1
|
Chen X, Huang X, Zhang X, Chen Z. Metabolism-epigenetic interaction-based bone and dental regeneration: From impacts and mechanisms to treatment potential. Bone 2024; 192:117382. [PMID: 39730093 DOI: 10.1016/j.bone.2024.117382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/11/2024] [Accepted: 12/23/2024] [Indexed: 12/29/2024]
Abstract
Metabolic pathways exhibit fluctuating activities during bone and dental loss and defects, suggesting a regulated metabolic plasticity. Skeletal remodeling is an energy-demanding process related to altered metabolic activities. These metabolic changes are frequently associated with epigenetic modifications, including variations in the expression or activity of enzymes modified through epigenetic mechanisms, which directly or indirectly impact cellular metabolism. Metabolic reprogramming driven by bone and dental conditions alters the epigenetic landscape by modulating the activities of DNA and histone modification enzymes at the metabolite level. Epigenetic mechanisms modulate the expression of metabolic genes, consequently influencing the metabolome. The interplay between epigenetics and metabolomics is crucial in maintaining bone and dental homeostasis by preserving cell proliferation and pluripotency. This review, therefore, aims to examine the effects of metabolic reprogramming in bone and dental-related cells on the regulation of epigenetic modifications, particularly acetylation, methylation, and lactylation. We also discuss the effects of chromatin-modifying enzymes on metabolism and the potential therapeutic benefits of dietary compounds as epigenetic modulators. In this review, we highlight the inconsistencies in current research findings and suggest potential approaches to translate fundamental insights into clinical treatments for bone and tooth diseases.
Collapse
Affiliation(s)
- Xinyi Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Centre for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Centre of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Xiaoyuan Huang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Centre for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Centre of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Xiatong Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Centre for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Centre of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Zhuo Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Centre for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Centre of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| |
Collapse
|
2
|
Zhang Y, Guo J, Tang C, Xu K, Li Z, Wang C. Early life stage exposure to fenbuconazole causes multigenerational cardiac developmental defects in zebrafish and potential reasons. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123938. [PMID: 38588970 DOI: 10.1016/j.envpol.2024.123938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
With the increasing use of triazole fungicides in agriculture, triazole pesticides have aroused great concern about their toxicity and ecological risk. The current study investigated the impairments of embryonic exposure to fenbuconazole (FBZ) on cardiac transgenerational toxicity and related mechanisms. The fertilized eggs were exposed to 5, 50 and 500 ng/L FBZ for 72 h, and the larvae were then raised to adulthood in clean water. The adult fish were mated with unexposed fish to produce maternal and paternal F1 and F2 embryos, respectively. The results showed that increased arrhythmia were observed in F0, F1 and F2 larvae. Transcriptome sequencing indicated that the pathway of adrenergic signaling in cardiomyocytes was enriched in F0 and F2 larvae. In both F0 and F1 adult zebrafish hearts, ADRB2 protein expression decreased, and transcription of genes related to cardiac development and Ca2+ homeostasis was downregulated. These alterations might cause cardiac developmental defects. Significantly decreased protein levels of H3K9Ac and H3K14Ac might be linked with the downregulation in transcription of cardiac development genes. Protein‒protein interaction analysis exhibited that the pathway affecting the heart was well inherited in the paternal line. These results provide new ideas for the analysis and prevention of congenital heart disease.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Jiaojiao Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Chen Tang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Ke Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Zihui Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China.
| |
Collapse
|
3
|
Stokes G, Li Z, Talaba N, Genthe W, Brix MB, Pham B, Wienhold MD, Sandok G, Hernan R, Wynn J, Tang H, Tabima DM, Rodgers A, Hacker TA, Chesler NC, Zhang P, Murad R, Yuan JXJ, Shen Y, Chung WK, McCulley DJ. Rescuing lung development through embryonic inhibition of histone acetylation. Sci Transl Med 2024; 16:eadc8930. [PMID: 38295182 DOI: 10.1126/scitranslmed.adc8930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 01/10/2024] [Indexed: 02/02/2024]
Abstract
A major barrier to the impact of genomic diagnosis in patients with congenital malformations is the lack of understanding regarding how sequence variants contribute to disease pathogenesis and whether this information could be used to generate patient-specific therapies. Congenital diaphragmatic hernia (CDH) is among the most common and severe of all structural malformations; however, its underlying mechanisms are unclear. We identified loss-of-function sequence variants in the epigenomic regulator gene SIN3A in two patients with complex CDH. Tissue-specific deletion of Sin3a in mice resulted in defects in diaphragm development, lung hypoplasia, and pulmonary hypertension, the cardinal features of CDH and major causes of CDH-associated mortality. Loss of SIN3A in the lung mesenchyme resulted in reduced cellular differentiation, impaired cell proliferation, and increased DNA damage. Treatment of embryonic Sin3a mutant mice with anacardic acid, an inhibitor of histone acetyltransferase, reduced DNA damage, increased cell proliferation and differentiation, improved lung and pulmonary vascular development, and reduced pulmonary hypertension. These findings demonstrate that restoring the balance of histone acetylation can improve lung development in the Sin3a mouse model of CDH.
Collapse
Affiliation(s)
- Giangela Stokes
- Department of Pediatrics, University of California, San Diego, San Diego, CA 92093, USA
| | - Zhuowei Li
- Department of Pediatrics, University of California, San Diego, San Diego, CA 92093, USA
| | - Nicole Talaba
- Department of Pediatrics, University of California, San Diego, San Diego, CA 92093, USA
| | - William Genthe
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Maria B Brix
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Betty Pham
- Department of Pediatrics, University of California, San Diego, San Diego, CA 92093, USA
| | | | - Gracia Sandok
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Rebecca Hernan
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Julia Wynn
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Haiyang Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, Guangdong, China
| | - Diana M Tabima
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Allison Rodgers
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Timothy A Hacker
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Naomi C Chesler
- Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center and Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Pan Zhang
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Rabi Murad
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jason X-J Yuan
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yufeng Shen
- Department of Systems Biology, Department of Biomedical Informatics, and JP Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wendy K Chung
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - David J McCulley
- Department of Pediatrics, University of California, San Diego, San Diego, CA 92093, USA
| |
Collapse
|
4
|
Epigenetics in fetal alcohol spectrum disorder. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 197:211-239. [PMID: 37019593 DOI: 10.1016/bs.pmbts.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
During pregnancy, alcohol abuse and its detrimental effects on developing offspring are major public health, economic and social challenges. The prominent characteristic attributes of alcohol (ethanol) abuse during pregnancy in humans are neurobehavioral impairments in offspring due to damage to the central nervous system (CNS), causing structural and behavioral impairments that are together named fetal alcohol spectrum disorder (FASD). Development-specific alcohol exposure paradigms were established to recapitulate the human FASD phenotypes and establish the underlying mechanisms. These animal studies have offered some critical molecular and cellular underpinnings likely to account for the neurobehavioral impairments associated with prenatal ethanol exposure. Although the pathogenesis of FASD remains unclear, emerging literature proposes that the various genomic and epigenetic components that cause the imbalance in gene expression can significantly contribute to the development of this disease. These studies acknowledged numerous immediate and enduring epigenetic modifications, such as methylation of DNA, post-translational modifications (PTMs) of histone proteins, and regulatory networks related to RNA, using many molecular approaches. Methylated DNA profiles, PTMs of histone proteins, and RNA-regulated expression of genes are essential for synaptic and cognitive behavior. Thus, offering a solution to many neuronal and behavioral impairments reported in FASD. In the current chapter, we review the recent advances in different epigenetic modifications that cause the pathogenesis of FASD. The information discussed can help better explain the pathogenesis of FASD and thereby might provide a basis for finding novel therapeutic targets and innovative treatment strategies.
Collapse
|
5
|
Pyrazole-Curcumin Suppresses Cardiomyocyte Hypertrophy by Disrupting the CDK9/CyclinT1 Complex. Pharmaceutics 2022; 14:pharmaceutics14061269. [PMID: 35745840 PMCID: PMC9227296 DOI: 10.3390/pharmaceutics14061269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022] Open
Abstract
The intrinsic histone acetyltransferase (HAT), p300, has an important role in the development and progression of heart failure. Curcumin (CUR), a natural p300-specific HAT inhibitor, suppresses hypertrophic responses and prevents deterioration of left-ventricular systolic function in heart-failure models. However, few structure–activity relationship studies on cardiomyocyte hypertrophy using CUR have been conducted. To evaluate if prenylated pyrazolo curcumin (PPC) and curcumin pyrazole (PyrC) can suppress cardiomyocyte hypertrophy, cultured cardiomyocytes were treated with CUR, PPC, or PyrC and then stimulated with phenylephrine (PE). PE-induced cardiomyocyte hypertrophy was inhibited by PyrC but not PPC at a lower concentration than CUR. Western blotting showed that PyrC suppressed PE-induced histone acetylation. However, an in vitro HAT assay showed that PyrC did not directly inhibit p300-HAT activity. As Cdk9 phosphorylates both RNA polymerase II and p300 and increases p300-HAT activity, the effects of CUR and PyrC on the kinase activity of Cdk9 were examined. Phosphorylation of p300 by Cdk9 was suppressed by PyrC. Immunoprecipitation-WB showed that PyrC inhibits Cdk9 binding to CyclinT1 in cultured cardiomyocytes. PyrC may prevent cardiomyocyte hypertrophic responses by indirectly suppressing both p300-HAT activity and RNA polymerase II transcription elongation activity via inhibition of Cdk9 kinase activity.
Collapse
|
6
|
Ghosh AK. Acetyltransferase p300 Is a Putative Epidrug Target for Amelioration of Cellular Aging-Related Cardiovascular Disease. Cells 2021; 10:cells10112839. [PMID: 34831061 PMCID: PMC8616404 DOI: 10.3390/cells10112839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/31/2022] Open
Abstract
Cardiovascular disease is the leading cause of accelerated as well as chronological aging-related human morbidity and mortality worldwide. Genetic, immunologic, unhealthy lifestyles including daily consumption of high-carb/high-fat fast food, lack of exercise, drug addiction, cigarette smoke, alcoholism, and exposure to environmental pollutants like particulate matter (PM)-induced stresses contribute profoundly to accelerated and chronological cardiovascular aging and associated life threatening diseases. All these stressors alter gene expression epigenetically either through activation or repression of gene transcription via alteration of chromatin remodeling enzymes and chromatin landscape by DNA methylation or histone methylation or histone acetylation. Acetyltransferase p300, a major epigenetic writer of acetylation on histones and transcription factors, contributes significantly to modifications of chromatin landscape of genes involved in cellular aging and cardiovascular diseases. In this review, the key findings those implicate acetyltransferase p300 as a major contributor to cellular senescence or aging related cardiovascular pathologies including vascular dysfunction, cardiac hypertrophy, myocardial infarction, cardiac fibrosis, systolic/diastolic dysfunction, and aortic valve calcification are discussed. The efficacy of natural or synthetic small molecule inhibitor targeting acetyltransferase p300 in amelioration of stress-induced dysregulated gene expression, cellular aging, and cardiovascular disease in preclinical study is also discussed.
Collapse
Affiliation(s)
- Asish K Ghosh
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
7
|
Chung DD, Pinson MR, Bhenderu LS, Lai MS, Patel RA, Miranda RC. Toxic and Teratogenic Effects of Prenatal Alcohol Exposure on Fetal Development, Adolescence, and Adulthood. Int J Mol Sci 2021; 22:ijms22168785. [PMID: 34445488 PMCID: PMC8395909 DOI: 10.3390/ijms22168785] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/08/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Prenatal alcohol exposure (PAE) can have immediate and long-lasting toxic and teratogenic effects on an individual’s development and health. As a toxicant, alcohol can lead to a variety of physical and neurological anomalies in the fetus that can lead to behavioral and other impairments which may last a lifetime. Recent studies have focused on identifying mechanisms that mediate the immediate teratogenic effects of alcohol on fetal development and mechanisms that facilitate the persistent toxic effects of alcohol on health and predisposition to disease later in life. This review focuses on the contribution of epigenetic modifications and intercellular transporters like extracellular vesicles to the toxicity of PAE and to immediate and long-term consequences on an individual’s health and risk of disease.
Collapse
|
8
|
Wallén E, Auvinen P, Kaminen-Ahola N. The Effects of Early Prenatal Alcohol Exposure on Epigenome and Embryonic Development. Genes (Basel) 2021; 12:genes12071095. [PMID: 34356111 PMCID: PMC8303887 DOI: 10.3390/genes12071095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/05/2021] [Accepted: 07/15/2021] [Indexed: 12/15/2022] Open
Abstract
Prenatal alcohol exposure is one of the most significant causes of developmental disability in the Western world. Maternal alcohol consumption during pregnancy leads to an increased risk of neurological deficits and developmental abnormalities in the fetus. Over the past decade, several human and animal studies have demonstrated that alcohol causes alterations in epigenetic marks, including DNA methylation, histone modifications, and non-coding RNAs. There is an increasing amount of evidence that early pregnancy is a sensitive period for environmental-induced epigenetic changes. It is a dynamic period of epigenetic reprogramming, cell divisions, and DNA replication and, therefore, a particularly interesting period to study the molecular changes caused by alcohol exposure as well as the etiology of alcohol-induced developmental disorders. This article will review the current knowledge about the in vivo and in vitro effects of alcohol exposure on the epigenome, gene regulation, and the phenotype during the first weeks of pregnancy.
Collapse
|
9
|
Mao Q, Wu S, Peng C, Peng B, Luo X, Huang L, Zhang H. Interactions between the ERK1/2 signaling pathway and PCAF play a key role in PE‑induced cardiomyocyte hypertrophy. Mol Med Rep 2021; 24:636. [PMID: 34278478 PMCID: PMC8281443 DOI: 10.3892/mmr.2021.12275] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/23/2021] [Indexed: 11/30/2022] Open
Abstract
Cardiomyocyte hypertrophy is a compensatory phase of chronic heart failure that is induced by the activation of multiple signaling pathways. The extracellular signal-regulated protein kinase (ERK) signaling pathway is an important regulator of cardiomyocyte hypertrophy. In our previous study, it was demonstrated that phenylephrine (PE)-induced cardiomyocyte hypertrophy involves the hyperacetylation of histone H3K9ac by P300/CBP-associated factor (PCAF). However, the upstream signaling pathway has yet to be fully identified. In the present study, the role of the extracellular signal-regulated protein kinase (ERK)1/2 signaling pathway in PE-induced cardiomyocyte hypertrophy was investigated. The mice cardiomyocyte hypertrophy model was successfully established by treating cells with PE in vitro. The results showed that phospho-(p-)ERK1/2 interacted with PCAF and modified the pattern of histone H3K9ac acetylation. An ERK inhibitor (U0126) and/or a histone acetylase inhibitor (anacardic acid; AA) attenuated the overexpression of phospho-ERK1/2 and H3K9ac hyperacetylation by inhibiting the expression of PCAF in PE-induced cardiomyocyte hypertrophy. Moreover, U0126 and/or AA could attenuate the overexpression of several biomarker genes related to cardiac hypertrophy (myocyte enhancer factor 2C, atrial natriuretic peptide, brain natriuretic peptide and β-myosin heavy chain) and prevented cardiomyocyte hypertrophy. These results revealed a novel mechanism in that AA protects against PE-induced cardiomyocyte hypertrophy in mice via the ERK1/2 signaling pathway, and by modifying the acetylation of H3K9ac. These findings may assist in the development of novel methods for preventing and treating hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- Qian Mao
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Shuqi Wu
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Chang Peng
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Bohui Peng
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xiaomei Luo
- Department of Physiology, School of Basic Medical Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Lixin Huang
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Huanting Zhang
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
10
|
Yang M, Zhang Y, Ren J. Acetylation in cardiovascular diseases: Molecular mechanisms and clinical implications. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165836. [PMID: 32413386 DOI: 10.1016/j.bbadis.2020.165836] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 02/07/2023]
Abstract
Acetylation belongs to a class of post-translational modification (PTM) processes that epigenetically regulate gene expression and gene transcriptional activity. Reversible histone acetylation on lysine residues governs the interactions between DNA and histones to mediate chromatin remodeling and gene transcription. Non-histone protein acetylation complicates cellular function whereas acetylation of key mitochondrial enzymes regulates bioenergetic metabolism. Acetylation and deacetylation of functional proteins are essential to the delicated homeostatic regulation of embryonic development, postnatal maturation, cardiomyocyte differentiation, cardiac remodeling and onset of various cardiovascular diseases including obesity, diabetes mellitus, cardiometabolic diseases, ischemia-reperfusion injury, cardiac remodeling, hypertension, and arrhythmias. Histone acetyltransferase (HATs) and histone deacetylases (HDACs) are essential enzymes mainly responsible for the regulation of lysine acetylation levels, thus providing possible drugable targets for therapeutic interventions in the management of cardiovascular diseases.
Collapse
Affiliation(s)
- Mingjie Yang
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 210032, China
| | - Yingmei Zhang
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 210032, China.
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 210032, China.
| |
Collapse
|
11
|
Wu Z, Pan Z, Wen Y, Xiao H, Shangguan Y, Wang H, Chen L. Egr1/p300/ACE signal mediates postnatal osteopenia in female rat offspring induced by prenatal ethanol exposure. Food Chem Toxicol 2019; 136:111083. [PMID: 31887396 DOI: 10.1016/j.fct.2019.111083] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 01/01/2023]
Abstract
Prenatal ethanol exposure induces developmental toxicities of multiple organs in offspring. Here, we investigate the effects of prenatal ethanol exposure on bone mass in postnatal offspring and explore its intrauterine programming mechanism. We found that prenatal ethanol exposure could induce bone dysplasia in fetuses and postnatal osteopenia in female offspring, accompanied by the sustained activation of the local renin-angiotensin systems (RAS) and inhibition of bone formation. Additionally, we also found that histone 3 lysine 9 acetylation (H3K9ac) and H3K27ac levels in the promoter region of angiotensin-converting enzyme (ACE) were increased in female offspring exposed to ethanol during pregnancy. In vitro, ethanol suppressed the formation of mineralized nodules and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), which was blocked by enalapril. Furthermore, ethanol promoted the expression and nuclear translocation of early growth response factor 1 (Egr1), which participated in the promotion of histone acetylation of ACE and subsequent RAS activation, by recruiting p300 and binding to the ACE promoter region directly. These findings indicate that the sustained activation of the local RAS might participate in bone dysplasia in fetus and postnatal osteopenia in the female offspring, while the Egr1/p300/ACE signal might be a key promoter of the sustained activation of the local RAS of the long bone.
Collapse
Affiliation(s)
- Zhixin Wu
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Zhengqi Pan
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Yinxian Wen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Hao Xiao
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Yangfan Shangguan
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Hui Wang
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China; Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China.
| | - Liaobin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
12
|
Quattrocelli M, Zelikovich AS, Jiang Z, Peek CB, Demonbreun AR, Kuntz NL, Barish GD, Haldar SM, Bass J, McNally EM. Pulsed glucocorticoids enhance dystrophic muscle performance through epigenetic-metabolic reprogramming. JCI Insight 2019; 4:132402. [PMID: 31852847 PMCID: PMC6975267 DOI: 10.1172/jci.insight.132402] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/13/2019] [Indexed: 12/23/2022] Open
Abstract
In humans, chronic glucocorticoid use is associated with side effects like muscle wasting, obesity, and metabolic syndrome. Intermittent steroid dosing has been proposed in Duchenne Muscular Dystrophy patients to mitigate the side effects seen with daily steroid intake. We evaluated biomarkers from Duchenne Muscular Dystrophy patients, finding that, compared with chronic daily steroid use, weekend steroid use was associated with reduced serum insulin, free fatty acids, and branched chain amino acids, as well as reduction in fat mass despite having similar BMIs. We reasoned that intermittent prednisone administration in dystrophic mice would alter muscle epigenomic signatures, and we identified the coordinated action of the glucocorticoid receptor, KLF15 and MEF2C as mediators of a gene expression program driving metabolic reprogramming and enhanced nutrient utilization. Muscle lacking Klf15 failed to respond to intermittent steroids. Furthermore, coadministration of the histone acetyltransferase inhibitor anacardic acid with steroids in mdx mice eliminated steroid-specific epigenetic marks and abrogated the steroid response. Together, these findings indicate that intermittent, repeated exposure to glucocorticoids promotes performance in dystrophic muscle through an epigenetic program that enhances nutrient utilization.
Collapse
MESH Headings
- Anacardic Acids/administration & dosage
- Animals
- Biomarkers/blood
- Biomarkers/metabolism
- Child
- Cross-Sectional Studies
- Disease Models, Animal
- Drug Therapy, Combination
- Epigenesis, Genetic/drug effects
- Epigenomics
- Gene Expression Regulation/drug effects
- Glucocorticoids/administration & dosage
- Histone Acetyltransferases/antagonists & inhibitors
- Histone Acetyltransferases/metabolism
- Humans
- Kruppel-Like Transcription Factors/genetics
- Kruppel-Like Transcription Factors/metabolism
- MEF2 Transcription Factors/metabolism
- Male
- Metabolomics
- Mice
- Mice, Inbred mdx
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Duchenne/blood
- Muscular Dystrophy, Duchenne/diagnosis
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/genetics
- Nutrients/blood
- Nutrients/metabolism
- Prednisone/administration & dosage
- Pulse Therapy, Drug
Collapse
Affiliation(s)
- Mattia Quattrocelli
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University (NU), Chicago, Illinois, USA
| | - Aaron S. Zelikovich
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University (NU), Chicago, Illinois, USA
| | - Zhen Jiang
- Gladstone Institutes, San Francisco, California, USA
- Amgen Research, South San Francisco, California, USA
| | - Clara Bien Peek
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, NU, Chicago, Illinois, USA
| | - Alexis R. Demonbreun
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University (NU), Chicago, Illinois, USA
| | - Nancy L. Kuntz
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
| | - Grant D. Barish
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, NU, Chicago, Illinois, USA
| | - Saptarsi M. Haldar
- Gladstone Institutes, San Francisco, California, USA
- Amgen Research, South San Francisco, California, USA
- Cardiology Division, Department of Medicine, UCSF School of Medicine, San Francisco, California, USA
| | - Joseph Bass
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, NU, Chicago, Illinois, USA
| | - Elizabeth M. McNally
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University (NU), Chicago, Illinois, USA
| |
Collapse
|
13
|
Peng B, Han X, Peng C, Luo X, Deng L, Huang L. G9α-dependent histone H3K9me3 hypomethylation promotes overexpression of cardiomyogenesis-related genes in foetal mice. J Cell Mol Med 2019; 24:1036-1045. [PMID: 31746096 PMCID: PMC6933410 DOI: 10.1111/jcmm.14824] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/08/2019] [Accepted: 09/16/2019] [Indexed: 12/19/2022] Open
Abstract
Alcohol consumption during pregnancy can cause foetal alcohol syndrome and congenital heart disease. Nonetheless, the underlying mechanism of alcohol‐induced cardiac dysplasia remains unknown. We previously reported that alcohol exposure during pregnancy can cause abnormal expression of cardiomyogenesis‐related genes, and histone H3K9me3 hypomethylation was observed in alcohol‐treated foetal mouse heart. Hence, an imbalance in histone methylation may be involved in alcohol‐induced cardiac dysplasia. In this study, we investigated the involvement of G9α histone methyltransferase in alcohol‐induced cardiac dysplasia in vivo and in vitro using heart tissues of foetal mice and primary cardiomyocytes of neonatal mice. Western blotting revealed that alcohol caused histone H3K9me3 hypomethylation by altering G9α histone methyltransferase expression in cardiomyocytes. Moreover, overexpression of cardiomyogenesis‐related genes (MEF2C, Cx43, ANP and β‐MHC) was observed in alcohol‐exposed foetal mouse heart. Additionally, we demonstrated that G9α histone methyltransferase directly interacted with histone H3K9me3 and altered its methylation. Notably, alcohol did not down‐regulate H3K9me3 methylation after G9α suppression by short hairpin RNA in primary mouse cardiomyocytes, preventing MEF2C, Cx43, ANP and β‐MHC overexpression. These findings suggest that G9α histone methyltransferase‐mediated imbalance in histone H3K9me3 methylation plays a critical role in alcohol‐induced abnormal expression cardiomyogenesis‐related genes during pregnancy. Therefore, G9α histone methyltransferase may be an intervention target for congenital heart disease.
Collapse
Affiliation(s)
- Bohui Peng
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xiao Han
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chang Peng
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xiaomei Luo
- Department of Physiology, School of Basic Medical Sciences, Zunyi Medical University, Zunyi, China
| | - Ling Deng
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lixin Huang
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
14
|
Li S, Peng B, Luo X, Sun H, Peng C. Anacardic acid attenuates pressure-overload cardiac hypertrophy through inhibiting histone acetylases. J Cell Mol Med 2019; 23:2744-2752. [PMID: 30712293 PMCID: PMC6433722 DOI: 10.1111/jcmm.14181] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 01/27/2023] Open
Abstract
Cardiac hypertrophy has become a major cardiovascular problem wordwide and is considered the early stage of heart failure. Treatment and prevention strategies are needed due to the suboptimal efficacy of current treatment methods. Recently, many studies have demonstrated the important role of histone acetylation in myocardium remodelling along with cardiac hypertrophy. A Chinese herbal extract containing anacardic acid (AA) is known to possess strong histone acetylation inhibitory effects. In previous studies, we demonstrated that AA could reverse alcohol‐induced cardiac hypertrophy in an animal model at the foetal stage. Here, we investigated whether AA could attenuate cardiac hypertrophy through the modulation of histone acetylation and explored its potential mechanisms in the hearts of transverse aortic constriction (TAC) mice. This study showed that AA attenuated hyperacetylation of acetylated lysine 9 on histone H3 (H3K9ac) by inhibiting the expression of p300 and p300/CBP‐associated factor (PCAF) in TAC mice. Moreover, AA normalized the transcriptional activity of the heart nuclear transcription factor MEF2A. The high expression of cardiac hypertrophy‐linked genes (ANP, β‐MHC) was reversed through AA treatment in the hearts of TAC mice. Additionally, we found that AA improved cardiac function and survival rate in TAC mice. The current results further highlight the mechanism by which histone acetylation is controlled by AA treatment, which may help prevent and treat hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- Shuo Li
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, ZunYi, Guizhou, China
| | - Bohui Peng
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, ZunYi, Guizhou, China
| | - Xiaomei Luo
- Department of Physiology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Huichao Sun
- Heart Center, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Chang Peng
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, ZunYi, Guizhou, China
| |
Collapse
|
15
|
Zhou W, Jiang D, Tian J, Liu L, Lu T, Huang X, Sun H. Acetylation of H3K4, H3K9, and H3K27 mediated by p300 regulates the expression of GATA4 in cardiocytes. Genes Dis 2018; 6:318-325. [PMID: 32042871 PMCID: PMC6997570 DOI: 10.1016/j.gendis.2018.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/08/2018] [Indexed: 12/23/2022] Open
Abstract
GATA4 is a particularly important cardiogenic transcription factor and serves as a potent driver of cardiogenesis. Recent progress in the field has made it clear that histone acetylation can influence gene expression through changing the structure of chromatin. Our previous research had revealed that hypo-acetylation could repress gata4 expression in cardiocytes, however the underlying mechanism by which this occurred was still unclear. To reveal the mechanism of histone acetylation involved in the regulation of gata4 transcription, we concentrated on P300, one of the important histone acetyltransferase associated with cardiogenesis. We found that P300 participated in gata4 expression through regulating histone acetylation in embryonic mouse hearts. RNAi-mediated downregulation of P300 modulated the global acetylation of H3 and the acetylation of H3K4, H3K9, and H3K27 in gata4 and Tbx5 promoters. Interestingly, there was an obvious inhibition of gata4 transcription, whereas Tbx5 was not influenced. Furthermore, SGC-CBP30, the selective inhibitor of the bromodomain in CBP/P300, downregulated gata4 transcription by repressing the acetylation of H3K4, H3K9, and H3K27 in the gata4 promoters. Taken together, our results identified that acetylation of H3K4, H3K9, and H3K27 mediated by P300 plays an important role in regulation of gata4 expression in cardiogenesis.
Collapse
Affiliation(s)
- Wei Zhou
- Heart Centre, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Dagui Jiang
- Heart Centre, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Jie Tian
- Heart Centre, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Lingjuan Liu
- Heart Centre, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Tiewei Lu
- Heart Centre, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Xupei Huang
- Department of Biomedical Science, Charlie E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Huichao Sun
- Heart Centre, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China.,Heart Centre, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| |
Collapse
|
16
|
Wu X, Pan B, Liu L, Zhao W, Zhu J, Huang X, Tian J. In utero exposure to PM2.5 during gestation caused adult cardiac hypertrophy through histone acetylation modification. J Cell Biochem 2018; 120:4375-4384. [PMID: 30269375 DOI: 10.1002/jcb.27723] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/29/2018] [Indexed: 01/27/2023]
Affiliation(s)
- Xiaoqi Wu
- Heart Centre, Children’s Hospital of Chongqing Medical University Chongqing China
- Key Laboratory of Developmental Disease in Childhood (Chongqing Medical University), Ministry of Education Chongqing China
- Key Laboratory of Pediatrics Chongqing China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders Chongqing China
| | - Bo Pan
- Heart Centre, Children’s Hospital of Chongqing Medical University Chongqing China
- Key Laboratory of Developmental Disease in Childhood (Chongqing Medical University), Ministry of Education Chongqing China
- Key Laboratory of Pediatrics Chongqing China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders Chongqing China
| | - Lingjuan Liu
- Key Laboratory of Developmental Disease in Childhood (Chongqing Medical University), Ministry of Education Chongqing China
- Key Laboratory of Pediatrics Chongqing China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders Chongqing China
| | - Weian Zhao
- Heart Centre, Children’s Hospital of Chongqing Medical University Chongqing China
- Key Laboratory of Developmental Disease in Childhood (Chongqing Medical University), Ministry of Education Chongqing China
- Key Laboratory of Pediatrics Chongqing China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders Chongqing China
| | - Jing Zhu
- Key Laboratory of Developmental Disease in Childhood (Chongqing Medical University), Ministry of Education Chongqing China
- Key Laboratory of Pediatrics Chongqing China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders Chongqing China
| | - Xupei Huang
- Department of Biomedical Science Charlie E. Schmidt College of Medicine, Florida Atlantic University Boca Raton Florida
| | - Jie Tian
- Heart Centre, Children’s Hospital of Chongqing Medical University Chongqing China
| |
Collapse
|
17
|
Zhao Q, Zhang X, Cai H, Zhang P, Kong D, Ge X, Du M, Liang R, Dong W. Anticancer effects of plant derived Anacardic acid on human breast cancer MDA-MB-231 cells. Am J Transl Res 2018; 10:2424-2434. [PMID: 30210681 PMCID: PMC6129544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 07/31/2018] [Indexed: 06/08/2023]
Abstract
Triple negative breast cancer (TNBC) accounts for about 10-15% of all breast cancers. It is a heterogeneous disease, characterized by early relapse, aggressive behavior, and poor prognosis, when compared to other breast cancer subtypes. Interestingly, most of the heat shock protein 90 (Hsp90) client proteins are oncoproteins, and some are closely related to the key factors that promote the progression of TNBC. Anacardic acid (AA), which is commonly seen in natural plants of Anacardiaceae, exhibits potent Hsp90 ATPase inhibition activity. In this study, the anticancer effects of AA on TNBC MDA-MB-231 cells were investigated. The results of our study showed that AA inhibited cell proliferation, induced G0/G1-phase cell cycle arrest, suppressed cell invasion and migration, and induced apoptosis in the MDA-MB-231 cells. Regulation of the key Hsp90-dependent tumor-related molecules or endoplasmic reticulum stress (ERS) related molecules, such as GRP78, Hsp70, CDK-4, MMP-9, Bcl-2, and Mcl-1 by AA may be related to these effects. Taken together, our results suggest that AA shows potential as a possible new drug for therapy of TNBC.
Collapse
Affiliation(s)
- Qing Zhao
- Department of Pharmacy, Affiliated Hospital of Jiangnan UniversityWuxi, Jiangsu, People’s Republic of China
| | - Xiaofeng Zhang
- Department of Respiration, Affiliated Hospital of Jiangnan UniversityWuxi, Jiangsu, People’s Republic of China
| | - Haifeng Cai
- Department of Pharmacy, The Fifth People’s Hospital of WuxiWuxi, Jiangsu, People’s Republic of China
| | - Pei Zhang
- Department of Pharmacy, Bengbu Medical CollegeAnhui, People’s Republic of China
| | - Dong Kong
- Department of Radiotherapy, Affiliated Hospital of Jiangnan UniversityWuxi, Jiangsu, People’s Republic of China
| | - Xiaosong Ge
- Department of Oncology, Affiliated Hospital of Jiangnan UniversityWuxi, Jiangsu, People’s Republic of China
| | - Min Du
- Department of Pharmacy, Affiliated Hospital of Jiangnan UniversityWuxi, Jiangsu, People’s Republic of China
| | - Rong Liang
- School of Chemical and Material Engineering, Jiangnan UniversityWuxi, Jiangsu, People’s Republic of China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan UniversityWuxi, Jiangsu, People’s Republic of China
| | - Wenxia Dong
- Department of Education and Nephrology, Affiliated Hospital of Jiangnan UniversityWuxi, Jiangsu, People’s Republic of China
| |
Collapse
|
18
|
Novel detection of post-translational modifications in human monocyte-derived dendritic cells after chronic alcohol exposure: Role of inflammation regulator H4K12ac. Sci Rep 2017; 7:11236. [PMID: 28894190 PMCID: PMC5593989 DOI: 10.1038/s41598-017-11172-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 08/21/2017] [Indexed: 01/21/2023] Open
Abstract
Previous reports on epigenetic mechanisms involved in alcohol abuse have focus on hepatic and neuronal regions, leaving the immune system and specifically monocyte-derived dendritic cells (MDDCs) understudied. Our lab has previously shown histone deacetylases are modulated in cells derived from alcohol users and after in vitro acute alcohol treatment of human MDDCs. In the current study, we developed a novel screening tool using matrix assisted laser desorption ionization-fourier transform-ion cyclotron resonance mass spectrometry (MALDI-FT-ICR MS) and single cell imaging flow cytometry to detect post-translational modifications (PTMs) in human MDDCs due to chronic alcohol exposure. Our results demonstrate, for the first time, in vitro chronic alcohol exposure of MDDCs modulates H3 and H4 and induces a significant increase in acetylation at H4K12 (H4K12ac). Moreover, the Tip60/HAT inhibitor, NU9056, was able to block EtOH-induced H4K12ac, enhancing the effect of EtOH on IL-15, RANTES, TGF-β1, and TNF-α cytokines while restoring MCP-2 levels, suggesting that H4K12ac may be playing a major role during inflammation and may serve as an inflammation regulator or a cellular stress response mechanism under chronic alcohol conditions.
Collapse
|
19
|
Mandal C, Halder D, Jung KH, Chai YG. In Utero Alcohol Exposure and the Alteration of Histone Marks in the Developing Fetus: An Epigenetic Phenomenon of Maternal Drinking. Int J Biol Sci 2017; 13:1100-1108. [PMID: 29104501 PMCID: PMC5666325 DOI: 10.7150/ijbs.21047] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/07/2017] [Indexed: 12/12/2022] Open
Abstract
Ethanol is well known for its teratogenic effects during fetal development. Maternal alcohol consumption allows the developing fetus to experience the detrimental effects of alcohol exposure. Alcohol-mediated teratogenic effects can vary based on the dosage and the length of exposure. The specific mechanism of action behind this teratogenic effect is still unknown. Previous reports demonstrated that alcohol participates in epigenetic alterations, especially histone modifications during fetal development. Additional research is necessary to understand the correlation between major epigenetic events and alcohol-mediated teratogenesis such as that observed in fetal alcohol spectrum disorder (FASD). Here, we attempted to collect all the available information concerning alcohol-mediated histone modifications during gestational fetal development. We hope that this review will aid researchers to further examine the issues associated with ethanol exposure.
Collapse
Affiliation(s)
- Chanchal Mandal
- Department of Molecular and Life Science, Hanyang University, Ansan, Republic of Korea
| | - Debasish Halder
- Department of Molecular and Life Science, Hanyang University, Ansan, Republic of Korea
| | - Kyoung Hwa Jung
- Department of Molecular and Life Science, Hanyang University, Ansan, Republic of Korea.,Institute of Natural Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Young Gyu Chai
- Department of Molecular and Life Science, Hanyang University, Ansan, Republic of Korea.,Department of Bionanotechnology, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
20
|
Kresovich JK, Zhang Z, Fang F, Zheng Y, Sanchez-Guerra M, Joyce BT, Zhong J, Chervona Y, Wang S, Chang D, McCracken JP, Díaz A, Bonzini M, Carugno M, Koutrakis P, Kang CM, Bian S, Gao T, Byun HM, Schwartz J, Baccarelli AA, Hou L. Histone 3 modifications and blood pressure in the Beijing Truck Driver Air Pollution Study. Biomarkers 2017; 22:584-593. [PMID: 28678539 DOI: 10.1080/1354750x.2017.1347961] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
CONTEXT Histone modifications regulate gene expression; dysregulation has been linked with cardiovascular diseases. Associations between histone modification levels and blood pressure in humans are unclear. OBJECTIVE We examine the relationship between global histone concentrations and various markers of blood pressure. MATERIALS AND METHODS Using the Beijing Truck Driver Air Pollution Study, we investigated global peripheral white blood cell histone modifications (H3K9ac, H3K9me3, H3K27me3, and H3K36me3) associations with pre- and post-work measurements of systolic (SBP) and diastolic (DBP) blood pressure, mean arterial pressure (MAP), and pulse pressure (PP) using multivariable mixed-effect models. RESULTS H3K9ac was negatively associated with pre-work SBP and MAP; H3K9me3 was negatively associated with pre-work SBP, DBP, and MAP; and H3K27me3 was negatively associated with pre-work SBP. Among office workers, H3K9me3 was negatively associated with pre-work SBP, DBP, and MAP. Among truck drivers, H3K9ac and H3K27me were negatively associated with pre-work SBP, and H3K27me3 was positively associated with post-work PP. DISCUSSION AND CONCLUSION Epigenome-wide H3K9ac, H3K9me3, and H3K27me3 were negatively associated with multiple pre-work blood pressure measures. These associations substantially changed during the day, suggesting an influence of daily activities. Blood-based histone modification biomarkers are potential candidates for studies requiring estimations of morning/pre-work blood pressure.
Collapse
Affiliation(s)
- Jacob K Kresovich
- a Department of Preventive Medicine , Northwestern University Feinberg School of Medicine , Chicago , IL , USA.,b Division of Epidemiology and Biostatistics, School of Public Health , University of Illinois-Chicago , Chicago , IL , USA
| | - Zhou Zhang
- a Department of Preventive Medicine , Northwestern University Feinberg School of Medicine , Chicago , IL , USA.,c Driskill Graduate Program in Life Sciences, Feinberg School of Medicine , Northwestern University , Chicago , IL , USA
| | - Fang Fang
- d Department of Epidemiology, College for Public Health and Social Justice , Saint Louis University , Saint Louis , MO , USA
| | - Yinan Zheng
- a Department of Preventive Medicine , Northwestern University Feinberg School of Medicine , Chicago , IL , USA.,e Institute for Public Health and Medicine, Feinberg School of Medicine , Northwestern University , Chicago , IL , USA
| | - Marco Sanchez-Guerra
- f Department of Environmental Health, Harvard T.H. Chan School of Public Health , Harvard University , Boston , MA , USA.,g Department of Developmental Neurobiology , National Institute of Perinatology , Mexico City , Mexico
| | - Brian T Joyce
- a Department of Preventive Medicine , Northwestern University Feinberg School of Medicine , Chicago , IL , USA.,b Division of Epidemiology and Biostatistics, School of Public Health , University of Illinois-Chicago , Chicago , IL , USA
| | - Jia Zhong
- f Department of Environmental Health, Harvard T.H. Chan School of Public Health , Harvard University , Boston , MA , USA
| | - Yana Chervona
- h Department of Environmental Medicine , New York University School of Medicine , New York , NY , USA
| | - Sheng Wang
- i Department of Occupational and Environmental Health , Peking University Health Science Center, Peking University , Beijing , China
| | - Dou Chang
- j Department of Safety Engineering , China Institute of Industrial Relations , Beijing , China
| | - John P McCracken
- f Department of Environmental Health, Harvard T.H. Chan School of Public Health , Harvard University , Boston , MA , USA
| | - Anaite Díaz
- k Center for Health Studies , Universidad del Valle de Guatemala , Guatemala City , Guatemala
| | - Matteo Bonzini
- l Department of Clinical Sciences and Community Medicine , University of Milan and IRCCS Fondazione Ca' Granda OspedaleMaggiore Policlinico , Milan , Italy
| | - Michele Carugno
- l Department of Clinical Sciences and Community Medicine , University of Milan and IRCCS Fondazione Ca' Granda OspedaleMaggiore Policlinico , Milan , Italy
| | - Petros Koutrakis
- f Department of Environmental Health, Harvard T.H. Chan School of Public Health , Harvard University , Boston , MA , USA
| | - Choong-Min Kang
- f Department of Environmental Health, Harvard T.H. Chan School of Public Health , Harvard University , Boston , MA , USA
| | - Shurui Bian
- c Driskill Graduate Program in Life Sciences, Feinberg School of Medicine , Northwestern University , Chicago , IL , USA
| | - Tao Gao
- a Department of Preventive Medicine , Northwestern University Feinberg School of Medicine , Chicago , IL , USA
| | - Hyang-Min Byun
- m Human Nutrition Research Centre, Institute of Cellular Medicine , Newcastle University , Newcastle upon Tyne , United Kingdom
| | - Joel Schwartz
- f Department of Environmental Health, Harvard T.H. Chan School of Public Health , Harvard University , Boston , MA , USA
| | - Andrea A Baccarelli
- f Department of Environmental Health, Harvard T.H. Chan School of Public Health , Harvard University , Boston , MA , USA
| | - Lifang Hou
- a Department of Preventive Medicine , Northwestern University Feinberg School of Medicine , Chicago , IL , USA.,n Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine , Northwestern University , Chicago , IL , USA
| |
Collapse
|
21
|
Peng C, Luo X, Li S, Sun H. Phenylephrine-induced cardiac hypertrophy is attenuated by a histone acetylase inhibitor anacardic acid in mice. MOLECULAR BIOSYSTEMS 2017; 13:714-724. [PMID: 28194469 DOI: 10.1039/c6mb00692b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cardiac hypertrophy is a complex process involving highly coordinated but tight regulation of multiple elements, such as in epigenetics, which make an important contribution to myocardium remodeling and cardiac hypertrophy. Epigenetic regulations, particularly histone acetylation, have been implicated in cardiac hypertrophy, however, the exact mechanism is still largely unknown. In the present study, we explored the potential attenuating effects of Chinese herbal extract anacardic acid on phenylephrine-induced cardiac hypertrophy and the underlying mechanism. The mouse cardiac hypertrophy model was established and the hearts were collected from C57BL/6 mice for further analyses. The data showed that anacardic acid modulated the cardiac genes expression and attenuated the phenylephrine-induced cardiac hypertrophy via the suppression of histone acetylases activity and downstream cardiac genes. In addition, anacardic acid abrogated histone and MEF2A acetylation and DNA-binding activity by blocking p300-HAT and PCAF-HAT activities. In addition, anacardic acid normalized the cardiac hypertrophy-related genes expressions (ANP, BNP, cTnT, cTnI, β-MHC, and Cx43) induced by phenylephrine at the level of transcription and translation. In addition, anacardic acid did not affect the blood routine index, hepatic function, renal function, and myocardial enzymes. Therefore, anacardic acid may prove to be a candidate drug to cure hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- Chang Peng
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical College, Guizhou, China
| | - Xiaomei Luo
- Department of Physiology, Zunyi Medical College, Guizhou, China
| | - Shuo Li
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical College, Guizhou, China
| | - Huichao Sun
- Heart Center, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
22
|
Tan J, Jiang X, Yin G, He L, Liu J, Long Z, Jiang Z, Yao K. Anacardic acid induces cell apoptosis of prostatic cancer through autophagy by ER stress/DAPK3/Akt signaling pathway. Oncol Rep 2017; 38:1373-1382. [PMID: 28731173 PMCID: PMC5549027 DOI: 10.3892/or.2017.5841] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 07/03/2017] [Indexed: 12/18/2022] Open
Abstract
Anacardic acid, which is commonly seen in plants of Anacardiaceae, is an important composition of cashew, ginkgo leaf and fruit, and it has been suggested in previous research to show antitumor activity. The main aim of the present study was to evaluate the anticancer effects of anacardic acid on cell apoptosis of prostatic cancer and molecular mechanisms of this phenomenon. In this study we found that anacardic acid inhibited cell proliferation, induced apoptosis and caspase-3/9 activities and Bax protein expression of prostatic cancer. Anacardic acid induced the ER stress inducing factors (BiP, CHOP, p-eIF2α), autophagy, LC3, Beclin-1, Atg 7 and DAPK3 protein expression, and suppressed p-Akt and p-mTOR protein expression of prostatic cancer. Si-CHOP was used to inhibit ER stress in prostatic cancer by anacardic acid, which showed that the cell proliferation was increased, apoptosis, and caspase-3/9 activities and Bax protein expression was suppressed, autophagy, LC3, Beclin-1, Atg 7 and DAPK3 protein expression was reduced, and p-Akt and p-mTOR protein expression was promoted. DAPK3 inhibited p-Akt and p-mTOR protein expression, enhanced the anticancer effects of anacardic acid on prostatic cancer through autophagy. For the first time, the present study showed that anacardic acid induces cell apoptosis of prostatic cancer through autophagy by ER stress/DAPK3/Akt signaling pathway.
Collapse
Affiliation(s)
- Jing Tan
- Department of Urology, The Third Xiangya Hospital of Central South University; Institute of Prostate Disease, Central South University, Changsha, Hunan 410013, P.R. China
| | - Xianzhen Jiang
- Department of Urology, The Third Xiangya Hospital of Central South University; Institute of Prostate Disease, Central South University, Changsha, Hunan 410013, P.R. China
| | - Guangming Yin
- Department of Urology, The Third Xiangya Hospital of Central South University; Institute of Prostate Disease, Central South University, Changsha, Hunan 410013, P.R. China
| | - Leye He
- Department of Urology, The Third Xiangya Hospital of Central South University; Institute of Prostate Disease, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jianye Liu
- Department of Urology, The Third Xiangya Hospital of Central South University; Institute of Prostate Disease, Central South University, Changsha, Hunan 410013, P.R. China
| | - Zhi Long
- Department of Urology, The Third Xiangya Hospital of Central South University; Institute of Prostate Disease, Central South University, Changsha, Hunan 410013, P.R. China
| | - Zhiqiang Jiang
- Department of Urology, The Third Xiangya Hospital of Central South University; Institute of Prostate Disease, Central South University, Changsha, Hunan 410013, P.R. China
| | - Kun Yao
- Department of Urology, The Third Xiangya Hospital of Central South University; Institute of Prostate Disease, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
23
|
Changes to histone modifications following prenatal alcohol exposure: An emerging picture. Alcohol 2017; 60:41-52. [PMID: 28431792 DOI: 10.1016/j.alcohol.2017.01.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 12/12/2022]
Abstract
Epigenetic mechanisms are important for facilitating gene-environment interactions in many disease etiologies, including Fetal Alcohol Spectrum Disorders (FASD). Extensive research into the role of DNA methylation and miRNAs in animal models has illuminated the complex role of these mechanisms in FASD. In contrast, histone modifications have not been as well researched, due in part to being less stable than DNA methylation and less well-characterized in disease. It is now apparent that even changes in transient marks can have profound effects if they alter developmental trajectories. In addition, many histone methylations are now known to be relatively stable and can propagate themselves. As technologies and knowledge have advanced, a small group has investigated the role of histone modifications in FASD. Here, we synthesize the data on the effects of prenatal alcohol exposure (PAE) on histone modifications. Several key points are evident. AS with most alcohol-induced outcomes, timing and dosage differences yield variable effects. Nevertheless, these studies consistently find enrichment of H3K9ac, H3K27me2,3, and H3K9me2, and increased expression of histone acetyltransferases and methyltransferases. The consistency of these alterations may implicate them as key mechanisms underlying FASD. Histone modification changes do not often correlate with gene expression changes, though some important examples exist. Encouragingly, attempts to reproduce specific histone modification changes are very often successful. We comment on possible directions for future studies, focusing on further exploration of current trends, expansion of time-point and dosage regimes, and evaluation of biomarker potential.
Collapse
|
24
|
Yi Q, Xu H, Yang K, Wang Y, Tan B, Tian J, Zhu J. Islet-1 induces the differentiation of mesenchymal stem cells into cardiomyocyte-like cells through the regulation of Gcn5 and DNMT-1. Mol Med Rep 2017; 15:2511-2520. [PMID: 28447752 PMCID: PMC5428324 DOI: 10.3892/mmr.2017.6343] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/09/2017] [Indexed: 12/18/2022] Open
Abstract
Previous studies from this group demonstrated that insulin gene enhancer binding protein ISL-1 (Islet-1) specifically induces the differentiation of mesenchymal stem cells (MSCs) into cardiomyocyte-like cells through histone acetylation. However, the underlying mechanisms remain unclear. In the present study, the role of the histone acetylation and DNA methylation on the regulatory mechanism of the Islet-1 was further investigated by methylation-specific polymerase chain reaction (PCR), chromatin immunoprecipitation quantitative PCR and western blot analysis. The results demonstrated that Islet-1 upregulated expression of general control of amino acid biosynthesis protein 5 (Gcn5) and enhanced the binding of Gcn5 to the promoters of GATA binding protein 4 (GATA4) and NK2 homeobox 5 (Nkx2.5). In addition, Islet-1 downregulated DNA methyltransferase (DNMT)-1 expression and reduced its binding to the GATA4 promoter. In contrast, the amount of DNMT-1 binding on Nkx2.5 did not match the expression trend. Therefore, it was concluded that Islet-1 may influence the histone acetylation and DNA methylation of GATA4 promoter region via Gcn5 and DNMT-1 during the MSC differentiation into cardiomyocyte-like cells, thus prompting the expression of GATA4. The Nkx2.5 was likely only affected by histone acetylation instead of DNA methylation. The present study demonstrated that Islet-1 induces the differentiation of mesenchymal stem cells into cardiomyocyte-like cells through a specific interaction between histone acetylation and DNA methylation on regulating GATA4.
Collapse
Affiliation(s)
- Qin Yi
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Hao Xu
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Ke Yang
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Yue Wang
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Bin Tan
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Jie Tian
- Cardiovascular Department (Internal Medicine), Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Jing Zhu
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| |
Collapse
|
25
|
Lussier AA, Weinberg J, Kobor MS. Epigenetics studies of fetal alcohol spectrum disorder: where are we now? Epigenomics 2017; 9:291-311. [PMID: 28234026 PMCID: PMC5549650 DOI: 10.2217/epi-2016-0163] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Adverse in utero events can alter the development and function of numerous physiological systems, giving rise to lasting neurodevelopmental deficits. In particular, data have shown that prenatal alcohol exposure can reprogram neurobiological systems, altering developmental trajectories and resulting in increased vulnerability to adverse neurobiological, behavioral and health outcomes. Increasing evidence suggests that epigenetic mechanisms are potential mediators for the reprogramming of neurobiological systems, as they may provide a link between the genome, environmental conditions and neurodevelopmental outcomes. This review outlines the current state of epigenetic research in fetal alcohol spectrum disorder, highlighting the role of epigenetic mechanisms in the reprogramming of neurobiological systems by alcohol and as potential diagnostic tools for fetal alcohol spectrum disorder. We also present an assessment of the current limitations in studies of prenatal alcohol exposure, and highlight the future steps needed in the field.
Collapse
Affiliation(s)
- Alexandre A Lussier
- Department of Medical Genetics, Centre for Molecular Medicine & Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joanne Weinberg
- Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael S Kobor
- Department of Medical Genetics, Centre for Molecular Medicine & Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada.,Human Early Learning Partnership, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
26
|
Hu L, Yu Y, Huang H, Fan H, Hu L, Yin C, Li K, Fulton DJR, Chen F. Epigenetic Regulation of Interleukin 6 by Histone Acetylation in Macrophages and Its Role in Paraquat-Induced Pulmonary Fibrosis. Front Immunol 2017; 7:696. [PMID: 28194150 PMCID: PMC5276821 DOI: 10.3389/fimmu.2016.00696] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 12/28/2016] [Indexed: 12/29/2022] Open
Abstract
Overexpression of interleukin 6 (IL-6) has been proposed to contribute to pulmonary fibrosis and other fibrotic diseases. However, the regulatory mechanisms and the role of IL-6 in fibrosis remain poorly understood. Epigenetics refers to alterations of gene expression without changes in the DNA sequence. Alternation of chromatin accessibility by histone acetylation acts as a critical epigenetic mechanism to regulate various gene transcriptions. The goal of this study was to determine the impact of IL-6 in paraquat (PQ)-induced pulmonary fibrosis and to explore whether the epigenetic regulations may play a role in transcriptional regulation of IL-6. In PQ-treated lungs and macrophages, we found that the mRNA and protein expression of IL-6 was robustly increased in a time-dependent and a dose-dependent manner. Our data demonstrated that PQ-induced IL-6 expression in macrophages plays a central role in pulmonary fibrosis through enhanced epithelial-to-mesenchymal transition (EMT). IL-6 expression and its role to enhance PQ-induced pulmonary fibrosis were increased by histone deacetylase (HDAC) inhibition and prevented by histone acetyltransferase (HAT) inhibition. In addition, the ability of CRISPR-ON transcription activation system (CRISPR-ON) to promote transcription of IL-6 was enhanced by HDAC inhibitor and blocked by HAT inhibitor. Chromatin immunoprecipitation experiments revealed that HDAC inhibitor increased histones activation marks H3K4me3 and H3K9ac at IL-6 promoter regions. In conclusion, IL-6 functioning through EMT in PQ-induced pulmonary fibrosis was regulated dynamically by HDAC and HAT both in vitro and in vivo via epigenetically regulating chromatin accessibility.
Collapse
Affiliation(s)
- Lingli Hu
- Department of Forensic Medicine, Nanjing Medical University , Nanjing , China
| | - Yanfang Yu
- Department of Forensic Medicine, Nanjing Medical University , Nanjing , China
| | - Huijie Huang
- Department of Forensic Medicine, Nanjing Medical University , Nanjing , China
| | - Hanting Fan
- Department of Forensic Medicine, Nanjing Medical University , Nanjing , China
| | - Li Hu
- Department of Forensic Medicine, Nanjing Medical University , Nanjing , China
| | - Caiyong Yin
- Department of Forensic Medicine, Nanjing Medical University , Nanjing , China
| | - Kai Li
- Department of Forensic Medicine, Nanjing Medical University , Nanjing , China
| | - David J R Fulton
- Vascular Biology Center, Augusta University, Augusta, GA, USA; Department of Pharmacology, Augusta University, Augusta, GA, USA
| | - Feng Chen
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, China; Vascular Biology Center, Augusta University, Augusta, GA, USA
| |
Collapse
|
27
|
Yan X, Pan B, Lv T, Liu L, Zhu J, Shen W, Huang X, Tian J. Inhibition of histone acetylation by curcumin reduces alcohol-induced fetal cardiac apoptosis. J Biomed Sci 2017; 24:1. [PMID: 28056970 PMCID: PMC5217636 DOI: 10.1186/s12929-016-0310-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/05/2016] [Indexed: 02/01/2023] Open
Abstract
Background Prenatal alcohol exposure may cause cardiac development defects, however, the underlying mechanisms are not yet clear. In the present study we have investigated the roles of histone modification by curcumin on alcohol induced fetal cardiac abnormalities during the development. Methods and results Q-PCR and Western blot results showed that alcohol exposure increased gene and active forms of caspase-3 and caspase-8, while decreased gene and protein of bcl-2. ChIP assay results showed that, alcohol exposure increased the acetylation of histone H3K9 near the promoter region of caspase-3 and caspase-8, and decreased the acetylation of histone H3K9 near the promoter region of bcl-2. TUNEL assay data revealed that alcohol exposure increased the apoptosis levels in the embryonic hearts. In vitro experiments demonstrated that curcumin treatment could reverse the up-regulation of active forms of caspase-3 and caspase-8, and down-regulation of bcl-2 induced by alcohol treatment. In addition, curcumin also corrected the high level of histone H3K9 acetylation induced by alcohol. Moreover, the high apoptosis level induced by alcohol was reversed after curcumin treatment in cardiac cells. Conclusions These findings indicate that histone modification may play an important role in mediating alcohol induced fetal cardiac apoptosis, possibly through the up-regulation of H3K9 acetylation near the promoter regions of apoptotic genes. Curcumin treatment may correct alcohol-mediated fetal cardiac apoptosis, suggesting that curcumin may play a protective role against alcohol abuse caused cardiac damage during pregnancy.
Collapse
Affiliation(s)
- Xiaochen Yan
- Department of Cardiology, Heart Centre, The Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Rold, Yu Zhong District, Chongqing, 400014, China.,Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Bo Pan
- Department of Cardiology, Heart Centre, The Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Rold, Yu Zhong District, Chongqing, 400014, China.,Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Tiewei Lv
- Department of Cardiology, Heart Centre, The Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Rold, Yu Zhong District, Chongqing, 400014, China
| | - Lingjuan Liu
- Department of Cardiology, Heart Centre, The Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Rold, Yu Zhong District, Chongqing, 400014, China
| | - Jing Zhu
- Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Wen Shen
- Department of Biomedical Science, Charlie E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Road, Boca Raton, FL, 33431, USA
| | - Xupei Huang
- Department of Biomedical Science, Charlie E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Road, Boca Raton, FL, 33431, USA.
| | - Jie Tian
- Department of Cardiology, Heart Centre, The Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Rold, Yu Zhong District, Chongqing, 400014, China.
| |
Collapse
|
28
|
Aracelli DSL, Md. TI, Antonio LGJ, Joao MDCES, Marcus VOBDA, Marcia FCJP, Hercilia MLR, Maria DGFDM, Ana ADCMC, Jose ADL. Pharmacological properties of cashew (Anacardium occidentale). ACTA ACUST UNITED AC 2016. [DOI: 10.5897/ajb2015.15051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
29
|
Xu H, Yi Q, Yang C, Wang Y, Tian J, Zhu J. Histone modifications interact with DNA methylation at the GATA4 promoter during differentiation of mesenchymal stem cells into cardiomyocyte-like cells. Cell Prolif 2016; 49:315-29. [PMID: 27117983 DOI: 10.1111/cpr.12253] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/29/2016] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES A previous study of ours confirmed that Islet-1 specifically induces differentiation of MSCs into cardiomyocytes, and that one of the mechanisms underlying that process is regulation of histone acetylation. Here, we further explore the mechanism of MSC differentiation into cardiomyocytes from the perspective of interactions between epigenetic modifications. MATERIALS AND METHODS We used lentiviral vectors to overexpress Islet-1 in MSCs, and ChIP-qPCR, MSP and BSP were performed to detect levels of histone acetylation/methylation and DNA methylation in the GATA4 and Nkx2.5 promoters. To further explore relationships between these epigenetic modifications, we used 5-aza or TSA to interfere with DNA methylation and histone acetylation, respectively, and detected effects on the other two modifications. RESULTS Histone acetylation level increased and its methylation level decreased at GATA4 and Nkx2.5 promoters; DNA methylation level was reduced at the GATA4 promoter but did not change at the Nkx2.5 promoter. Furthermore, 5-aza increased histone acetylation level and reduced its methylation level at the GATA4 promoter but had no effect on the Nkx2.5 promoter; TSA reduced histone methylation and DNA methylation levels at the GATA4 promoter, but it only reduced histone methylation level at the Nkx2.5 promoter. CONCLUSIONS Histone acetylation/methylation and DNA methylation were both involved in regulating GATA4 expression, but Nkx2.5 expression was not regulated by DNA methylation. These three modifications had high correlation with each other during regulation of GATA4 and produced a regulation loop at the GATA4 promoter.
Collapse
Affiliation(s)
- Hao Xu
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Qin Yi
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Chunmei Yang
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Yue Wang
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Jie Tian
- Cardiovascular Department (Internal Medicine), Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Jing Zhu
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| |
Collapse
|
30
|
Epigenetic Mechanisms in Developmental Alcohol-Induced Neurobehavioral Deficits. Brain Sci 2016; 6:brainsci6020012. [PMID: 27070644 PMCID: PMC4931489 DOI: 10.3390/brainsci6020012] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/17/2016] [Accepted: 04/05/2016] [Indexed: 12/22/2022] Open
Abstract
Alcohol consumption during pregnancy and its damaging consequences on the developing infant brain are significant public health, social, and economic issues. The major distinctive features of prenatal alcohol exposure in humans are cognitive and behavioral dysfunction due to damage to the central nervous system (CNS), which results in a continuum of disarray that is collectively called fetal alcohol spectrum disorder (FASD). Many rodent models have been developed to understand the mechanisms of and to reproduce the human FASD phenotypes. These animal FASD studies have provided several molecular pathways that are likely responsible for the neurobehavioral abnormalities that are associated with prenatal alcohol exposure of the developing CNS. Recently, many laboratories have identified several immediate, as well as long-lasting, epigenetic modifications of DNA methylation, DNA-associated histone proteins and microRNA (miRNA) biogenesis by using a variety of epigenetic approaches in rodent FASD models. Because DNA methylation patterns, DNA-associated histone protein modifications and miRNA-regulated gene expression are crucial for synaptic plasticity and learning and memory, they can therefore offer an answer to many of the neurobehavioral abnormalities that are found in FASD. In this review, we briefly discuss the current literature of DNA methylation, DNA-associated histone proteins modification and miRNA and review recent developments concerning epigenetic changes in FASD.
Collapse
|
31
|
Alcohol-induced histone H3K9 hyperacetylation and cardiac hypertrophy are reversed by a histone acetylases inhibitor anacardic acid in developing murine hearts. Biochimie 2015; 113:1-9. [DOI: 10.1016/j.biochi.2015.03.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/11/2015] [Indexed: 01/04/2023]
|