrin+PKA and ras>Raf>MEK>ERK>RSK>CREB>IL-10 signalling, which favours activation of adaptive immunity programs and inhibition of the dysfunctional innate-inflammation, the cause of COVID-19. HEP-1, RepG3, and VIP in individual human volunteers and in small clinical studies have been shown to be effective COVID-19 therapies, and seem to have a closely related mechanism of action.
Collapse
|
10
|
Ecsédi P, Gógl G, Nyitray L. Studying the Structures of Relaxed and Fuzzy Interactions: The Diverse World of S100 Complexes. Front Mol Biosci 2021; 8:749052. [PMID: 34708078 PMCID: PMC8542695 DOI: 10.3389/fmolb.2021.749052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/06/2021] [Indexed: 01/04/2023] Open
Abstract
S100 proteins are small, dimeric, Ca2+-binding proteins of considerable interest due to their associations with cancer and rheumatic and neurodegenerative diseases. They control the functions of numerous proteins by forming protein–protein complexes with them. Several of these complexes were found to display “fuzzy” properties. Examining these highly flexible interactions, however, is a difficult task, especially from a structural biology point of view. Here, we summarize the available in vitro techniques that can be deployed to obtain structural information about these dynamic complexes. We also review the current state of knowledge about the structures of S100 complexes, focusing on their often-asymmetric nature.
Collapse
Affiliation(s)
- Péter Ecsédi
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Gergő Gógl
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| | - László Nyitray
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
11
|
Ismail TM, Gross SR, Lancaster T, Rudland PS, Barraclough R. The Role of the C-Terminal Lysine of S100P in S100P-Induced Cell Migration and Metastasis. Biomolecules 2021; 11:biom11101471. [PMID: 34680103 PMCID: PMC8533620 DOI: 10.3390/biom11101471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 11/16/2022] Open
Abstract
S100P protein is a potent inducer of metastasis in a model system, and its presence in cancer cells of patients is strongly associated with their reduced survival times. A well-established Furth Wistar rat metastasis model system, methods for measuring cell migration, and specific inhibitors were used to study pathways of motility-driven metastasis. Cells expressing C-terminal mutant S100P proteins display markedly-reduced S100P-driven metastasis in vivo and cell migration in vitro. These cells fail to display the low focal adhesion numbers observed in cells expressing wild-type S100P, and the mutant S100P proteins exhibit reduced biochemical interaction with non-muscle myosin heavy chain isoform IIA in vitro. Extracellular inhibitors of the S100P-dependent plasminogen activation pathway reduce, but only in part, wild-type S100P-dependent cell migration; they are without effect on S100P-negative cells or cells expressing C-terminal mutant S100P proteins and have no effect on the numbers of focal adhesions. Recombinant wild-type S100P protein, added extracellularly to S100P-negative cells, stimulates cell migration, which is abolished by these inhibitors. The results identify at least two S100P-dependent pathways of migration, one cell surface and the other intracellularly-linked, and identify its C-terminal lysine as a target for inhibiting multiple migration-promoting activities of S100P protein and S100P-driven metastasis.
Collapse
Affiliation(s)
- Thamir M. Ismail
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK; (T.M.I.); (P.S.R.)
| | - Stephane R. Gross
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK;
- Correspondence: (S.R.G.); (R.B.)
| | - Tara Lancaster
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK;
| | - Philip S. Rudland
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK; (T.M.I.); (P.S.R.)
| | - Roger Barraclough
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK; (T.M.I.); (P.S.R.)
- Correspondence: (S.R.G.); (R.B.)
| |
Collapse
|
12
|
Hypoxia and the Receptor for Advanced Glycation End Products (RAGE) Signaling in Cancer. Int J Mol Sci 2021; 22:ijms22158153. [PMID: 34360919 PMCID: PMC8348933 DOI: 10.3390/ijms22158153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
Hypoxia is characterized by an inadequate supply of oxygen to tissues, and hypoxic regions are commonly found in solid tumors. The cellular response to hypoxic conditions is mediated through the activation of hypoxia-inducible factors (HIFs) that control the expression of a large number of target genes. Recent studies have shown that the receptor for advanced glycation end products (RAGE) participates in hypoxia-dependent cellular adaptation. We review recent evidence on the role of RAGE signaling in tumor biology under hypoxic conditions.
Collapse
|
13
|
The Trp triad within the V-domain of the receptor for advanced glycation end products modulates folding, stability and ligand binding. Biosci Rep 2021; 40:221810. [PMID: 31912881 PMCID: PMC6997106 DOI: 10.1042/bsr20193360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/28/2019] [Accepted: 12/31/2019] [Indexed: 01/13/2023] Open
Abstract
The receptor for advanced glycation end products (RAGE) recognizes damage-associated molecular patterns (DAMPs) and plays a critical role for the innate immune response and sterile tissue inflammation. RAGE overexpression is associated with diabetic complications, neurodegenerative diseases and certain cancers. Yet, the molecular mechanism of ligand recognition by RAGE is insufficiently understood to rationalize the binding of diverse ligands. The N-terminal V-type Ig-domain of RAGE contains a triad of tryptophan residue; Trp51, Trp61 and Trp72. The role of these three Trp residues for domain folding, stability and binding of the RAGE ligand S100B was investigated through site-directed mutagenesis, UV/VIS, CD and fluorescence spectrometry, protein–protein interaction studies, and X-ray crystallography. The data show that the Trp triad stabilizes the folded V-domain by maintaining a short helix in the structure. Mutation of any Trp residue increases the structural plasticity of the domain. Residues Trp61 and Trp72 are involved in the binding of S100B, yet they are not strictly required for S100B binding. The crystal structure of the RAGE-derived peptide W72 in complex with S100B showed that Trp72 is deeply buried in a hydrophobic depression on the S100B surface. The studies suggest that multiple binding modes between RAGE and S100B exist and point toward a not previously recognized role of the Trp residues for RAGE-ligand binding. The Trp triad of the V-domain appears to be a suitable target for novel RAGE inhibitors, either in the form of monoclonal antibodies targeting this epitope, or small organic molecules.
Collapse
|
14
|
Cong Y, Cui Y, Wang S, Jiang L, Cao J, Zhu S, Birkin E, Lane J, Ruge F, Jiang WG, Qiao G. Calcium-Binding Protein S100P Promotes Tumor Progression but Enhances Chemosensitivity in Breast Cancer. Front Oncol 2020; 10:566302. [PMID: 33042844 PMCID: PMC7522638 DOI: 10.3389/fonc.2020.566302] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/24/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Chemoresistance remains one of the obstacles to overcome in the treatment of breast cancer. S100 calcium-binding protein P (S100P) has been observed to be overexpressed in several cancers and has been associated with drug resistance, metastasis, and prognosis. However, the role of S100P in chemoresistance in breast cancer has not been thoroughly determined. METHODS Immunohistochemistry was used to evaluate the expression level of S100P protein in 22 pairs (pre-chemo and post-chemo) of breast cancer tissue from patients who underwent neoadjuvant chemotherapy. The influence of S100P on the biological behavior and chemosensitivity of breast cancer cells was then investigated. RESULTS The protein level of S100P in breast cancer tissue was significantly higher than in benign fibroadenoma (p < 0.001). The S100P expression level was shown to be decreased by 46.55% after neoadjuvant chemotherapy (p = 0.015). Subgroup analysis revealed that S100P reduction (57.58%) was mainly observed in the HER2+ tumors (p = 0.027). Our in vitro experiments showed that the knockdown of S100P suppressed the proliferation, adhesion, migrative and invasive abilities of T47D and SK-BR-3 breast cancer cells. We further demonstrated that this knockdown increased the chemoresistance to paclitaxel and cisplatin in SK-BR-3 cells. We found S100P exerted its function by upregulating NF-κB, CCND1 and Vimentin, but downregulating E-cadherin. CONCLUSION S100P promotes the aggressive properties of breast cancer cells and may be considered as a promising therapeutic target. Moreover, S100P can be used to predict the therapeutic effect of chemotherapy in HER2+ breast cancer patients.
Collapse
Affiliation(s)
- Yizi Cong
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Yuxin Cui
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Suxia Wang
- Department of Pathology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Lei Jiang
- Department of Pathology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jianqiao Cao
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Shiguang Zhu
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Emily Birkin
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Jane Lane
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Fiona Ruge
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Wen G. Jiang
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Guangdong Qiao
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| |
Collapse
|
15
|
Wang Z, Xu Q, Zhang N, Du X, Xu G, Yan X. CD146, from a melanoma cell adhesion molecule to a signaling receptor. Signal Transduct Target Ther 2020; 5:148. [PMID: 32782280 PMCID: PMC7421905 DOI: 10.1038/s41392-020-00259-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/14/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022] Open
Abstract
CD146 was originally identified as a melanoma cell adhesion molecule (MCAM) and highly expressed in many tumors and endothelial cells. However, the evidence that CD146 acts as an adhesion molecule to mediate a homophilic adhesion through the direct interactions between CD146 and itself is still lacking. Recent evidence revealed that CD146 is not merely an adhesion molecule, but also a cellular surface receptor of miscellaneous ligands, including some growth factors and extracellular matrixes. Through the bidirectional interactions with its ligands, CD146 is actively involved in numerous physiological and pathological processes of cells. Overexpression of CD146 can be observed in most of malignancies and is implicated in nearly every step of the development and progression of cancers, especially vascular and lymphatic metastasis. Thus, immunotherapy against CD146 would provide a promising strategy to inhibit metastasis, which accounts for the majority of cancer-associated deaths. Therefore, to deepen the understanding of CD146, we review the reports describing the newly identified ligands of CD146 and discuss the implications of these findings in establishing novel strategies for cancer therapy.
Collapse
Affiliation(s)
- Zhaoqing Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Qingji Xu
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Nengwei Zhang
- Department of Gastrointestinal Hepatobiliary Tumor Surgery, Beijing Shijitan Hospital, Capital Medical University, 100038, Beijing, China
| | - Xuemei Du
- Departments of Pathology, Beijing Shijitan Hospital, Capital Medical University, 100038, Beijing, China
| | - Guangzhong Xu
- Department of Gastrointestinal Hepatobiliary Tumor Surgery, Beijing Shijitan Hospital, Capital Medical University, 100038, Beijing, China
| | - Xiyun Yan
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
- College of Life Science, University of Chinese Academy of Sciences, 100049, Beijing, China.
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
16
|
Camara R, Ogbeni D, Gerstmann L, Ostovar M, Hurer E, Scott M, Mahmoud NG, Radon T, Crnogorac-Jurcevic T, Patel P, Mackenzie LS, Chau DYS, Kirton SB, Rossiter S. Discovery of novel small molecule inhibitors of S100P with in vitro anti-metastatic effects on pancreatic cancer cells. Eur J Med Chem 2020; 203:112621. [PMID: 32707527 PMCID: PMC7501730 DOI: 10.1016/j.ejmech.2020.112621] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 12/30/2022]
Abstract
S100P, a calcium-binding protein, is known to advance tumor progression and metastasis in pancreatic and several other cancers. Herein is described the in silico identification of a putative binding pocket of S100P to identify, synthesize and evaluate novel small molecules with the potential to selectively bind S100P and inhibit its activation of cell survival and metastatic pathways. The virtual screening of a drug-like database against the S100P model led to the identification of over 100 clusters of diverse scaffolds. A representative test set identified a number of structurally unrelated hits that inhibit S100P-RAGE interaction, measured by ELISA, and reduce in vitro cell invasion selectively in S100P-expressing pancreatic cancer cells at 10 μM. This study establishes a proof of concept in the potential for rational design of small molecule S100P inhibitors for drug candidate development.
Collapse
Affiliation(s)
- Ramatoulie Camara
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Deborah Ogbeni
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Lisa Gerstmann
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Mehrnoosh Ostovar
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Ellie Hurer
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Mark Scott
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Nasir G Mahmoud
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Tomasz Radon
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | | | - Pryank Patel
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Louise S Mackenzie
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK; School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, BN2 4GJ, UK
| | - David Y S Chau
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK; Eastman Dental Institute, University College London, 256 Grays Inn Rd, London, WC1X 8LD, UK
| | - Stewart B Kirton
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Sharon Rossiter
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK.
| |
Collapse
|
17
|
Du M, Wang G, Barsukov IL, Gross SR, Smith R, Rudland PS. Direct interaction of metastasis-inducing S100P protein with tubulin causes enhanced cell migration without changes in cell adhesion. Biochem J 2020; 477:1159-1178. [PMID: 32065231 PMCID: PMC7108782 DOI: 10.1042/bcj20190644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023]
Abstract
Overexpression of S100P promotes breast cancer metastasis in animals and elevated levels in primary breast cancers are associated with poor patient outcomes. S100P can differentially interact with nonmuscle myosin (NM) isoforms (IIA > IIC > IIB) leading to the redistribution of actomyosin filaments to enhance cell migration. Using COS-7 cells which do not naturally express NMIIA, S100P is now shown to interact directly with α,β-tubulin in vitro and in vivo with an equilibrium Kd of 2-3 × 10-7 M. The overexpressed S100P is located mainly in nuclei and microtubule organising centres (MTOC) and it significantly reduces their number, slows down tubulin polymerisation and enhances cell migration in S100P-induced COS-7 or HeLa cells. It fails, however, to significantly reduce cell adhesion, in contrast with NMIIA-containing S100P-inducible HeLa cells. When taxol is used to stabilise MTs or colchicine to dissociate MTs, S100P's stimulation of migration is abolished. Affinity-chromatography of tryptic digests of α and β-tubulin on S100P-bound beads identifies multiple S100P-binding sites consistent with S100P binding to all four half molecules in gel-overlay assays. When screened by NMR and ITC for interacting with S100P, four chemically synthesised peptides show interactions with low micromolar dissociation constants. The two highest affinity peptides significantly inhibit binding of S100P to α,β-tubulin and, when tagged for cellular entry, also inhibit S100P-induced reduction in tubulin polymerisation and S100P-enhancement of COS-7 or HeLa cell migration. A third peptide incapable of interacting with S100P also fails in this respect. Thus S100P can interact directly with two different cytoskeletal filaments to independently enhance cell migration, the most important step in the metastatic cascade.
Collapse
Affiliation(s)
- Min Du
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K
| | - Guozheng Wang
- Institute of Infection and Global Health, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K
| | - Igor L. Barsukov
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K
| | - Stephane R. Gross
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, U.K
| | - Richard Smith
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K
| | - Philip S. Rudland
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K
| |
Collapse
|
18
|
Kazakov AS, Mayorov SA, Deryusheva EI, Avkhacheva NV, Denessiouk KA, Denesyuk AI, Rastrygina VA, Permyakov EA, Permyakov SE. Highly specific interaction of monomeric S100P protein with interferon beta. Int J Biol Macromol 2020; 143:633-639. [DOI: 10.1016/j.ijbiomac.2019.12.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022]
|
19
|
Sadigh AR, Mihanfar A, Fattahi A, Latifi Z, Akbarzadeh M, Hajipour H, Bahrami‐asl Z, Ghasemzadeh A, Hamdi K, Nejabati HR, Nouri M. S100 protein family and embryo implantation. J Cell Biochem 2019; 120:19229-19244. [DOI: 10.1002/jcb.29261] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Aydin Raei Sadigh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine Tabriz University of Medical Science Tabriz Iran
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Aynaz Mihanfar
- Department of Biochemistry, Faculty of Medicine Urmia University of Medical Sciences Urmia Iran
| | - Amir Fattahi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Zeinab Latifi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine Tabriz University of Medical Science Tabriz Iran
- Stem Cell And Regenerative Medicine Institute Tabriz University of Medical Sciences Tabriz Iran
| | - Maryam Akbarzadeh
- Stem Cell And Regenerative Medicine Institute Tabriz University of Medical Sciences Tabriz Iran
- Department of Biochemistry Erasmus University Medical Center Rotterdam The Netherlands
| | - Hamed Hajipour
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Zahra Bahrami‐asl
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Aliyeh Ghasemzadeh
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Kobra Hamdi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Hamid Reza Nejabati
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine Tabriz University of Medical Science Tabriz Iran
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
- Stem Cell And Regenerative Medicine Institute Tabriz University of Medical Sciences Tabriz Iran
- Student Research Committee Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Nouri
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
- Stem Cell And Regenerative Medicine Institute Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
20
|
Khan MI, Dowarha D, Katte R, Chou RH, Filipek A, Yu C. Lysozyme as the anti-proliferative agent to block the interaction between S100A6 and the RAGE V domain. PLoS One 2019; 14:e0216427. [PMID: 31071146 PMCID: PMC6508705 DOI: 10.1371/journal.pone.0216427] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/20/2019] [Indexed: 12/18/2022] Open
Abstract
In this report, using NMR and molecular modeling, we have studied the structure of lysozyme-S100A6 complex and the influence of tranilast [N-(3, 4-dimethoxycinnamoyl) anthranilic acid], an antiallergic drug which binds to lysozyme, on lysozyme-S100A6 and S100A6-RAGE complex formation and, finally, on cell proliferation. We have found that tranilast may block the S100A6-lysozyme interaction and enhance binding of S100A6 to RAGE. Using WST1 assay, we have found that lysozyme, most probably by blocking the interaction between S100A6 and RAGE, inhibits cell proliferation while tranilast may reverse this effect by binding to lysozyme. In conclusion, studies presented in this work, describing the protein-protein/-drug interactions, are of great importance for designing new therapies to treat diseases associated with cell proliferation such as cancers.
Collapse
Affiliation(s)
- Md. Imran Khan
- National Tsing Hua University, Chemistry Department, Hsinchu, Taiwan
| | - Deepu Dowarha
- National Tsing Hua University, Chemistry Department, Hsinchu, Taiwan
| | - Revansiddha Katte
- National Tsing Hua University, Chemistry Department, Hsinchu, Taiwan
| | - Ruey-Hwang Chou
- Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Anna Filipek
- Laboratory of Calcium Binding Proteins, Nencki Institute of Experimental Biology Polish Academy of Sciences, Warsaw, Poland
| | - Chin Yu
- National Tsing Hua University, Chemistry Department, Hsinchu, Taiwan
| |
Collapse
|
21
|
S100A4 inhibits cell proliferation by interfering with the S100A1-RAGE V domain. PLoS One 2019; 14:e0212299. [PMID: 30779808 PMCID: PMC6380570 DOI: 10.1371/journal.pone.0212299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 01/30/2019] [Indexed: 01/28/2023] Open
Abstract
The Ca2+-dependent human S100A4 (Mts1) protein is part of the S100 family. Here, we studied the interactions of S100A4 with S100A1 using nuclear magnetic resonance (NMR) spectroscopy. We used the chemical shift perturbed residues from HSQC to model S100A4 and S100A1 complex with HADDOCK software. We observed that S100A1 and the RAGE V domain have an analogous binding area in S100A4. We discovered that S100A4 acts as an antagonist among the RAGE V domain and S100A1, which inhibits tumorigenesis and cell proliferation. We used a WST-1 assay to examine the bioactivity of S100A1 and S100A4. This study could possibly be beneficial for evaluating new proteins for the treatment of diseases.
Collapse
|
22
|
Bresnick AR. S100 proteins as therapeutic targets. Biophys Rev 2018; 10:1617-1629. [PMID: 30382555 PMCID: PMC6297089 DOI: 10.1007/s12551-018-0471-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/21/2018] [Indexed: 12/13/2022] Open
Abstract
The human genome codes for 21 S100 protein family members, which exhibit cell- and tissue-specific expression patterns. Despite sharing a high degree of sequence and structural similarity, the S100 proteins bind a diverse range of protein targets and contribute to a broad array of intracellular and extracellular functions. Consequently, the S100 proteins regulate multiple cellular processes such as proliferation, migration and/or invasion, and differentiation, and play important roles in a variety of cancers, autoimmune diseases, and chronic inflammatory disorders. This review focuses on the development of S100 neutralizing antibodies and small molecule inhibitors and their potential therapeutic use in controlling disease progression and severity.
Collapse
Affiliation(s)
- Anne R Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| |
Collapse
|
23
|
Safronova A, Araujo A, Camanzo ET, Moon TJ, Elliott MR, Beiting DP, Yarovinsky F. Alarmin S100A11 initiates a chemokine response to the human pathogen Toxoplasma gondii. Nat Immunol 2018; 20:64-72. [PMID: 30455460 PMCID: PMC6291348 DOI: 10.1038/s41590-018-0250-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/01/2018] [Indexed: 12/31/2022]
Abstract
Toxoplasma gondii is a common protozoan parasite that infects up to one-third of the world’s population. Notably, very little is known about innate immune-sensing mechanisms for this obligate intracellular parasite by human cells. Here, by applying an unbiased biochemical screening approach, we have identified that human monocytes recognized the presence of T. gondii infection via detection of the alarmin S100A11 protein, which is released from parasite-infected cells via caspase-1-dependent mechanisms. S100A11 induced a potent chemokine response to T. gondii via engagement of its receptor RAGE and regulated monocyte recruitment in vivo by inducing expression of the chemokine CCL2. Our experiments have revealed a sensing system for T. gondii by human cells that is based on detection infection-mediated release of alarmin S100A11 and RAGE-dependent induction of CCL2, a crucial chemokine required for host resistance to the parasite.
Collapse
Affiliation(s)
- Alexandra Safronova
- Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Alessandra Araujo
- Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Ellie T Camanzo
- Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Taylor J Moon
- Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Michael R Elliott
- Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Daniel P Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Felix Yarovinsky
- Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
24
|
Katte R, Yu C. Blocking the interaction between S100A9 protein and RAGE V domain using S100A12 protein. PLoS One 2018; 13:e0198767. [PMID: 29902210 PMCID: PMC6001950 DOI: 10.1371/journal.pone.0198767] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/24/2018] [Indexed: 12/31/2022] Open
Abstract
The proteins S100A9 and S100A12 are associated with the human S100 calcium-binding protein family. These proteins promote interaction with target proteins and alter their conformation when they bind to calcium ions in EF-hand motifs. The V domain of RAGE (Receptor for Advanced Glycation End products) is crucial for S100A9 binding. The binding of RAGE with S100 family proteins aids in cell proliferation. In this report, we demonstrate that S100A12 protein hinders the binding of S100A9 with the RAGE V-domain. We used fluorescence and NMR spectroscopy to analyze the interaction of S100A9 with S100A12. The binary complex models of S100A9-S100A12 were developed using data obtained from 1H-15N HSQC NMR titrations and the HADDOCK program. We overlaid the complex models of S100A9-S100A12 with the same orientation of S100A9 and the RAGE V-domain. This complex showed that S100A12 protein blocks the interaction between S100A9 and the RAGE V-domain. It means S100A12 may be used as an antagonist for S100A9. The results could be favorable for developing anti-cancer drugs based on S100 family proteins.
Collapse
Affiliation(s)
- Revansiddha Katte
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Chin Yu
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
- * E-mail:
| |
Collapse
|
25
|
Calcium-dependent interaction of monomeric S100P protein with serum albumin. Int J Biol Macromol 2018; 108:143-148. [DOI: 10.1016/j.ijbiomac.2017.11.134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/20/2017] [Accepted: 11/20/2017] [Indexed: 01/11/2023]
|
26
|
Bongarzone S, Savickas V, Luzi F, Gee AD. Targeting the Receptor for Advanced Glycation Endproducts (RAGE): A Medicinal Chemistry Perspective. J Med Chem 2017; 60:7213-7232. [PMID: 28482155 PMCID: PMC5601361 DOI: 10.1021/acs.jmedchem.7b00058] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
The
receptor for advanced glycation endproducts (RAGE) is an ubiquitous,
transmembrane, immunoglobulin-like receptor that exists in multiple
isoforms and binds to a diverse range of endogenous extracellular
ligands and intracellular effectors. Ligand binding at the extracellular
domain of RAGE initiates a complex intracellular signaling cascade,
resulting in the production of reactive oxygen species (ROS), immunoinflammatory
effects, cellular proliferation, or apoptosis with concomitant upregulation
of RAGE itself. To date, research has mainly focused on the correlation
between RAGE activity and pathological conditions, such as cancer,
diabetes, cardiovascular diseases, and neurodegeneration. Because
RAGE plays a role in many pathological disorders, it has become an
attractive target for the development of inhibitors at the extracellular
and intracellular domains. This review describes the role of endogenous
RAGE ligands/effectors in normo- and pathophysiological processes,
summarizes the current status of exogenous small-molecule inhibitors
of RAGE and concludes by identifying key strategies for future therapeutic
intervention.
Collapse
Affiliation(s)
- Salvatore Bongarzone
- Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners , St. Thomas' Hospital, London, SE1 7EH, United Kingdom
| | - Vilius Savickas
- Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners , St. Thomas' Hospital, London, SE1 7EH, United Kingdom
| | - Federico Luzi
- Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners , St. Thomas' Hospital, London, SE1 7EH, United Kingdom
| | - Antony D Gee
- Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners , St. Thomas' Hospital, London, SE1 7EH, United Kingdom
| |
Collapse
|
27
|
Molecular basis for the interaction between stress-inducible phosphoprotein 1 (STIP1) and S100A1. Biochem J 2017; 474:1853-1866. [PMID: 28408431 DOI: 10.1042/bcj20161055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 04/11/2017] [Accepted: 04/13/2017] [Indexed: 12/27/2022]
Abstract
Stress-inducible phosphoprotein 1 (STIP1) is a cellular co-chaperone, which regulates heat-shock protein 70 (Hsp70) and Hsp90 activity during client protein folding. Members of the S100 family of dimeric calcium-binding proteins have been found to inhibit Hsp association with STIP1 through binding of STIP1 tetratricopeptide repeat (TPR) domains, possibly regulating the chaperone cycle. Here, we investigated the molecular basis of S100A1 binding to STIP1. We show that three S100A1 dimers associate with one molecule of STIP1 in a calcium-dependent manner. Isothermal titration calorimetry revealed that individual STIP1 TPR domains, TPR1, TPR2A and TPR2B, bind a single S100A1 dimer with significantly different affinities and that the TPR2B domain possesses the highest affinity for S100A1. S100A1 bound each TPR domain through a common binding interface composed of α-helices III and IV of each S100A1 subunit, which is only accessible following a large conformational change in S100A1 upon calcium binding. The TPR2B-binding site for S100A1 was predominately mapped to the C-terminal α-helix of TPR2B, where it is inserted into the hydrophobic cleft of an S100A1 dimer, suggesting a novel binding mechanism. Our data present the structural basis behind STIP1 and S100A1 complex formation, and provide novel insights into TPR module-containing proteins and S100 family member complexes.
Collapse
|
28
|
He SJ, Cheng J, Feng X, Yu Y, Tian L, Huang Q. The dual role and therapeutic potential of high-mobility group box 1 in cancer. Oncotarget 2017; 8:64534-64550. [PMID: 28969092 PMCID: PMC5610024 DOI: 10.18632/oncotarget.17885] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 04/24/2017] [Indexed: 12/31/2022] Open
Abstract
High-mobility group box 1 (HMGB1) is an abundant protein in most eukaryocytes. It can bind to several receptors such as advanced glycation end products (RAGE) and Toll-like receptors (TLRs), in direct or indirect way. The biological effects of HMGB1 depend on its expression and subcellular location. Inside the nucleus, HMGB1 is engaged in many DNA events such as DNA repair, transcription, telomere maintenance, and genome stability. While outside the nucleus, it possesses more complicated functions, including regulating cell proliferation, autophagy, inflammation and immunity. During tumor development, HMGB1 has been characterized as both a pro- and anti-tumoral protein by either promoting or suppressing tumor growth, proliferation, angiogenesis, invasion and metastasis. However, the current knowledge concerning the positive and negative effects of HMGB1 on tumor development is not explicit. Here, we evaluate the role of HMGB1 in tumor development and attempt to reconcile the dual effects of HMGB1 in carcinogenesis. Furthermore, we would like to present current strategies targeting against HMGB1, its receptor or release, which have shown potentially therapeutic value in cancer intervention.
Collapse
Affiliation(s)
- Si-Jia He
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Cheng
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Feng
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Yu
- Oncology Department, Henan Provincial People's Hospital, Zhengzhou, China
| | - Ling Tian
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Huang
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
29
|
Biri-Kovács B, Kiss B, Vadászi H, Gógl G, Pálfy G, Török G, Homolya L, Bodor A, Nyitray L. Ezrin interacts with S100A4 via both its N- and C-terminal domains. PLoS One 2017; 12:e0177489. [PMID: 28493957 PMCID: PMC5426754 DOI: 10.1371/journal.pone.0177489] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 04/27/2017] [Indexed: 11/19/2022] Open
Abstract
Ezrin belongs to the ERM (ezrin, radixin, moesin) protein family that has a role in cell morphology changes, adhesion and migration as an organizer of the cortical cytoskeleton by linking actin filaments to the apical membrane of epithelial cells. It is highly expressed in a variety of human cancers and promotes metastasis. Members of the Ca2+-binding EF-hand containing S100 proteins have similar pathological properties; they are overexpressed in cancer cells and involved in metastatic processes. In this study, using tryptophan fluorescence and stopped-flow kinetics, we show that S100A4 binds to the N-terminal ERM domain (N-ERMAD) of ezrin with a micromolar affinity. The binding involves the F2 lobe of the N-ERMAD and follows an induced fit kinetic mechanism. Interestingly, S100A4 binds also to the unstructured C-terminal actin binding domain (C-ERMAD) with similar affinity. Using NMR spectroscopy, we characterized the complex of S100A4 with the C-ERMAD and demonstrate that no ternary complex is simultaneously formed with the two ezrin domains. Furthermore, we show that S100A4 co-localizes with ezrin in HEK-293T cells. However, S100A4 very weakly binds to full-length ezrin in vitro indicating that the interaction of S100A4 with ezrin requires other regulatory events such as protein phosphorylation and/or membrane binding, shifting the conformational equilibrium of ezrin towards the open state. As both proteins play an important role in promoting metastasis, the characterization of their interaction could shed more light on the molecular events contributing to this pathological process.
Collapse
Affiliation(s)
- Beáta Biri-Kovács
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Bence Kiss
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Henrietta Vadászi
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Gergő Gógl
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Gyula Pálfy
- Institute of Chemistry, Laboratory of Structural Chemistry and Biology, Eötvös Loránd University, Budapest, Hungary
| | - György Török
- Molecular Cell Biology Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - László Homolya
- Molecular Cell Biology Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Andrea Bodor
- Institute of Chemistry, Laboratory of Structural Chemistry and Biology, Eötvös Loránd University, Budapest, Hungary
| | - László Nyitray
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
30
|
Kim I, Lee KO, Yun YJ, Jeong JY, Kim EH, Cheong H, Ryu KS, Kim NK, Suh JY. Biophysical characterization of Ca 2+-binding of S100A5 and Ca 2+-induced interaction with RAGE. Biochem Biophys Res Commun 2016; 483:332-338. [PMID: 28017722 DOI: 10.1016/j.bbrc.2016.12.143] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 12/21/2016] [Indexed: 12/12/2022]
Abstract
S100A5 is a calcium-binding protein of S100 family, which represents a major ligand to the receptor for advanced glycation end product (RAGE), a pattern recognition receptor engaged in diverse pathological processes. Here we have characterized calcium binding of S100A5 and the complex formation between S100A5 and RAGE using calorimetry and NMR spectroscopy. S100A5 binds to calcium ions in a sequential manner with the equilibrium dissociation constants (KD) of 1.3 μM and 3.5 μM, which corresponds to the calcium-binding at the C-terminal and N-terminal EF-hands. Upon calcium binding, S100A5 interacts with the V domain of RAGE (RAGE-v) to form a heterotrimer (KD ∼5.9 μM) that is distinct among the S100 family proteins. Chemical shift perturbation data from NMR titration experiments indicates that S100A5 employs the periphery of the dimer interface to interact with RAGE-v. Distinct binding mode and stoichiometry of RAGE against different S100 family proteins could be important to modulate diverse RAGE signaling.
Collapse
Affiliation(s)
- Iktae Kim
- Department of Agricultural Biotechnology, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-921, South Korea.
| | - Ko On Lee
- Department of Agricultural Biotechnology, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-921, South Korea.
| | - Young-Joo Yun
- Department of Agricultural Biotechnology, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-921, South Korea
| | - Jea Yeon Jeong
- Department of Agricultural Biotechnology, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-921, South Korea
| | - Eun-Hee Kim
- Division of Magnetic Resonance, Korea Basic Science Institute, 16 Yeongudanji-Ro, Ochang, Chungbuk 363-883, South Korea
| | - Haekap Cheong
- Division of Magnetic Resonance, Korea Basic Science Institute, 16 Yeongudanji-Ro, Ochang, Chungbuk 363-883, South Korea
| | - Kyoung-Seok Ryu
- Division of Magnetic Resonance, Korea Basic Science Institute, 16 Yeongudanji-Ro, Ochang, Chungbuk 363-883, South Korea
| | - Nak-Kyoon Kim
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Jeong-Yong Suh
- Department of Agricultural Biotechnology, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-921, South Korea.
| |
Collapse
|
31
|
Modular transcriptional repertoire and MicroRNA target analyses characterize genomic dysregulation in the thymus of Down syndrome infants. Oncotarget 2016; 7:7497-533. [PMID: 26848775 PMCID: PMC4884935 DOI: 10.18632/oncotarget.7120] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/23/2016] [Indexed: 12/25/2022] Open
Abstract
Trisomy 21-driven transcriptional alterations in human thymus were characterized through gene coexpression network (GCN) and miRNA-target analyses. We used whole thymic tissue--obtained at heart surgery from Down syndrome (DS) and karyotipically normal subjects (CT)--and a network-based approach for GCN analysis that allows the identification of modular transcriptional repertoires (communities) and the interactions between all the system's constituents through community detection. Changes in the degree of connections observed for hierarchically important hubs/genes in CT and DS networks corresponded to community changes. Distinct communities of highly interconnected genes were topologically identified in these networks. The role of miRNAs in modulating the expression of highly connected genes in CT and DS was revealed through miRNA-target analysis. Trisomy 21 gene dysregulation in thymus may be depicted as the breakdown and altered reorganization of transcriptional modules. Leading networks acting in normal or disease states were identified. CT networks would depict the "canonical" way of thymus functioning. Conversely, DS networks represent a "non-canonical" way, i.e., thymic tissue adaptation under trisomy 21 genomic dysregulation. This adaptation is probably driven by epigenetic mechanisms acting at chromatin level and through the miRNA control of transcriptional programs involving the networks' high-hierarchy genes.
Collapse
|
32
|
Yatime L, Betzer C, Jensen R, Mortensen S, Jensen P, Andersen G. The Structure of the RAGE:S100A6 Complex Reveals a Unique Mode of Homodimerization for S100 Proteins. Structure 2016; 24:2043-2052. [DOI: 10.1016/j.str.2016.09.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/26/2016] [Accepted: 10/05/2016] [Indexed: 01/10/2023]
|
33
|
Blocking the Interactions between Calcium-Bound S100A12 Protein and the V Domain of RAGE Using Tranilast. PLoS One 2016; 11:e0162000. [PMID: 27598566 PMCID: PMC5012620 DOI: 10.1371/journal.pone.0162000] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/16/2016] [Indexed: 12/17/2022] Open
Abstract
The receptor for advanced glycation end products (RAGE), a transmembrane receptor in the immunoglobulin superfamily, is involved in several inflammatory processes. RAGE induces cellular signaling pathways upon binding with various ligands, such as advanced glycation end products (AGEs), β-amyloids, and S100 proteins. The solution structure of S100A12 and the V ligand-binding region of RAGE have been reported previously. Using heteronuclear NMR spectroscopy to conduct 1H–15N heteronuclear single quantum coherence (HSQC) titration experiments, we identified and mapped the binding interface between S100A12 and the V domain of RAGE. The NMR chemical shift data were used as the constraints for the High Ambiguity Driven biomolecular DOCKing (HADDOCK) calculation to generate a structural model of the S100A12–V domain complex. In addition, tranilast (an anti-allergic drug) showed strong interaction with S100A12 in the 1H–15N HSQC titration, fluorescence experiments, and WST-1 assay. The results also indicated that tranilast was located at the binding site between S100A12 and the V domain, blocking interaction between these two proteins. Our results provide the mechanistic details for a structural model and reveal a potential precursor for an inhibitor for pro-inflammatory diseases, which could be useful for the development of new drugs.
Collapse
|
34
|
Huang YK, Chou RH, Yu C. Tranilast Blocks the Interaction between the Protein S100A11 and Receptor for Advanced Glycation End Products (RAGE) V Domain and Inhibits Cell Proliferation. J Biol Chem 2016; 291:14300-14310. [PMID: 27226584 DOI: 10.1074/jbc.m116.722215] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Indexed: 01/13/2023] Open
Abstract
The human S100 calcium-binding protein A11 (S100A11) is a member of the S100 protein family. Once S100A11 proteins bind to calcium ions at EF-hand motifs, S100A11 changes its conformation, promoting interaction with target proteins. The receptor for advanced glycation end products (RAGE) consists of three extracellular domains, including the V domain, C1 domain, and C2 domain. In this case, the V domain is the target for mutant S100A11 (mS100A11) binding. RAGE binds to the ligands, resulting in cell proliferation, cell growth, and several signal transduction cascades. We used NMR and fluorescence spectroscopy to demonstrate the interactions between mS100A11and RAGE V domain. The tranilast molecule is a drug used for treating allergic disorders. We discovered that the RAGE V domain and tranilast would interact with mS100A11 by using (1)H-(15)N HSQC NMR titrations. According to the results, we obtained two binary complex models from the HADDOCK program, S100A11-RAGE V domain and S100A11-tranilast, respectively. We overlapped two binary complex models with the same orientation of S100A11 homodimer and demonstrated that tranilast would block the binding site between S100A11 and the RAGE V domain. We further utilized a water-soluble tetrazolium-1 assay to confirm this result. We think that the results will be potentially useful in the development of new anti-cancer drugs.
Collapse
Affiliation(s)
- Yen-Kai Huang
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ruey-Hwang Chou
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 40454, Taiwan
| | - Chin Yu
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
35
|
Peng C, Chen H, Wallwiener M, Modugno C, Cuk K, Madhavan D, Trumpp A, Heil J, Marmé F, Nees J, Riethdorf S, Schott S, Sohn C, Pantel K, Schneeweiss A, Yang R, Burwinkel B. Plasma S100P level as a novel prognostic marker of metastatic breast cancer. Breast Cancer Res Treat 2016; 157:329-338. [PMID: 27146585 DOI: 10.1007/s10549-016-3776-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 03/30/2016] [Indexed: 01/09/2023]
Abstract
UNLABELLED Metastasis is the main cause of death in breast cancer patients. The development of reliable and cost-effective biomarker to evaluate the prognosis of metastatic breast cancer (MBC) patients is of great importance. S100P is a member of S100 family and has been proved to be associated with metastasis establishment. METHODS We investigated the plasma S100P levels in 60 healthy controls, 48 primary and 273 metastatic breast cancer patients. The MBC patients were followed-up for disease progression and death up to 3.5 years after recruitment. Radiographic response of MBC patients were also analyzed for investigation on treatment monitoring value of plasma S100P level. We found a robust association between high plasma S100P level (>7 ng/mL) and poor prognosis of metastatic breast cancer (MBC) patients (median progression-free survival time: 5.0 vs. 8.7 months, log-rank test p < 0.001; median overall survival time: 22.5 vs. 31.6 months, log-rank test p < 0.001). The plasma S100P level added additional prognostic relevance to the conventional prognostication model with clinicopathological factors and CTC enumeration. The plasma S100P level decreased significantly after treatment, while the reduction correlated with the radiographic response of the MBC patients. This finding indicates the value of plasma S100P in dynamic evaluation of treatment outcome. We hereby suggest plasma S100P level as a simple and cost-effective marker for the prognosis of metastatic breast cancer.
Collapse
Affiliation(s)
- Cike Peng
- Molecular Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Molecular Biology of Breast Cancer, Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg, Germany.
| | - Hongda Chen
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Markus Wallwiener
- Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg, Germany.,National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany
| | - Caroline Modugno
- Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg, Germany.,National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany
| | - Katarina Cuk
- Molecular Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Biology of Breast Cancer, Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg, Germany
| | - Dharanija Madhavan
- Molecular Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Biology of Breast Cancer, Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg, Germany
| | - Andreas Trumpp
- Hi-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine, GmbH, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jörg Heil
- Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg, Germany
| | - Frederik Marmé
- Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg, Germany
| | - Juliane Nees
- Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg, Germany.,National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany
| | - Sabine Riethdorf
- Department of Tumor Biology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Schott
- Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg, Germany
| | - Christof Sohn
- Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg, Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas Schneeweiss
- Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg, Germany.,National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany
| | - Rongxi Yang
- Molecular Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Biology of Breast Cancer, Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg, Germany.,Molecular Biology of Breast Cancer, University Women's Clinic University Heidelberg, ImNeuenheimer Feld 440, 69120, Heidelberg, Germany
| | - Barbara Burwinkel
- Molecular Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Biology of Breast Cancer, Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg, Germany.,Molecular Biology of Breast Cancer, University Women's Clinic University Heidelberg, ImNeuenheimer Feld 440, 69120, Heidelberg, Germany
| |
Collapse
|
36
|
Cary BP, Brooks AF, Fawaz MV, Drake LR, Desmond TJ, Sherman P, Quesada CA, Scott PJH. Synthesis and Evaluation of [(18)F]RAGER: A First Generation Small-Molecule PET Radioligand Targeting the Receptor for Advanced Glycation Endproducts. ACS Chem Neurosci 2016; 7:391-8. [PMID: 26771209 DOI: 10.1021/acschemneuro.5b00319] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The receptor for advanced glycation endproducts (RAGE) is a 35 kDa transmembrane receptor that belongs to the immunoglobulin superfamily of cell surface molecules. Its role in Alzheimer's disease (AD) is complex, but it is thought to mediate influx of circulating amyloid-β into the brain as well as amplify Aβ-induced pathogenic responses. RAGE is therefore of considerable interest as both a diagnostic and a therapeutic target in AD. Herein we report the synthesis and preliminary preclinical evaluation of [(18)F]RAGER, the first small molecule PET radiotracer for RAGE (Kd = 15 nM). Docking studies proposed a likely binding interaction between RAGE and RAGER, [(18)F]RAGER autoradiography showed colocalization with RAGE identified by immunohistochemistry in AD brain samples, and [(18)F]RAGER microPET confirmed CNS penetration and increased uptake in areas of the brain known to express RAGE. This first generation radiotracer represents initial proof-of-concept and a promising first step toward quantifying CNS RAGE activity using PET. However, there were high levels of nonspecific [(18)F]RAGER binding in vitro, likely due to its high log P (experimental log P = 3.5), and rapid metabolism of [(18)F]RAGER in rat liver microsome studies. Therefore, development of second generation ligands with improved imaging properties would be advantageous prior to anticipated translation into clinical PET imaging studies.
Collapse
Affiliation(s)
- Brian P. Cary
- Division
of Nuclear Medicine, Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Allen F. Brooks
- Division
of Nuclear Medicine, Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Maria V. Fawaz
- Division
of Nuclear Medicine, Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
- The
Interdepartmental Program in Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lindsey R. Drake
- The
Interdepartmental Program in Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Timothy J. Desmond
- Division
of Nuclear Medicine, Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Phillip Sherman
- Division
of Nuclear Medicine, Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Carole A. Quesada
- Division
of Nuclear Medicine, Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Peter J. H. Scott
- Division
of Nuclear Medicine, Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
- The
Interdepartmental Program in Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
37
|
Prica F, Radon T, Cheng Y, Crnogorac-Jurcevic T. The life and works of S100P - from conception to cancer. Am J Cancer Res 2016; 6:562-576. [PMID: 27186425 PMCID: PMC4859681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 01/10/2016] [Indexed: 06/05/2023] Open
Abstract
Since its discovery in 1992, the small, 10.4 kDa calcium-binding protein S100P has gained the attention of researchers from different scientific fields due to its potential roles in both healthy and neoplastic tissues. Although not ubiquitously expressed, in tissues where it is present, S100P is associated with distinct changes in cellular behaviour. In this review we have summarized the evolutionary history of S100P, its expression and involvement in implantation and human embryonic development, as well as important functions in normal tissue and cancer. Finally, we have demonstrated its pivotal role as a potential diagnostic and therapeutic target, which opens promising avenues for further fruitful research on S100P.
Collapse
Affiliation(s)
- Filip Prica
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of LondonLondon, UK
| | - Tomasz Radon
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of LondonLondon, UK
| | - Yuzhu Cheng
- Institute of Genetic Medicine, Newcastle UniversityNewcastle, UK
| | | |
Collapse
|
38
|
Leclerc E, Vetter SW. The role of S100 proteins and their receptor RAGE in pancreatic cancer. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2706-11. [PMID: 26435083 DOI: 10.1016/j.bbadis.2015.09.022] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/23/2015] [Accepted: 09/25/2015] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with low survival rates. Current therapeutic treatments have very poor response rates due to the high inherent chemoresistance of the pancreatic-cancer cells. Recent studies have suggested that the receptor for advanced glycation end products (RAGE) and its S100 protein ligands play important roles in the progression of PDAC. We will discuss the potential role of S100 proteins and their receptor, RAGE, in the development and progression of pancreatic cancer.
Collapse
Affiliation(s)
- Estelle Leclerc
- Department of Pharmaceutical Sciences, North Dakota State University, PO Box 6050, Department 2665, Fargo, ND 58108-6050, USA.
| | - Stefan W Vetter
- Department of Pharmaceutical Sciences, North Dakota State University, PO Box 6050, Department 2665, Fargo, ND 58108-6050, USA
| |
Collapse
|
39
|
Andrew AS, Marsit CJ, Schned AR, Seigne JD, Kelsey KT, Moore JH, Perreard L, Karagas MR, Sempere LF. Expression of tumor suppressive microRNA-34a is associated with a reduced risk of bladder cancer recurrence. Int J Cancer 2015; 137:1158-66. [PMID: 25556547 PMCID: PMC4485975 DOI: 10.1002/ijc.29413] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 12/20/2022]
Abstract
Bladder cancer is the fourth most common cancer among men in the United States and more than half of patients experience recurrences within 5 years after initial diagnosis. Additional clinically informative and actionable biomarkers of the recurrent bladder cancer phenotypes are needed to improve screening and molecular therapeutic approaches for recurrence prevention. MicroRNA-34a (miR-34a) is a short noncoding regulatory RNA with tumor suppressive attributes. We leveraged our unique, large, population-based prognostic study of bladder cancer in New Hampshire, United States to evaluate miR-34a expression levels in individual tumor cells to assess prognostic value. We collected detailed exposure and medical history data, as well as tumor tissue specimens from bladder patients and followed them long-term for recurrence, progression and survival. Fluorescence-based in situ hybridization assays were performed on urothelial carcinoma tissue specimens (n = 229). A larger proportion of the nonmuscle invasive tumors had high levels of miR-34a within the carcinoma cells compared to those tumors that were muscle invasive. Patients with high miR-34a levels in their baseline nonmuscle invasive tumors experienced lower risks of recurrence (adjusted hazard ratio 0.57, 95% confidence interval 0.34-0.93). Consistent with these observations, we demonstrated a functional tumor suppressive role for miR-34a in cultured urothelial cells, including reduced matrigel invasion and growth in soft agar. Our results highlight the need for further clinical studies of miR-34a as a guide for recurrence screening and as a possible candidate therapeutic target in the bladder.
Collapse
Affiliation(s)
- Angeline S. Andrew
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Carmen J. Marsit
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Alan R. Schned
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - John D. Seigne
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Karl T. Kelsey
- Department of Epidemiology & Department of Pathology and Laboratory Medicine, Center for Environmental Health and Technology, Brown University, Providence, RI
| | - Jason H. Moore
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Laurent Perreard
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Margaret R. Karagas
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Lorenzo F. Sempere
- Center for Translational Medicine, Van Andel Research Institute, Grand Rapids, MI
| |
Collapse
|
40
|
Penumutchu SR, Chou RH, Yu C. Interaction between S100P and the anti-allergy drug cromolyn. Biochem Biophys Res Commun 2014; 454:404-9. [PMID: 25450399 DOI: 10.1016/j.bbrc.2014.10.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 10/10/2014] [Indexed: 10/24/2022]
Abstract
The S100P protein has been known to mediate cell proliferation by binding the receptor for advanced glycation end products (RAGE) to activate signaling pathways, such as the extracellular regulated kinase (ERK) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways. S100P/RAGE signaling is involved in a variety of diseases, such as cancer, metastasis, and diabetes. Cromolyn is an anti-allergy drug that binds S100P to block the interaction between S100P and RAGE. In the present study, we characterized the properties of the binding between cromolyn and calcium-bound S100P using various biophysical techniques. The binding affinity for S100P and cromolyn was measured to be in the millimolar range by fluorescence spectroscopy. NMR-HSQC titration experiments and HADDOCK modeling was employed to determine the spatial structure of the proposed heterotetramer model of the S100P-cromolyn complex. Additional MD simulation results revealed the important properties in the complex stability and conformational flexibility of the S100P-cromolyn complex. This proposed model has provided an understanding of the molecular level interactions of S100P-cromolyn complex.
Collapse
Affiliation(s)
| | - Ruey-Hwang Chou
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan; Department of Biotechnology, Asia University, Taichung 413, Taiwan
| | - Chin Yu
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan; The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|