1
|
Mullan R, Davis AD, Sutton TT, Johnsen S. An Investigation into the Mechanism Mediating Counterillumination in Myctophid Fishes (Myctophidae). THE BIOLOGICAL BULLETIN 2023; 244:63-69. [PMID: 37167619 DOI: 10.1086/724803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
AbstractCounterillumination is a camouflage strategy employed primarily by mesopelagic fishes, sharks, crustaceans, and squid, which use ventral bioluminescence to obscure their silhouettes when viewed from below. Although certain counterilluminating species have been shown to control the intensity of their ventral emissions to match the background downwelling light, the feedback mechanism mediating this ability is poorly understood. One proposed mechanism involves the presence and use of eye-facing photophores that would allow simultaneous detection and comparison of photophore emissions and downwelling solar light. Eye-facing photophores have been found in at least 34 species of counterilluminating stomiiform fishes and the myctophid Tarletonbeania crenularis. Here, we examined nine phylogenetically spaced myctophid species for eye-facing photophores to assess whether this mechanism is as prevalent in this group as it is in the Stomiiformes. First, microcomputed tomography imaging data were collected for each species, and three-dimensional reconstructions of the fishes were developed to identify potential eye-facing photophores. The fishes were then dissected under a stereomicroscope to confirm the presence of all identified photophores, probe for any photophores missed in the reconstruction analysis, and determine the orientation of the photophores' emissions. Although photophores were identified near the orbits of all species examined, none of the fishes' photophores directed light into their orbits, suggesting that myctophids may regulate bioluminescence through an alternative mechanism.
Collapse
|
2
|
Staggl MA, Ruthensteiner B, Straube N. Head anatomy of a lantern shark wet-collection specimen (Chondrichthyes: Etmopteridae). J Anat 2023; 242:872-890. [PMID: 36695312 PMCID: PMC10093163 DOI: 10.1111/joa.13822] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 01/26/2023] Open
Abstract
In this study, we apply a two-step (untreated and soft tissue stained) diffusible iodine-based contrast-enhanced micro-computed tomography array to a wet-collection Lantern Shark specimen of Etmopterus lucifer. The focus of our scanning approach is the head anatomy. The unstained CT data allow the imaging of mineralized (skeletal) tissue, while results for soft tissue were achieved after staining for 120 h in a 1% ethanolic iodine solution. Three-dimensional visualization after the segmentation of hard as well as soft tissue reveals new details of tissue organization and allows us to draw conclusions on the significance of organs in their function. Outstanding are the ampullae of Lorenzini for electroreception, which appear as the dominant sense along with the olfactory system. Corresponding brain areas of these sensory organs are significantly enlarged as well and likely reflect adaptations to the lantern sharks' deep-sea habitat. While electroreception supports the capture of living prey, the enlarged olfactory system can guide the scavenging of these opportunistic feeders. Compared to other approaches based on the manual dissection of similar species, CT scanning is superior in some but not all aspects. For example, fenestrae of the cranial nerves within the chondrocranium cannot be identified reflecting the limitations of the method, however, CT scanning is less invasive, and the staining is mostly reversible and can be rinsed out.
Collapse
Affiliation(s)
- Manuel Andreas Staggl
- Department of Biology II, Ludwig-Maximilians-Universität München, München, Germany.,SNSB-Bavarian State Collection of Zoology, Munich, Germany.,Department of Palaeontology, Faculty of Earth Sciences, Geography and Astronomy, University of Vienna, Vienna, Austria.,Vienna Doctoral School of Ecology and Evolution (VDSEE), University of Vienna, Vienna, Austria
| | | | - Nicolas Straube
- SNSB-Bavarian State Collection of Zoology, Munich, Germany.,Department of Natural History, University Museum of Bergen, Bergen, Norway
| |
Collapse
|
3
|
Hart NS, Lamb TD, Patel HR, Chuah A, Natoli RC, Hudson NJ, Cutmore SC, Davies WIL, Collin SP, Hunt DM. Visual Opsin Diversity in Sharks and Rays. Mol Biol Evol 2020; 37:811-827. [PMID: 31770430 DOI: 10.1093/molbev/msz269] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The diversity of color vision systems found in extant vertebrates suggests that different evolutionary selection pressures have driven specializations in photoreceptor complement and visual pigment spectral tuning appropriate for an animal's behavior, habitat, and life history. Aquatic vertebrates in particular show high variability in chromatic vision and have become important models for understanding the role of color vision in prey detection, predator avoidance, and social interactions. In this study, we examined the capacity for chromatic vision in elasmobranch fishes, a group that have received relatively little attention to date. We used microspectrophotometry to measure the spectral absorbance of the visual pigments in the outer segments of individual photoreceptors from several ray and shark species, and we sequenced the opsin mRNAs obtained from the retinas of the same species, as well as from additional elasmobranch species. We reveal the phylogenetically widespread occurrence of dichromatic color vision in rays based on two cone opsins, RH2 and LWS. We also confirm that all shark species studied to date appear to be cone monochromats but report that in different species the single cone opsin may be of either the LWS or the RH2 class. From this, we infer that cone monochromacy in sharks has evolved independently on multiple occasions. Together with earlier discoveries in secondarily aquatic marine mammals, this suggests that cone-based color vision may be of little use for large marine predators, such as sharks, pinnipeds, and cetaceans.
Collapse
Affiliation(s)
- Nathan S Hart
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Trevor D Lamb
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Hardip R Patel
- Department of Genome Sciences, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Aaron Chuah
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Riccardo C Natoli
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.,ANU Medical School, The Australian National University, Canberra, ACT, Australia
| | - Nicholas J Hudson
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Scott C Cutmore
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Wayne I L Davies
- Umeå Centre for Molecular Medicine (UCMM), Umeå University, Umeå, Sweden
| | - Shaun P Collin
- School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| | - David M Hunt
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia.,Centre for Ophthalmology and Visual Science, Lions Eye Institute, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
4
|
From extraocular photoreception to pigment movement regulation: a new control mechanism of the lanternshark luminescence. Sci Rep 2020; 10:10195. [PMID: 32576969 PMCID: PMC7311519 DOI: 10.1038/s41598-020-67287-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/28/2020] [Indexed: 11/08/2022] Open
Abstract
The velvet belly lanternshark, Etmopterus spinax, uses counterillumination to disappear in the surrounding blue light of its marine environment. This shark displays hormonally controlled bioluminescence in which melatonin (MT) and prolactin (PRL) trigger light emission, while α-melanocyte-stimulating hormone (α-MSH) and adrenocorticotropic hormone (ACTH) play an inhibitory role. The extraocular encephalopsin (Es-Opn3) was also hypothesized to act as a luminescence regulator. The majority of these compounds (MT, α-MSH, ACTH, opsin) are members of the rapid physiological colour change that regulates the pigment motion within chromatophores in metazoans. Interestingly, the lanternshark photophore comprises a specific iris-like structure (ILS), partially composed of melanophore-like cells, serving as a photophore shutter. Here, we investigated the role of (i) Es-Opn3 and (ii) actors involved in both MT and α-MSH/ACTH pathways on the shark bioluminescence and ILS cell pigment motions. Our results reveal the implication of Es-Opn3, MT, inositol triphosphate (IP3), intracellular calcium, calcium-dependent calmodulin and dynein in the ILS cell pigment aggregation. Conversely, our results highlighted the implication of the α-MSH/ACTH pathway, involving kinesin, in the dispersion of the ILS cell pigment. The lanternshark luminescence then appears to be controlled by the balanced bidirectional motion of ILS cell pigments within the photophore. This suggests a functional link between photoreception and photoemission in the photogenic tissue of lanternsharks and gives precious insights into the bioluminescence control of these organisms.
Collapse
|
5
|
Davis AL, Sutton TT, Kier WM, Johnsen S. Evidence that eye-facing photophores serve as a reference for counterillumination in an order of deep-sea fishes. Proc Biol Sci 2020; 287:20192918. [PMID: 32517614 DOI: 10.1098/rspb.2019.2918] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Counterillumination, the masking of an animal's silhouette with ventral photophores, is found in a number of mesopelagic taxa but is difficult to employ because it requires that the animal match the intensity of downwelling light without seeing its own ventral photophores. It has been proposed that the myctophid, Tarletonbeania crenularis, uses a photophore directed towards the eye, termed an eye-facing photophore, as a reference standard that it adjusts to match downwelling light. The potential use of this mechanism, however, has not been evaluated in other fishes. Here, we use micro-computed tomography, photography and dissection to evaluate the presence/absence of eye-facing photophores in three families of stomiiform fishes. We found that all sampled species with ventral photophores capable of counterillumination possess an eye-facing photophore that is pigmented on the anterior and lateral sides, thus preventing its use as a laterally directed signal, lure or searchlight. The two species that are incapable of counterillumination, Cyclothone obscura and Sigmops bathyphilus, lack an eye-facing photophore. After determining the phylogenetic distribution of eye-facing photophores, we used histology to examine the morphology of the cranial tissue in Argyropelecus aculeatus and determined that light from the eye-facing photophore passes through a transparent layer of tissue, then the lens, and finally strikes the accessory retina. Additionally, eight of the 14 species for which fresh specimens were available had an aphakic gap that aligned with the path of emitted light from the eye-facing photophore, while the remaining six had no aphakic gap. These findings, combined with records of eye-facing photophores from distantly related taxa, strongly suggest that eye-facing photophores serve as a reference for counterillumination in these fishes.
Collapse
Affiliation(s)
| | - Tracey T Sutton
- Department of Marine and Environmental Sciences, Nova Southeastern University, Dania Beach, FL 33004, USA
| | - William M Kier
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Sönke Johnsen
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
6
|
Finucci B. First record of albinism in the lanternshark family, Etmopteridae. JOURNAL OF FISH BIOLOGY 2020; 96:1512-1515. [PMID: 32222971 DOI: 10.1111/jfb.14329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/12/2020] [Accepted: 03/20/2020] [Indexed: 06/10/2023]
Abstract
A single albino specimen of the lanternshark, Lucifer's dogfish (Etmopterus lucifer), is reported here. The specimen was found among museum collections, having been captured near Cape Palliser, off the North Island of New Zealand in 1984. Morphometrics are reported, and with no retainment of pigmentation, the specimen is considered a complete albino. This is the first record of albinism for the family Etmopteridae and one of a handful of records for any deep-sea chondrichthyans.
Collapse
Affiliation(s)
- Brittany Finucci
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
| |
Collapse
|
7
|
Affiliation(s)
- Joachim G. Frommen
- Division of Behavioural Ecology Institute of Ecology and Evolution University of Bern Hinterkappelen Switzerland
- Department of Natural Sciences Manchester Metropolitan University Manchester UK
| |
Collapse
|
8
|
Duchatelet L, Pinte N, Tomita T, Sato K, Mallefet J. Etmopteridae bioluminescence: dorsal pattern specificity and aposematic use. ZOOLOGICAL LETTERS 2019; 5:9. [PMID: 30873292 PMCID: PMC6402137 DOI: 10.1186/s40851-019-0126-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 02/25/2019] [Indexed: 06/02/2023]
Abstract
BACKGROUND In the darkness of the ocean, an impressive number of taxa have evolved the capability to emit light. Many mesopelagic organisms emit a dim ventral glow that matches with the residual environmental light in order to camouflage themselves (counterillumination function). Sharks use their luminescence mainly for this purpose. Specific lateral marks have been observed in Etmopteridae sharks (one of the two known luminous shark families) suggesting an inter/intraspecific recognition. Conversely, dorsal luminescence patterns are rare within these deep-sea organisms. RESULTS Here we report evidence that Etmopterus spinax, Etmopterus molleri and Etmopterus splendidus have dorsal luminescence patterns. These dorsal patterns consist of specific lines of luminous organs, called photophores, on the rostrum, dorsal area and at periphery of the spine. This dorsal light seems to be in contrast with the counterilluminating role of ventral photophores. However, skin photophores surrounding the defensive dorsal spines show a precise pattern supporting an aposematism function for this bioluminescence. Using in situ imaging, morphological and histological analysis, we reconstructed the dorsal light emission pattern on these species, with an emphasis on the photogenic skin associated with the spine. Analyses of video footage validated, for the first time, the defensive function of the dorsal spines. Finally, we did not find evidence that Etmopteridae possess venomous spine-associated glands, present in Squalidae and Heterondontidae, via MRI and CT scans. CONCLUSION This work highlights for the first time a species-specific luminous dorsal pattern in three deep-sea lanternsharks. We suggest an aposematic use of luminescence to reveal the presence of the dorsal spines. Despite the absence of venom apparatus, the defensive use of spines is documented for the first time in situ by video recordings.
Collapse
Affiliation(s)
- Laurent Duchatelet
- Marine Biology Laboratory, Earth and Life Institute, Catholic University of Louvain, Place Croix du Sud 3, 1348 Louvain-la-Neuve, Belgium
| | - Nicolas Pinte
- Marine Biology Laboratory, Earth and Life Institute, Catholic University of Louvain, Place Croix du Sud 3, 1348 Louvain-la-Neuve, Belgium
| | - Taketeru Tomita
- Okinawa Churaumi Aquarium, 424 Ishikawa, Motobu-cho, Okinawa prefecture 905-0206 Japan
- Zoological Laboratory, Okinawa Churashima Research Center, 888 Ishikawa, Motobu-cho, Okinawa 905-0206 Japan
| | - Keiichi Sato
- Okinawa Churaumi Aquarium, 424 Ishikawa, Motobu-cho, Okinawa prefecture 905-0206 Japan
| | - Jérôme Mallefet
- Marine Biology Laboratory, Earth and Life Institute, Catholic University of Louvain, Place Croix du Sud 3, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
9
|
Delroisse J, Duchatelet L, Flammang P, Mallefet J. De novo transcriptome analyses provide insights into opsin-based photoreception in the lanternshark Etmopterus spinax. PLoS One 2018; 13:e0209767. [PMID: 30596723 PMCID: PMC6312339 DOI: 10.1371/journal.pone.0209767] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022] Open
Abstract
The velvet belly lanternshark (Etmopterus spinax) is a small deep-sea shark commonly found in the Eastern Atlantic and the Mediterranean Sea. This bioluminescent species is able to emit a blue-green ventral glow used in counter-illumination camouflage, mainly. In this study, paired-end Illumina HiSeqTM technology has been employed to generate transcriptome data from eye and ventral skin tissues of the lanternshark. About 64 and 49 million Illumina reads were generated from skin and eye tissues respectively. The assembly allowed us to predict 119,749 total unigenes including 94,569 for the skin transcriptome and 94,365 for the eye transcriptome while 74,753 were commonly found in both transcriptomes. A taxonomy filtering was applied to extract a reference transcriptome containing 104,390 unigenes among which 38,836 showed significant similarities to known sequences in NCBI non-redundant protein sequences database. Around 58% of the annotated unigenes match with predicted genes from the Elephant shark (Callorhinchus milii) genome. The transcriptome completeness has been evaluated by successfully capturing around 98% of orthologous genes of the « Core eukaryotic gene dataset » within the E. spinax reference transcriptome. We identified potential "light-interacting toolkit" genes including multiple genes related to ocular and extraocular light perception processes such as opsins, phototransduction actors or crystallins. Comparative gene expression analysis reveals eye-specific expression of opsins, ciliary phototransduction actors, crystallins and vertebrate retinoid pathway actors. In particular, mRNAs from a single rhodopsin gene and its potentially associated peropsin were detected in the eye transcriptome, only, confirming a monochromatic vision of the lanternshark. Encephalopsin mRNAs were mainly detected in the ventral skin transcriptome. In parallel, immunolocalization of the encephalopsin within the ventral skin of the shark suggests a functional relation with the photophores, i.e. epidermal light-producing organs. We hypothesize that extraocular photoreception might be involved in the bioluminescence control possibly acting on the shutter opening and/or the photocyte activity itself. The newly generated reference transcriptome provides a valuable resource for further understanding of the shark biology.
Collapse
Affiliation(s)
- Jérôme Delroisse
- University of Mons (UMONS), Research Institute for Biosciences, Biology of Marine Organisms and Biomimetics, Mons, Belgium
| | - Laurent Duchatelet
- Catholic University of Louvain (UCLouvain), Earth and Life Institute, Marine Biology Laboratory, Louvain-La-Neuve, Belgium
| | - Patrick Flammang
- University of Mons (UMONS), Research Institute for Biosciences, Biology of Marine Organisms and Biomimetics, Mons, Belgium
| | - Jérôme Mallefet
- Catholic University of Louvain (UCLouvain), Earth and Life Institute, Marine Biology Laboratory, Louvain-La-Neuve, Belgium
| |
Collapse
|
10
|
Karagic N, Härer A, Meyer A, Torres‐Dowdall J. Heterochronic opsin expression due to early light deprivation results in drastically shifted visual sensitivity in a cichlid fish: Possible role of thyroid hormone signaling. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2018; 330:202-214. [DOI: 10.1002/jez.b.22806] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/30/2018] [Accepted: 05/03/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Nidal Karagic
- Zoology and Evolutionary BiologyDepartment of BiologyUniversity of Konstanz Konstanz Germany
| | - Andreas Härer
- Zoology and Evolutionary BiologyDepartment of BiologyUniversity of Konstanz Konstanz Germany
| | - Axel Meyer
- Zoology and Evolutionary BiologyDepartment of BiologyUniversity of Konstanz Konstanz Germany
- Radcliffe Institute for Advanced StudyHarvard University Cambridge Massachusetts
| | - Julián Torres‐Dowdall
- Zoology and Evolutionary BiologyDepartment of BiologyUniversity of Konstanz Konstanz Germany
- ZukunftskollegUniversity of Konstanz Konstanz Germany
| |
Collapse
|
11
|
de Busserolles F, Marshall NJ. Seeing in the deep-sea: visual adaptations in lanternfishes. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0070. [PMID: 28193815 DOI: 10.1098/rstb.2016.0070] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2016] [Indexed: 11/12/2022] Open
Abstract
Ecological and behavioural constraints play a major role in shaping the visual system of different organisms. In the mesopelagic zone of the deep- sea, between 200 and 1000 m, very low intensities of downwelling light remain, creating one of the dimmest habitats in the world. This ambient light is, however, enhanced by a multitude of bioluminescent signals emitted by its inhabitants, but these are generally dim and intermittent. As a result, the visual system of mesopelagic organisms has been pushed to its sensitivity limits in order to function in this extreme environment. This review covers the current body of knowledge on the visual system of one of the most abundant and intensely studied groups of mesopelagic fishes: the lanternfish (Myctophidae). We discuss how the plasticity, performance and novelty of its visual adaptations, compared with other deep-sea fishes, might have contributed to the diversity and abundance of this family.This article is part of the themed issue 'Vision in dim light'.
Collapse
Affiliation(s)
- Fanny de Busserolles
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - N Justin Marshall
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
12
|
Claes JM, Nilsson DE, Mallefet J, Straube N. The presence of lateral photophores correlates with increased speciation in deep-sea bioluminescent sharks. ROYAL SOCIETY OPEN SCIENCE 2015; 2:150219. [PMID: 26587280 PMCID: PMC4632593 DOI: 10.1098/rsos.150219] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 06/30/2015] [Indexed: 05/25/2023]
Abstract
The vast majority of species within the lanternshark genus Etmopterus harbour complex luminescent markings on their flanks, whose functional significance has long remained obscure. Recent studies, however, suggest these enigmatic photophore aggregations to play a role in intraspecific communication. Using visual modelling based on in vivo luminescence measurements from a common lanternshark species, we show that etmopterid flank markings can potentially work as a medium range signal for intraspecific detection/recognition. In addition, using molecular phylogenetic analyses, we demonstrate that the Etmopterus clade exhibits a greater than expected species richness given its age. This is not the case for other bioluminescent shark clades with no (or only few) species with flank markings. Our results therefore suggest that etmopterid flank markings may provide a way for reproductive isolation and hence may have facilitated speciation in the deep-sea.
Collapse
Affiliation(s)
- Julien M. Claes
- Laboratoire de Biologie Marine, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Dan-Eric Nilsson
- Lund Vision Group, Department of Biology, Lund University, Lund 22362, Sweden
| | - Jérôme Mallefet
- Laboratoire de Biologie Marine, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Nicolas Straube
- Bavarian State Collection of Zoology, Münchhausenstrasse 21, München 81247, Germany
| |
Collapse
|