1
|
Herencias C, Rivero-Buceta V, Salgado S, Hernández-Herreros N, Baquero F, Del Campo R, Nogales J, Prieto MA. Bdellovibrio's prey-independent lifestyle is fueled by amino acids as a carbon source. Appl Microbiol Biotechnol 2024; 108:422. [PMID: 39031211 PMCID: PMC11271337 DOI: 10.1007/s00253-024-13250-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 07/22/2024]
Abstract
Identifying the nutritional requirements and growth conditions of microorganisms is crucial for determining their applicability in industry and understanding their role in clinical ecology. Predatory bacteria such as Bdellovibrio bacteriovorus have emerged as promising tools for combating infections by human bacterial pathogens due to their natural killing features. Bdellovibrio's lifecycle occurs inside prey cells, using the cytoplasm as a source of nutrients and energy. However, this lifecycle supposes a challenge when determining the specific uptake of metabolites from the prey to complete the growth inside cells, a process that has not been completely elucidated. Here, following a model-based approach, we illuminate the ability of B. bacteriovorus to replicate DNA, increase biomass, and generate adenosine triphosphate (ATP) in an amino acid-based rich media in the absence of prey, keeping intact its predatory capacity. In this culture, we determined the main carbon sources used and their preference, being glutamate, serine, aspartate, isoleucine, and threonine. This study offers new insights into the role of predatory bacteria in natural environments and establishes the basis for developing new Bdellovibrio applications using appropriate metabolic and physiological methodologies. KEY POINTS: • Amino acids support axenic lifestyle of Bdellovibrio bacteriovorus. • B. bacteriovorus preserves its predatory ability when growing in the absence of prey.
Collapse
Affiliation(s)
- Cristina Herencias
- Department of Microbiology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria (IRYCIS), Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas-CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain.
| | - Virginia Rivero-Buceta
- Polymer Biotechnology Laboratory, Biological Research Center-Margarita Salas, CSIC, Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy-CSIC (SusPlast-CSIC), Madrid, Spain
| | - Sergio Salgado
- Polymer Biotechnology Laboratory, Biological Research Center-Margarita Salas, CSIC, Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy-CSIC (SusPlast-CSIC), Madrid, Spain
| | - Natalia Hernández-Herreros
- Polymer Biotechnology Laboratory, Biological Research Center-Margarita Salas, CSIC, Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy-CSIC (SusPlast-CSIC), Madrid, Spain
| | - Fernando Baquero
- Department of Microbiology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria (IRYCIS), Madrid, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública-CIBERESP, Instituto Carlos III, Madrid, Spain
| | - Rosa Del Campo
- Department of Microbiology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria (IRYCIS), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas-CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Nogales
- Systems Biotechnology GroupDepartment of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy-CSIC (SusPlast-CSIC), Madrid, Spain
| | - M Auxiliadora Prieto
- Polymer Biotechnology Laboratory, Biological Research Center-Margarita Salas, CSIC, Madrid, Spain.
- Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy-CSIC (SusPlast-CSIC), Madrid, Spain.
| |
Collapse
|
2
|
Kaya BM, Oz S, Esenturk O. Application of fiber loop ringdown spectroscopy technique for a new approach to beta-amyloid monitoring for Alzheimer Disease's early detection. Biomed Phys Eng Express 2024; 10:035037. [PMID: 38626737 DOI: 10.1088/2057-1976/ad3f1f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/16/2024] [Indexed: 04/18/2024]
Abstract
A novel fiber optic biosensor was purposed for a new approach to monitor amyloid beta protein fragment 1-42 (Aβ42) for Alzheimer's Disease (AD) early detection. The sensor was fabricated by etching a part of fiber from single mode fiber loop in pure hydrofluoric acid solution and utilized as a Local Optical Refractometer (LOR) to monitor the change Aβ42 concentration in Artificial Cerebrospinal Fluid (ACSF). The Fiber Loop Ringdown Spectroscopy (FLRDS) technique is an ultra-sensitive measurement technique with low-cost, high sensitivity, real-time measurement, continuous measurement and portability features that was utilized with a fiber optic sensor for the first time for the detection of a biological signature in an ACSF environment. Here, the measurement is based on the total optical loss detection when specially fabricated sensor heads were immersed into ACSF solutions with and without different concentrations of Aβ42 biomarkers since the bulk refractive index change was performed. Baseline stability and the reference ring down times of the sensor head were measured in the air as 0.87% and 441.6μs ± 3.9μs, respectively. Afterward, the total optical loss of the system was measured when the sensor head was immersed in deionized water, ACSF solution, and ACSF solutions with Aβ42 in different concentrations. The lowest Aβ42 concentration of 2 ppm was detected by LOR. Results showed that LOR fabricated by single-mode fibers for FLRDS system design are promising candidates to be utilized as fiber optic biosensors after sensor head modification and have a high potential for early detection applications of not only AD but possibly also several fatal diseases such as diabetes and cancer.
Collapse
Affiliation(s)
- Burak Malik Kaya
- Vocational School of Health Service, Eskisehir Osmangazi University, Eskisehir, 26480, Turkey
- Translational Medicine Research Center, Eskisehir Osmangazi University, Eskisehir, 26480, Turkey
| | - Semih Oz
- Vocational School of Health Service, Eskisehir Osmangazi University, Eskisehir, 26480, Turkey
| | - Okan Esenturk
- Department of Chemistry, Middle East Technical University, Ankara, 06800, Turkey
| |
Collapse
|
3
|
Yoon J, Park B, Hong KW, Jung DH. The effects of Korean Red Ginseng on stress-related neurotransmitters and gene expression: A randomized, double-blind, placebo-controlled trial. J Ginseng Res 2023; 47:766-772. [PMID: 38107397 PMCID: PMC10721478 DOI: 10.1016/j.jgr.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/06/2023] [Accepted: 08/06/2023] [Indexed: 12/19/2023] Open
Abstract
Background Korean Red Ginseng (KRG) is an effective anti-stress treatment. In this study, we investigated the therapeutic potential effects of KRG on relieving stress in a general population using transcriptome analysis. Methods We conducted an 8-week clinical pilot study on 90 healthy men who reported stress. The study was completed by 43 participants in the KRG group and 44 participants in the placebo group. Participants were randomized 1:1 to the KRG and placebo groups. We evaluated the stress by stress response inventory (SRI) at baseline and 8 weeks. The main outcomes were changes in the levels of neurotransmitters (NTs) and NT-related gene expression. NTs were analyzed using automated (GC) content, and levels of gene expression were measured by reads per kilobase of transcript per million mapped reads (RPKM). Results The KRG group showed significantly preserved epinephrine decrease compared with placebo group at 8 weeks (changes in epinephrine, KRG vs. placebo; -1623.2 ± 46101.5 vs. -35116.3 ± 86288.2, p = 0012). Among subjects who higher SRI score, meaning stress increased compared to baseline, the KRG group showed a smaller decrease in serotonin than the placebo group (changes in serotonin, KRG vs. placebo; -2627.5 ± 5859.1 vs, -8087.4 ± 7162.4, p = 0.005) and a smaller increase in cortisol than the placebo group (changes in cortisol, KRG vs. placebo; 1912.7 ± 10097.75 vs. 8046.2 ± 8050.6 , p = 0.019) in subgroup analysis. Transcriptome findings indicated that KRG intake affects gene expression related with metabolism of choline, adrenalin, and monoamine. Conclusion These findings suggest that KRG has beneficial effects on the amelioration of stress response in NTs, and this effect is more prominent in stressful situations. Further clinical studies are required to confirm the anti-stress effect of KRG.
Collapse
Affiliation(s)
- Jihyun Yoon
- Department of Family Medicine, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Byoungjin Park
- Department of Family Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyung-Won Hong
- R&D Division, Theragen Health Co., Ltd., Gyeonggi do, Republic of Korea
| | - Dong-Hyuk Jung
- Department of Family Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
4
|
Nerurkar PV, Yokoyama J, Ichimura K, Kutscher S, Wong J, Bittenbender HC, Deng Y. Medium Roasting and Brewing Methods Differentially Modulate Global Metabolites, Lipids, Biogenic Amines, Minerals, and Antioxidant Capacity of Hawai'i-Grown Coffee ( Coffea arabica). Metabolites 2023; 13:412. [PMID: 36984852 PMCID: PMC10051321 DOI: 10.3390/metabo13030412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
In the United States, besides the US territory Puerto Rico, Hawai'i is the only state that grows commercial coffee. In Hawai'i, coffee is the second most valuable agricultural commodity. Health benefits associated with moderate coffee consumption, including its antioxidant capacity, have been correlated to its bioactive components. Post-harvest techniques, coffee variety, degree of roasting, and brewing methods significantly impact the metabolites, lipids, minerals, and/or antioxidant capacity of brewed coffees. The goal of our study was to understand the impact of roasting and brewing methods on metabolites, lipids, biogenic amines, minerals, and antioxidant capacity of two Hawai'i-grown coffee (Coffea arabica) varieties, "Kona Typica" and "Yellow Catuai". Our results indicated that both roasting and coffee variety significantly modulated several metabolites, lipids, and biogenic amines of the coffee brews. Furthermore, regardless of coffee variety, the antioxidant capacity of roasted coffee brews was higher in cold brews. Similarly, total minerals were higher in "Kona Typica" cold brews followed by "Yellow Catuai" cold brews. Hawai'i-grown coffees are considered "specialty coffees" since they are grown in unique volcanic soils and tropical microclimates with unique flavors. Our studies indicate that both Hawai'i-grown coffees contain several health-promoting components. However, future studies are warranted to compare Hawai'i-grown coffees with other popular brand coffees and their health benefits in vivo.
Collapse
Affiliation(s)
- Pratibha V. Nerurkar
- Laboratory of Metabolic Disorders and Alternative Medicine, Department of Molecular Biosciences and Bioengineering (MBBE), College of Tropical Agriculture and Human Resources (CTAHR), University of Hawai‘i at Manoa (UHM), Honolulu, HI 96822, USA
| | - Jennifer Yokoyama
- Laboratory of Metabolic Disorders and Alternative Medicine, Department of Molecular Biosciences and Bioengineering (MBBE), College of Tropical Agriculture and Human Resources (CTAHR), University of Hawai‘i at Manoa (UHM), Honolulu, HI 96822, USA
| | - Kramer Ichimura
- Laboratory of Metabolic Disorders and Alternative Medicine, Department of Molecular Biosciences and Bioengineering (MBBE), College of Tropical Agriculture and Human Resources (CTAHR), University of Hawai‘i at Manoa (UHM), Honolulu, HI 96822, USA
| | - Shannon Kutscher
- Laboratory of Metabolic Disorders and Alternative Medicine, Department of Molecular Biosciences and Bioengineering (MBBE), College of Tropical Agriculture and Human Resources (CTAHR), University of Hawai‘i at Manoa (UHM), Honolulu, HI 96822, USA
| | - Jamie Wong
- Laboratory of Metabolic Disorders and Alternative Medicine, Department of Molecular Biosciences and Bioengineering (MBBE), College of Tropical Agriculture and Human Resources (CTAHR), University of Hawai‘i at Manoa (UHM), Honolulu, HI 96822, USA
| | - Harry C. Bittenbender
- Department of Tropical Plant and Soil Sciences (TPSS), CTAHR, UHM, Honolulu, HI 96822, USA
| | - Youping Deng
- Bioinformatics Core, Departmentt of Quantitative Health Sciences, University of Hawai‘i Cancer Center (UHCC), John A. Burns School of Medicine (JABSOM), UHM, Honolulu, HI 96813, USA
| |
Collapse
|
5
|
Tyagi H, Daulton E, Bannaga AS, Arasaradnam RP, Covington JA. Urinary Volatiles and Chemical Characterisation for the Non-Invasive Detection of Prostate and Bladder Cancers. BIOSENSORS 2021; 11:bios11110437. [PMID: 34821653 PMCID: PMC8615657 DOI: 10.3390/bios11110437] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 05/08/2023]
Abstract
Bladder cancer (BCa) and prostate cancer (PCa) are some of the most common cancers in the world. In both BCa and PCa, the diagnosis is often confirmed with an invasive technique that carries a risk to the patient. Consequently, a non-invasive diagnostic approach would be medically desirable and beneficial to the patient. The use of volatile organic compounds (VOCs) for disease diagnosis, including cancer, is a promising research area that could support the diagnosis process. In this study, we investigated the urinary VOC profiles in BCa, PCa patients and non-cancerous controls by using gas chromatography-ion mobility spectrometry (GC-IMS) and gas chromatography time-of-flight mass spectrometry (GC-TOF-MS) to analyse patient samples. GC-IMS separated BCa from PCa (area under the curve: AUC: 0.97 (0.93-1.00)), BCa vs. non-cancerous (AUC: 0.95 (0.90-0.99)) and PCa vs. non-cancerous (AUC: 0.89 (0.83-0.94)) whereas GC-TOF-MS differentiated BCa from PCa (AUC: 0.84 (0.73-0.93)), BCa vs. non-cancerous (AUC: 0.81 (0.70-0.90)) and PCa vs. non-cancerous (AUC: 0.94 (0.90-0.97)). According to our study, a total of 34 biomarkers were found using GC-TOF-MS data, of which 13 VOCs were associated with BCa, seven were associated with PCa, and 14 VOCs were found in the comparison of BCa and PCa.
Collapse
Affiliation(s)
- Heena Tyagi
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK; (H.T.); (E.D.)
| | - Emma Daulton
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK; (H.T.); (E.D.)
| | - Ayman S. Bannaga
- Department of Gastroenterology, University Hospital Coventry & Warwickshire, Coventry CV2 2DX, UK; (A.S.B.); (R.P.A.)
- Warwick Medical School, University of Warwick, Coventry CV4 7HL, UK
| | - Ramesh P. Arasaradnam
- Department of Gastroenterology, University Hospital Coventry & Warwickshire, Coventry CV2 2DX, UK; (A.S.B.); (R.P.A.)
- Warwick Medical School, University of Warwick, Coventry CV4 7HL, UK
- School of Health Sciences, Coventry University, Coventry CV1 5FB, UK
- School of Biological Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - James A. Covington
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK; (H.T.); (E.D.)
- Correspondence:
| |
Collapse
|
6
|
Phan LMT, Hoang TX, Vo TAT, Pham HL, Le HTN, Chinnadayyala SR, Kim JY, Lee SM, Cho WW, Kim YH, Choi SH, Cho S. Nanomaterial-based Optical and Electrochemical Biosensors for Amyloid beta and Tau: Potential for early diagnosis of Alzheimer's Disease. Expert Rev Mol Diagn 2021; 21:175-193. [PMID: 33560154 DOI: 10.1080/14737159.2021.1887732] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Alzheimer's disease (AD), a heterogeneous pathological process representing the most common causes of dementia worldwide, has required early and accurate diagnostic tools. Neuropathological hallmarks of AD involve the aberrant accumulation of Amyloid beta (Aβ) into Amyloid plaques and hyperphosphorylated Tau into neurofibrillary tangles, occurring long before the onset of brain dysfunction.Areas covered:Considering the significance of Aβ and Tau in AD pathogenesis, these proteins have been adopted as core biomarkers of AD, and their quantification has provided precise diagnostic information to develop next-generation AD therapeutic approaches. However, conventional diagnostic methods may not suffice to achieve clinical criteria that are acceptable for proper diagnosis and treatment. The advantages of nanomaterial-based biosensors including facile miniaturization, mass fabrication, ultra-sensitivity, make them useful to be promising tools to measure Aβ and Tau simultaneously for accurate validation of low-abundance yet potentially informative biomarkers of AD.. EXPERT OPINION The study has identified the potential application of advanced biosensors as standardized clinical diagnostic tools for AD, evolving the way for new and efficient AD control with minimum economic and social burden. After clinical trial, nanobiosensors for measuring Aβ and Tau simultaneously possess innovative diagnosis of AD to provide significant contributions to primary Alzheimer's care intervention.
Collapse
Affiliation(s)
- Le Minh Tu Phan
- Department of Electronic Engineering, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea.,School of Medicine and Pharmacy, The University of Danang, Danang, Vietnam
| | - Thi Xoan Hoang
- Department of Life Science, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Thuy Anh Thu Vo
- Department of Life Science, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Hoang Lan Pham
- Department of Life Science, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Hien T Ngoc Le
- Department of Electronic Engineering, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | | | - Jae Young Kim
- Department of Life Science, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | | | - Won Woo Cho
- Cantis Inc., Ansan-si, Gyeonggi-do, Republic of Korea
| | - Young Hyo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, Inha University, Incheon, Republic of Korea
| | - Seong Hye Choi
- Department of Neurology, School of Medicine, Inha University, Incheon, Republic of Korea
| | - Sungbo Cho
- Department of Electronic Engineering, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea.,Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| |
Collapse
|
7
|
Comparison of Secondary Metabolite Contents and Metabolic Profiles of Six Lycoris Species. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7010005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Quantitative HPLC analysis was performed on six different species of Lycoris herbs to investigate variation in phytochemical content, especially galantamine and phenylpropanoid-derived compounds. The contents of these compounds differed widely among the Lycoris species, with L. radiata and L. chinensis containing the lowest and highest galantamine contents, respectively. Specifically, the galantamine content of L. radiata was 62.5% higher than that of L. chinensis. Following L. radiata, L. sanguinea contained the next highest galantamine content, which was 59.1% higher than that of L. chinensis. Furthermore, a total of 12 phenylpropanoid-derived compounds were found in the different Lycoris species, where L. sanguinea, L. squamigera, and L. uydoensis had the largest accumulation of these compounds. The total phenylpropanoid content of L. sanguinea was the highest, while that of L. radiata was the lowest. Seven of the phenylpropanoid-derived compounds, rutin, quercetin, catechin, epicatechin gallate, chlorogenic acid, benzoic acid, and kaempferol, were dominant. L. sanguinea, L. uydoensis, and L. squamigera showed amounts of these seven compounds that were 5–6 times greater than those of the other species in the study. To the best of our knowledge, our results provide the most detailed phytochemical information on these species to date, which is valuable for future applications using these medicinal plants.
Collapse
|
8
|
Deng S, Li D, Liu X, Cai Z, Wei W, Chen J, Zhang L. Serum metabolomic investigations of mulberry leaf powder supplementation in Chinese Erhualian pigs. JOURNAL OF ANIMAL AND FEED SCIENCES 2020. [DOI: 10.22358/jafs/124043/2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Um CY, McCullough ML, Guinter MA, Campbell PT, Jacobs EJ, Gapstur SM. Coffee consumption and risk of colorectal cancer in the Cancer Prevention Study-II Nutrition Cohort. Cancer Epidemiol 2020; 67:101730. [PMID: 32526644 DOI: 10.1016/j.canep.2020.101730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND The association between coffee consumption and colorectal cancer risk generally appears null, but recent evidence suggests that risk may vary by coffee type. We examined associations of caffeinated and decaffeinated coffee intake with colorectal cancer risk overall and with colon and rectum separately, among older U.S. men and women. METHODS In 1999, 47,010 men and 60,051 women with no previous diagnosis of cancer, aged 47-96 years, in the Cancer Prevention Study-II Nutrition Cohort completed a food frequency questionnaire that assessed caffeinated and decaffeinated coffee intake; consumption was updated in 2003. A total of 1829 colorectal cancer cases were verified through June 2015. Cox proportional hazards regression was used to estimate multivariable-adjusted hazard rate ratios (HRs) and 95% confidence intervals (CIs), adjusting for smoking history, alcohol, caffeinated/decaffeinated coffee intake (depending on the model), and other colorectal cancer risk factors. RESULTS Consumption of ≥2 cups/day of decaffeinated coffee, compared to no decaffeinated coffee, was associated with lower risk of overall colorectal cancer (HR = 0.82, 95% CI: 0.69-0.96, P-trend = 0.04), colon cancer (HR = 0.82, 95% CI: 0.69-0.99, P-trend = 0.05) and rectal cancer (HR = 0.63, 95% CI: 0.40-0.99, P-trend = 0.17). Consumption of ≥2 cups/day of caffeinated coffee was associated with higher risk of rectal cancer (HR = 1.37, 95% CI: 0.99-1.89, P-trend = 0.04), but not with colorectal or colon cancer. CONCLUSION In this prospective study, higher intake of decaffeinated coffee was associated with lower risk of colorectal, colon, and rectal cancers. Further study on associations of caffeinated and decaffeinated coffee with colorectal cancer risk by subsite is needed.
Collapse
Affiliation(s)
- Caroline Y Um
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, GA, United States.
| | - Marjorie L McCullough
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, GA, United States
| | - Mark A Guinter
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, GA, United States
| | - Peter T Campbell
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, GA, United States
| | - Eric J Jacobs
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, GA, United States
| | - Susan M Gapstur
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, GA, United States
| |
Collapse
|
10
|
Untargeted HILIC-MS-Based Metabolomics Approach to Evaluate Coffee Roasting Process: Contributing to an Integrated Metabolomics Multiplatform. Molecules 2020; 25:molecules25040887. [PMID: 32079306 PMCID: PMC7070313 DOI: 10.3390/molecules25040887] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/05/2020] [Accepted: 02/14/2020] [Indexed: 02/05/2023] Open
Abstract
An untargeted metabolomics strategy using hydrophilic interaction chromatography-mass spectrometry (HILIC-MS) was developed in this work enabling the study of the coffee roasting process. Green coffee beans and coffee beans submitted to three different roasting degrees (light, medium, and strong) were analyzed. Chromatographic separation was carried out using water containing 10 mM ammonium formate with 0.2 % formic acid (mobile phase A) and acetonitrile containing 10 mM ammonium formate with 0.2 % formic acid (mobile phase B). A total of 93 molecular features were considered from which 31 were chosen as the most statistically significant using variable in the projection values. 13 metabolites were tentatively identified as potential biomarkers of the coffee roasting process using this metabolomic platform. Results obtained in this work were complementary to those achieved using orthogonal techniques such as reversed-phase liquid chromatography-mass spectrometry (RPLC-MS) and capillary electrophoresis-mass spectrometry (CE-MS) since only one metabolite was found to be common between HILIC-MS and RPLC-MS platforms (caffeoylshikimic acid isomer) and other between HILIC-MS and CE-MS platforms (choline). On the basis of these results, an untargeted metabolomics multiplatform is proposed in this work based on the integration of the three orthogonal techniques as a powerful tool to expand the coverage of the roasted coffee metabolome.
Collapse
|
11
|
Bray ER, Kirsner RS, Issa NT. Coffee and skin-Considerations beyond the caffeine perspective. J Am Acad Dermatol 2019; 82:e63. [PMID: 31622642 DOI: 10.1016/j.jaad.2019.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/27/2019] [Accepted: 10/03/2019] [Indexed: 10/25/2022]
Affiliation(s)
- Eric R Bray
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Robert S Kirsner
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Naiem T Issa
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida.
| |
Collapse
|
12
|
Oh CC, Koh WP. Reply to: "Coffee and skin-Considerations beyond the caffeine perspective". J Am Acad Dermatol 2019; 82:e65-e66. [PMID: 31622645 DOI: 10.1016/j.jaad.2019.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Choon Chiat Oh
- Department of Dermatology, Singapore General Hospital; Health Services and Systems Research, Duke-NUS Medical School, Singapore.
| | - Woon-Puay Koh
- Health Services and Systems Research, Duke-NUS Medical School, Singapore; Saw Swee Hock School of Public Health, National University of Singapore
| |
Collapse
|
13
|
Reverting Metabolic Dysfunction in Cortex and Cerebellum of APP/PS1 Mice, a Model for Alzheimer's Disease by Pioglitazone, a Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) Agonist. Mol Neurobiol 2019; 56:7267-7283. [PMID: 31016475 DOI: 10.1007/s12035-019-1586-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/26/2019] [Indexed: 12/16/2022]
Abstract
Identification of molecular mechanisms underlying early-stage Alzheimer's disease (AD) is important for the development of new therapies against and diagnosis of AD. In this study, gas chromatography time-of-flight mass spectrometry (GC-TOF-MS)-based metabolomics approach was employed to investigate the metabolic profiles in plasma and brain tissues harvested from 5-month-old APP/PS1 transgenic mice and their wildtype counterparts. Since different brain regions were expected to have their own distinct metabolic signals, four different brain regions, namely cortex, hippocampus, midbrain and cerebellum tissues, were dissected and had their metabolic profiles studied separately. Biochemical assays were also performed on plasma and brain cortex tissue of transgenic mice and wildtype mice, with a focus on mitochondrial health. Amyloid precursor protein and amyloid-β levels in plasma, brain cortex tissue and mitochondria fractions isolated from brain cortex were measured to assess the amyloid pathology. Our findings include the observation of extensive metabolic alterations in cortex and cerebellum of APP/PS1 mice, but not in their hippocampus, midbrain and plasma. The major pathways affected in cortex and cerebellum of APP/PS1 mice were closely related to impaired energy metabolism and perturbation of amino acid metabolism in these mice. APP/PS1 mice also exhibited higher amyloid-β40 and amyloid-β42 in their cortex, accumulation of mitochondria APP in their cortex, and presented an altered oxidative state in their brain. Treatment with the peroxisome proliferator-activated receptor gamma (PPARγ) agonist pioglitazone (PIO) successfully restored the energy metabolism, lowered amyloid-β levels and afforded the APP/PS1 mice a better antioxidative capacity in their cortex.
Collapse
|
14
|
High intensity ultrasound assisted decaffeination process of coffee beans in aqueous medium. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2018; 55:4901-4908. [PMID: 30482985 DOI: 10.1007/s13197-018-3424-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/05/2018] [Accepted: 09/11/2018] [Indexed: 10/28/2022]
Abstract
The purpose of this study was to determine the influence of ultrasound intensity, pulse and temperature on extraction of caffeine, from Arabica coffee beans using water as solvent, and ultrasound frequency of 24 kHz. A central composite design was used, using ultrasound intensity (31.5-105 W cm-2), pulse (0.30-1) and extraction temperature of the extraction (30-60 °C) as independent factor. The caffeine recovery and caffeine diffusion coefficient were response variables. The ultrasound intensity and extraction temperature significantly influenced the caffeine recovery rate and the diffusion coefficient of caffeine. Activation energy of 48.95 kJ mol-1 for the caffeine diffusion coefficient in ultrasound assisted extraction was observed. The best results were obtained at 68.25-105 W cm-2 ultrasound intensity and 60 °C temperature, corresponding to caffeine recovery of 58.4-69.4% and diffusion coefficient of 8.92-10.57 × 10-11 m2 s-1. The pulse effect was not significant in the range of the studied variables.
Collapse
|
15
|
A non-targeted metabolomic approach based on reversed-phase liquid chromatography-mass spectrometry to evaluate coffee roasting process. Anal Bioanal Chem 2018; 410:7859-7870. [PMID: 30345455 DOI: 10.1007/s00216-018-1405-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/14/2018] [Accepted: 09/25/2018] [Indexed: 12/29/2022]
Abstract
In this work, a non-targeted metabolomics approach based on the use of reversed-phase liquid chromatography coupled to a high-resolution mass spectrometer has been developed to provide the characterization of coffee beans roasted at three different levels (light, medium, and dark). In this way, it was possible to investigate how metabolites change during the roasting process in order to identify those than can be considered as relevant markers. Twenty-five percent methanol was selected as extracting solvent since it provided the highest number of molecular features. In addition, the effect of chromatographic and MS parameters was evaluated in order to obtain the most adequate separation and detection conditions. Data were analyzed using both non-supervised and supervised multivariate statistical methods to point out the most significant markers that allow group discrimination. A total of 24 and 33 compounds in positive and negative ionization modes, respectively, demonstrated to be relevant markers; most of them were from the hydroxycinnamic acids family. Graphical abstract ᅟ.
Collapse
|
16
|
Fukuyama K, Kakio S, Nakazawa Y, Kobata K, Funakoshi-Tago M, Suzuki T, Tamura H. Roasted Coffee Reduces β-Amyloid Production by Increasing Proteasomal β-Secretase Degradation in Human Neuroblastoma SH-SY5Y Cells. Mol Nutr Food Res 2018; 62:e1800238. [PMID: 30144352 DOI: 10.1002/mnfr.201800238] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/29/2018] [Indexed: 12/25/2022]
Abstract
SCOPE Epidemiological studies have shown that coffee consumption may be associated with a lower risk of developing several neurological disorders, including Alzheimer's disease (AD). Caffeine is a prominent candidate component underlying the preventive effects of coffee; however, the contribution of other constituents is unclear. To clarify this issue, the effect of roasting coffee beans on β-secretase (BACE1) expression in human neuroblastoma SH-SY5Y cells is investigated. METHODS AND RESULTS Coffee (2%) reduces Aβ accumulation in culture medium to 80% of control levels after 24 h. Accordingly, BACE1 expression is decreased to 70% of control levels at 12 h. Experiments using cycloheximide and MG132, a proteasome inhibitor, reveal that coffee enhanced BACE1 degradation through activation of proteasomal activity. Furthermore, coffee activates cAMP-dependent protein kinase, and consequently, phosphorylation of a serine residue of proteasome 26S subunit, non-ATPase 11 (PSMD11). Pyrocatechol, a strong antioxidant known as catechol or 1,2-dihydroxybenzene, produced from chlorogenic acid during roasting, also reduces BACE1 expression by activation of proteasomal activity. Furthermore, pyrocatechol reduces Aβ production in SH-SY5Y cells. CONCLUSION The data suggest that the roasting process may be crucial for the protective effects of coffee consumption in AD.
Collapse
Affiliation(s)
- Kazuya Fukuyama
- Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, 105-8512, Japan
| | - Shota Kakio
- Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, 105-8512, Japan
| | - Yosuke Nakazawa
- Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, 105-8512, Japan
| | - Kenji Kobata
- Department of Pharmaceutical and Health Sciences, Josai University, Saitama, Japan
| | | | - Toshiharu Suzuki
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Hiroomi Tamura
- Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, 105-8512, Japan
| |
Collapse
|
17
|
Nakazawa Y, Nagai N, Ishimori N, Oguchi J, Tamura H. Administration of antioxidant compounds affects the lens chaperone activity and prevents the onset of cataracts. Biomed Pharmacother 2017; 95:137-143. [DOI: 10.1016/j.biopha.2017.08.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/10/2017] [Accepted: 08/10/2017] [Indexed: 09/30/2022] Open
|
18
|
Mu F, Duan J, Bian H, Yin Y, Zhu Y, Wei G, Guan Y, Wang Y, Guo C, Wen A, Yang Y, Xi M. Cardioprotective effects and mechanism of Radix Salviae miltiorrhizae and Lignum Dalbergiae odoriferae on rat myocardial ischemia/reperfusion injury. Mol Med Rep 2017; 16:1759-1770. [PMID: 28656200 PMCID: PMC5562082 DOI: 10.3892/mmr.2017.6821] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 04/25/2017] [Indexed: 01/03/2023] Open
Abstract
Radix Salviae miltiorrhizae (SM) and Lignum Dalbergiae odoriferae (DO) are traditional Chinese medicinal herbs used to treat ischemic heart disease and other cardiovascular diseases; however, to the best of our knowledge, there are currently few studies regarding their effects. The present study aimed to investigate the cardioprotective effects of SM and DO during myocardial ischemia/reperfusion (MI/R) injury in rats, and explore the molecular mechanisms that underlie their actions. In the present study, Sprague-Dawley rats were pretreated with SM, the aqueous extract of DO (DOA) and the volatile oil of DO (DOO), either as a monotherapy or in combination for 7 days. Subsequently, the rats were subjected to 30 min of ischemia followed by 180 min of reperfusion. Traditional pharmacodynamic evaluation and metabonomics based on gas chromatography/time-of-flight mass spectrometry were used to identify the therapeutic effects of these traditional Chinese medicines. The results revealed that SM, DOA and DOO monotherapies ameliorated cardiac function, and this effect was strengthened further when used in combined therapies. Among the combined treatments, SM + DOO exhibited the greatest potential (P<0.05) to improve electrocardiogram results and heart rate, reduce the heart weight index and myocardial infarct size, and decrease the levels of creatine kinase-MB and lactate dehydrogenase. In addition, metabonomics-based findings, including the principal component analysis and partial least squares discriminant analysis score plot of the metabolic state in rat serum, provided confirmation for the aforementioned results, verifying that SM + DOO exerted synergistic therapeutic efficacies to exhibit a greater effect on rats with MI/R injury when compared with the other pretreatment groups. Furthermore, the most effective duration of SM + DOO treatment was 30 min and the least effective duration was 180 min. Treatment with SM + DOO also significantly (P<0.01) reduced the number of terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling-positive cells, tumor necrosis factor-α andinterleukin-6 expression, and malondialdehyde content, and increased the serum and tissue activity of superoxide dismutase. These results indicated that the combined effects of SM + DOO may be more effective compared with the single pretreatments against MI/R injury in rats. This effect may be achieved partly through anti-apoptotic, antioxidant and anti-inflammatory activities. Therefore, SM + DOO may be considered an effective and promising novel strategy for the prophylaxis and treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Fei Mu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jialin Duan
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Haixu Bian
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Ying Yin
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yanrong Zhu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Guo Wei
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yue Guan
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yanhua Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Chao Guo
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yong Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Miaomiao Xi
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
19
|
Metabolomics of papillary thyroid carcinoma tissues: potential biomarkers for diagnosis and promising targets for therapy. Tumour Biol 2016; 37:11163-75. [PMID: 26935059 DOI: 10.1007/s13277-016-4996-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/25/2016] [Indexed: 12/13/2022] Open
Abstract
Papillary thyroid carcinoma (PTC) is the most common pathological type of thyroid cancer. Our study was to construct a tissue-targeted metabolomics analysis method based on untargeted and targeted metabolic multi-platforms to identify a comprehensive PTC metabolic network in clinical samples. We applied untargeted gas chromatography-time-of-flight mass spectrometry (GC-TOF-MS) for preliminary screening of potential biomarkers. With diagnostic models constructed using principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA) and orthogonal partial least squares discriminant analysis (OPLS-DA), 45 differentially abundant metabolites with a variable importance in the projection (VIP) value greater than 1 and a P value less than 0.05 were identified, and we show that our approach was able to discriminate PTC tissues from healthy tissues. We then performed validation experiments based on targeted GC-TOF-MS combined with ultra-high-performance liquid chromatography-triple-quadrupole mass spectrometry (UHPLC-QqQ-MS) through constructing linear standard curves of analytes. Ultimately, galactinol, melibiose, and melatonin were validated as significantly altered metabolites (p < 0.05). These three metabolites were defined as a combinatorial biomarker to assist needle biopsy for PTC diagnosis as demonstrated by receiver operating characteristic (ROC) curve analysis, which revealed an area under the ROC curve (AUC) value of 0.96. Based on the metabolite enrichment analysis results, the galactose metabolism pathway was regarded as an important factor influencing PTC development by affecting energy metabolism. Alpha-galactosidase (GLA) was considered to be a potential target for PTC therapy.
Collapse
|
20
|
Ayseli MT, İpek Ayseli Y. Flavors of the future: Health benefits of flavor precursors and volatile compounds in plant foods. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2015.11.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Zhang T, Zhang A, Qiu S, Yang S, Wang X. Current Trends and Innovations in Bioanalytical Techniques of Metabolomics. Crit Rev Anal Chem 2015; 46:342-51. [DOI: 10.1080/10408347.2015.1079475] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Abstract
PURPOSE OF REVIEW Coffee is one of the most widely consumed beverages in the world and has been associated with many health conditions. This review examines the limitations of the classic epidemiological approach to studies of coffee and health, and describes the progress in systems epidemiology of coffee and its correlated constituent, caffeine. Implications and applications of this growing body of knowledge are also discussed. RECENT FINDINGS Population-based metabolomic studies of coffee replicate coffee-metabolite correlations observed in clinical settings but have also identified novel metabolites of coffee response, such as specific sphingomyelin derivatives and acylcarnitines. Genome-wide analyses of self-reported coffee and caffeine intake and serum levels of caffeine support an overwhelming role for caffeine in modulating the coffee consumption behavior. Interindividual variation in the physiological exposure or response to any of the many chemicals present in coffee may alter the persistence and magnitude of their effects. It is thus imperative that future studies of coffee and health account for this variation. SUMMARY Systems epidemiological approaches promise to inform causality, parse the constituents of coffee responsible for health effects, and identify the subgroups most likely to benefit from increasing or decreasing coffee consumption.
Collapse
Affiliation(s)
- Marilyn C Cornelis
- aDepartment of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois bDepartment of Nutrition, Harvard School of Public Health cChanning Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
23
|
Selected Literature Watch. JOURNAL OF CAFFEINE RESEARCH 2014. [DOI: 10.1089/jcr.2014.1243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|