1
|
Kheradmand F, Zhang Y, Corry DB. Contribution of adaptive immunity to human COPD and experimental models of emphysema. Physiol Rev 2023; 103:1059-1093. [PMID: 36201635 PMCID: PMC9886356 DOI: 10.1152/physrev.00036.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 02/01/2023] Open
Abstract
The pathophysiology of chronic obstructive pulmonary disease (COPD) and the undisputed role of innate immune cells in this condition have dominated the field in the basic research arena for many years. Recently, however, compelling data suggesting that adaptive immune cells may also contribute to the progressive nature of lung destruction associated with COPD in smokers have gained considerable attention. The histopathological changes in the lungs of smokers can be limited to the large or small airways, but alveolar loss leading to emphysema, which occurs in some individuals, remains its most significant and irreversible outcome. Critically, however, the question of why emphysema progresses in a subset of former smokers remained a mystery for many years. The recognition of activated and organized tertiary T- and B-lymphoid aggregates in emphysematous lungs provided the first clue that adaptive immune cells may play a crucial role in COPD pathophysiology. Based on these findings from human translational studies, experimental animal models of emphysema were used to determine the mechanisms through which smoke exposure initiates and orchestrates adaptive autoreactive inflammation in the lungs. These models have revealed that T helper (Th)1 and Th17 subsets promote a positive feedback loop that activates innate immune cells, confirming their role in emphysema pathogenesis. Results from genetic studies and immune-based discoveries have further provided strong evidence for autoimmunity induction in smokers with emphysema. These new findings offer a novel opportunity to explore the mechanisms underlying the inflammatory landscape in the COPD lung and offer insights for development of precision-based treatment to halt lung destruction.
Collapse
Affiliation(s)
- Farrah Kheradmand
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
- Biology of Inflammation Center, Baylor College of Medicine, Houston, Texas
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, Texas
| | - Yun Zhang
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - David B Corry
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
- Biology of Inflammation Center, Baylor College of Medicine, Houston, Texas
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, Texas
| |
Collapse
|
2
|
Yu Y, Yang A, Yu G, Wang H. Endoplasmic Reticulum Stress in Chronic Obstructive Pulmonary Disease: Mechanisms and Future Perspectives. Biomolecules 2022; 12:1637. [PMID: 36358987 PMCID: PMC9687722 DOI: 10.3390/biom12111637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 09/08/2024] Open
Abstract
The endoplasmic reticulum (ER) is an integral organelle for maintaining protein homeostasis. Multiple factors can disrupt protein folding in the lumen of the ER, triggering ER stress and activating the unfolded protein response (UPR), which interrelates with various damage mechanisms, such as inflammation, apoptosis, and autophagy. Numerous studies have linked ER stress and UPR to the progression of chronic obstructive pulmonary disease (COPD). This review focuses on the mechanisms of other cellular processes triggered by UPR and summarizes drug intervention strategies targeting the UPR pathway in COPD to explore new therapeutic approaches and preventive measures for COPD.
Collapse
Affiliation(s)
| | | | - Ganggang Yu
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Haoyan Wang
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|
3
|
McQuiston A, Emtiazjoo A, Angel P, Machuca T, Christie J, Atkinson C. Set Up for Failure: Pre-Existing Autoantibodies in Lung Transplant. Front Immunol 2021; 12:711102. [PMID: 34456920 PMCID: PMC8385565 DOI: 10.3389/fimmu.2021.711102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/12/2021] [Indexed: 11/17/2022] Open
Abstract
Lung transplant patients have the lowest long-term survival rates compared to other solid organ transplants. The complications after lung transplantation such as primary graft dysfunction (PGD) and ultimately chronic lung allograft dysfunction (CLAD) are the main reasons for this limited survival. In recent years, lung-specific autoantibodies that recognize non-HLA antigens have been hypothesized to contribute to graft injury and have been correlated with PGD, CLAD, and survival. Mounting evidence suggests that autoantibodies can develop during pulmonary disease progression before lung transplant, termed pre-existing autoantibodies, and may participate in allograft injury after transplantation. In this review, we summarize what is known about pulmonary disease autoantibodies, the relationship between pre-existing autoantibodies and lung transplantation, and potential mechanisms through which pre-existing autoantibodies contribute to graft injury and rejection.
Collapse
Affiliation(s)
- Alexander McQuiston
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States.,Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, United States
| | - Amir Emtiazjoo
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, United States
| | - Peggi Angel
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - Tiago Machuca
- Department of Surgery, University of Florida, Gainesville, FL, United States
| | - Jason Christie
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Carl Atkinson
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
4
|
Zhu S, Häussling V, Aspera-Werz RH, Chen T, Braun B, Weng W, Histing T, Nussler AK. Bisphosphonates Reduce Smoking-Induced Osteoporotic-Like Alterations by Regulating RANKL/OPG in an Osteoblast and Osteoclast Co-Culture Model. Int J Mol Sci 2020; 22:ijms22010053. [PMID: 33374546 PMCID: PMC7793101 DOI: 10.3390/ijms22010053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023] Open
Abstract
Co-culture models have become mandatory for obtaining better insights into bone homeostasis, which relies on the balance between osteoblasts and osteoclasts. Cigarette smoking (CS) has been proven to increase the risk of osteoporosis; however, there is currently no proven treatment for osteoporosis in smokers excluding cessation. Bisphosphonates (BPs) are classical anti-osteoclastic drugs that are commonly used in examining the suitability of bone co-culture systems in vitro as well as to verify the response to osteoporotic stimuli. In the present study, we tested the effects of BPs on cigarette smoke extract (CSE)-affected cells in the co-culture of osteoblasts and osteoclasts. Our results showed that BPs were able to reduce CSE-induced osteoporotic alterations in the co-culture of osteoblasts and osteoclasts such as decreased matrix remodeling, enhanced osteoclast activation, and an up-regulated receptor activator of nuclear factor (NF)-kB-ligand (RANKL)/osteoprotegerin (OPG) ratio. In summary, BPs may be an effective alternative therapy for reversing osteoporotic alterations in smokers, and the potential mechanism is through modulation of the RANKL/OPG ratio.
Collapse
|
5
|
Liang Z, Long F, Deng K, Wang F, Xiao J, Yang Y, Zhang D, Gu W, Xu J, Jian W, Shi W, Zheng J, Chen X, Gao Y, Luo Q, Stampfli MR, Peng T, Chen R. Dissociation between airway and systemic autoantibody responses in chronic obstructive pulmonary disease. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:918. [PMID: 32953718 PMCID: PMC7475442 DOI: 10.21037/atm-20-944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Background Autoimmune processes have been implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). However, the relationship between airway and systemic autoantibody responses remains unclear. The aim of this study was to elucidate this relationship in patients with stable COPD by investigating the correlation patterns between sputum and serum autoantibodies. Methods In this cross-sectional study, sputum supernatant and serum obtained from 47 patients with stable COPD were assayed for the presence of IgG antibodies against ten autoantigens: Smith antigen (Sm), ribosomal phosphoprotein P0 (P0), Ro/Sjögren syndrome type A antigen (Ro/SSA), La/Sjögren syndrome type B antigen (La/SSB), DNA topoisomerase I (Scl-70), histidyl-tRNA synthetase (Jo-1), U1 small nuclear ribonucleoprotein (U1-SnRNP), thyroid peroxidase (TPO), proteinase-3 (PR3), and myeloperoxidase (MPO). A second cohort of 55 stable COPD patients was recruited for validation, and a group of 59 non-COPD controls and a group of 20 connective-tissue disease-associated interstitial lung disease (CTD-ILD) patients were also recruited for comparison. Hierarchical clustering and network analysis were used to evaluate the correlation patterns between sputum and serum autoantibody profiles. Results Both hierarchical clustering and network analysis showed that sputum and serum autoantibody profiles were distinct in either analytic COPD cohort or validation cohort. In contrast, the autoantibodies of the two compartments in non-COPD controls and CTD-ILD patients were inadequately distinguished using either hierarchical clustering or network analysis. Many autoantibodies in the sputum were found to have significant correlations with lung function, symptom score and frequency of prior exacerbations in COPD patients, but the antibodies in the serum were not. Conclusions We observed a dissociation between sputum autoantibodies and serum autoantibodies in patients with stable COPD, suggesting that airway and systemic immune status may play very different roles in the disease. Sputum autoantibodies are more clinically relevant than serum autoantibodies. Focusing on airway autoimmunity may help improve understanding of the immunopathological mechanism of COPD.
Collapse
Affiliation(s)
- Zhenyu Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fei Long
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Kuimiao Deng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fengyan Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jing Xiao
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Yuqiong Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dongying Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weili Gu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiaxuan Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenhua Jian
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weijuan Shi
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinping Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xin Chen
- Department of Respiratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Gao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qun Luo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Martin R Stampfli
- Department of Medicine, Firestone Institute of Respiratory Health at St. Joseph's Healthcare, McMaster University, Hamilton, ON, Canada
| | - Tao Peng
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Rongchang Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Pulmonary and Critical Care Department, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital, Shenzhen, China
| |
Collapse
|
6
|
Janssen-Heininger Y, Reynaert NL, van der Vliet A, Anathy V. Endoplasmic reticulum stress and glutathione therapeutics in chronic lung diseases. Redox Biol 2020; 33:101516. [PMID: 32249209 PMCID: PMC7251249 DOI: 10.1016/j.redox.2020.101516] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 02/07/2023] Open
Affiliation(s)
- Yvonne Janssen-Heininger
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, Burlington, VT, 05405, USA.
| | - Niki L Reynaert
- Department of Respiratory Medicine and School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center, Maastricht, the Netherlands
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, Burlington, VT, 05405, USA
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, Burlington, VT, 05405, USA
| |
Collapse
|
7
|
Tran-Nguyen TK, Chandra D, Yuan K, Patibandla PK, Nguyen KT, Sethu P, Zhang Y, Xue J, Mobley JA, Kim YI, Shoushtari A, Leader JK, Bon J, Sciurba FC, Duncan SR. Glucose-Regulated Protein 78 Autoantibodies Are Associated with Carotid Atherosclerosis in Chronic Obstructive Pulmonary Disease Patients. Immunohorizons 2020; 4:108-118. [PMID: 32086320 PMCID: PMC7430561 DOI: 10.4049/immunohorizons.1900098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/01/2020] [Indexed: 12/22/2022] Open
Abstract
Atherosclerosis prevalence is increased in chronic obstructive pulmonary disease (COPD) patients, independent of other risk factors. The etiology of the excess vascular disease in COPD is unknown, although it is presumably related to an underlying (if cryptic) systemic immune response. Autoantibodies with specificity for glucose-regulated protein 78 (GRP78), a multifunctional component of the unfolded protein response, are common in COPD patients and linked to comorbidities of this lung disease. We hypothesized anti-GRP78 autoreactivity might also be a risk factor for atherosclerosis in COPD patients. Carotid intima-medial thickness (cIMT) was measured in 144 current and former smokers by ultrasound. Concentrations of circulating IgG autoantibodies against full-length GRP78, determined by ELISA, were greater among subjects with abnormally increased cIMT (p <, 0.01). Plasma levels of autoantibodies against a singular GRP78 peptide segment, amino acids 246–260 (anti-GRP78aa 246–260), were even more highly correlated with cIMT, especially among males with greater than or equal to moderate COPD (rs = 0.62, p = 0.001). Anti-GRP78aa 246–260 concentrations were independent of CRP, IL-6, and TNF-α levels. GRP78 autoantigen expression was upregulated among human aortic endothelial cells (HAECs) stressed by incubation with tunicamycin (an unfolded protein response inducer) or exposure to culture media flow disturbances. Autoantibodies against GRP78aa 246–260, isolated from patient plasma by immunoprecipitation, induced HAEC production of proatherosclerotic mediators, including IL-8. In conclusion, anti-GRP78 autoantibodies are highly associated with carotid atherosclerosis in COPD patients and exert atherogenic effects on HAECs. These data implicate Ag-specific autoimmunity in the pathogenesis of atherosclerosis among COPD patients and raise possibilities that directed autoantibody reduction might ameliorate vascular disease in this high-risk population.
Collapse
Affiliation(s)
- Thi K Tran-Nguyen
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Divay Chandra
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Kaiyu Yuan
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Phani K Patibandla
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Khanh T Nguyen
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Palaniappan Sethu
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Yingze Zhang
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Jianmin Xue
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - James A Mobley
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Young-Il Kim
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Ali Shoushtari
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Joseph K Leader
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213; and
| | - Jessica Bon
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213.,Department of Medicine, VA Pittsburgh Healthcare System, Pittsburgh, PA 15213
| | - Frank C Sciurba
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Steven R Duncan
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294;
| |
Collapse
|
8
|
Autoantibodies in chronic obstructive pulmonary disease: A systematic review. Immunol Lett 2019; 214:8-15. [DOI: 10.1016/j.imlet.2019.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/14/2019] [Accepted: 08/27/2019] [Indexed: 01/06/2023]
|
9
|
Ji X, Niu X, Qian J, Martucci V, Pendergrass SA, Gorlov IP, Amos CI, Denny JC, Massion PP, Aldrich MC. A Phenome-Wide Association Study Uncovers a Role for Autoimmunity in the Development of Chronic Obstructive Pulmonary Disease. Am J Respir Cell Mol Biol 2019; 58:777-779. [PMID: 29856256 DOI: 10.1165/rcmb.2017-0409le] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
| | - Xinnan Niu
- 1 Vanderbilt University Medical Center Nashville, Tennessee
| | - Jun Qian
- 1 Vanderbilt University Medical Center Nashville, Tennessee
| | | | | | - Ivan P Gorlov
- 4 Dartmouth Geisel School of Medicine Hanover, New Hampshire and
| | | | - Joshua C Denny
- 1 Vanderbilt University Medical Center Nashville, Tennessee
| | | | | |
Collapse
|
10
|
O'Brien ME, Chandra D, Wilson RC, Karoleski CM, Fuhrman CR, Leader JK, Pu J, Zhang Y, Morris A, Nouraie S, Bon J, Urban Z, Sciurba FC. Loss of skin elasticity is associated with pulmonary emphysema, biomarkers of inflammation, and matrix metalloproteinase activity in smokers. Respir Res 2019; 20:128. [PMID: 31234847 PMCID: PMC6591816 DOI: 10.1186/s12931-019-1098-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 06/13/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Elastin breakdown and the resultant loss of lung elastic recoil is a hallmark of pulmonary emphysema in susceptible individuals as a consequence of tobacco smoke exposure. Systemic alterations to the synthesis and degradation of elastin may be important to our understanding of disease phenotypes in chronic obstructive pulmonary disease. We investigated the association of skin elasticity with pulmonary emphysema, obstructive lung disease, and blood biomarkers of inflammation and tissue protease activity in tobacco-exposed individuals. METHODS Two hundred and thirty-six Caucasian individuals were recruited into a sub-study of the University of Pittsburgh Specialized Center for Clinically Orientated Research in chronic obstructive pulmonary disease, a prospective cohort study of current and former smokers. The skin viscoelastic modulus (VE), a determinant of skin elasticity, was recorded from the volar forearm and facial wrinkling severity was determined using the Daniell scoring system. RESULTS In a multiple regression analysis, reduced VE was significantly associated with cross-sectional measurement of airflow obstruction (FEV1/FVC) and emphysema quantified from computed tomography (CT) images, β = 0.26, p = 0.001 and β = 0.24, p = 0.001 respectively. In emphysema-susceptible individuals, elasticity-determined skin age was increased (median 4.6 years) compared to the chronological age of subjects without emphysema. Plasma biomarkers of inflammation (TNFR1, TNFR2, CRP, PTX3, and SAA) and matrix metalloproteinase activity (MMP1, TIMP1, TIMP2, and TIMP4) were inversely associated with skin elasticity. CONCLUSIONS We report that an objective non-invasive determinant of skin elasticity is independently associated with measures of lung function, pulmonary emphysema, and biomarkers of inflammation and tissue proteolysis in tobacco-exposed individuals. Loss of skin elasticity is a novel observation that may link the common pathological processes that drive tissue elastolysis in the extracellular matrix of the skin and lung in emphysema-susceptible individuals.
Collapse
Affiliation(s)
- Michael E O'Brien
- Division of Pulmonary Allergy and Critical Care Medicine Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Kaufmann Building, Suite 1211, 3471 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Divay Chandra
- Division of Pulmonary Allergy and Critical Care Medicine Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Kaufmann Building, Suite 1211, 3471 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Robert C Wilson
- Division of Pulmonary Allergy and Critical Care Medicine Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Kaufmann Building, Suite 1211, 3471 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Chad M Karoleski
- Division of Pulmonary Allergy and Critical Care Medicine Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Kaufmann Building, Suite 1211, 3471 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Carl R Fuhrman
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joseph K Leader
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jiantao Pu
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yingze Zhang
- Division of Pulmonary Allergy and Critical Care Medicine Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Kaufmann Building, Suite 1211, 3471 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Alison Morris
- Division of Pulmonary Allergy and Critical Care Medicine Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Kaufmann Building, Suite 1211, 3471 Fifth Ave, Pittsburgh, PA, 15213, USA.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Seyed Nouraie
- Division of Pulmonary Allergy and Critical Care Medicine Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Kaufmann Building, Suite 1211, 3471 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Jessica Bon
- Division of Pulmonary Allergy and Critical Care Medicine Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Kaufmann Building, Suite 1211, 3471 Fifth Ave, Pittsburgh, PA, 15213, USA.,Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Zsolt Urban
- Department of Human Genetics Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Frank C Sciurba
- Division of Pulmonary Allergy and Critical Care Medicine Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Kaufmann Building, Suite 1211, 3471 Fifth Ave, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
11
|
Iseme RA, Mcevoy M, Kelly B, Agnew L, Walker FR, Attia J. Is osteoporosis an autoimmune mediated disorder? Bone Rep 2017; 7:121-131. [PMID: 29124082 PMCID: PMC5671387 DOI: 10.1016/j.bonr.2017.10.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 08/01/2017] [Accepted: 10/15/2017] [Indexed: 12/12/2022] Open
Abstract
The last two decades have marked a growing understanding of the interaction occurring between bone and immune cells. The chronic inflammation and immune system dysfunction commonly observed to occur during the ageing process and as part of a range of other pathological conditions, commonly associated with osteoporosis has led to the recognition of these processes as important determinants of bone disease. This is further supported by the recognition that the immune and bone systems in fact share regulatory mechanisms and progenitor molecules. Research into this complex synergy has provided a better understanding of the immunopathogenesis underlying bone diseases such as osteoporosis. However, existing research has largely focussed on delineating the role played by inflammation in pathogenic bone destruction, despite increasing evidence implicating autoantibodies as important drivers of osteoporosis. This review shall attempt to provide a comprehensive overview of existing research examining the role played by autoantibodies in osteoporosis in order to determine the potential for further research in this area. Autoantibodies represent promising targets for the improved treatment and diagnosis of inflammatory bone loss.
Collapse
Affiliation(s)
- Rosebella A. Iseme
- Department of Population and Reproductive Health, School of Public Health, Kenyatta University, P.O. Box 43844 –, 00100, Nairobi, Kenya
- School of Medicine & Public Health, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Mark Mcevoy
- School of Medicine & Public Health, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia
| | - Brian Kelly
- School of Medicine & Public Health, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Centre for Brain and Mental Health Research, The University of Newcastle, Callaghan, NSW, Australia
| | - Linda Agnew
- Brain Behaviour Research Group, School of Science and Technology, University of New England, Armidale, NSW 2351, Australia
| | - Frederick R. Walker
- School of Medicine & Public Health, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Laboratory of Affective Neuroscience, The University of Newcastle, Callaghan, NSW, Australia
- University of Newcastle, Medical Sciences MS413, University Drive, Callaghan, NSW 2308, Australia
| | - John Attia
- School of Medicine & Public Health, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia
- Department of General Medicine, John Hunter Hospital, New Lambton Heights, NSW, Australia
| |
Collapse
|
12
|
Aksoy MO, Kim V, Cornwell WD, Rogers TJ, Kosmider B, Bahmed K, Barrero C, Merali S, Shetty N, Kelsen SG. Secretion of the endoplasmic reticulum stress protein, GRP78, into the BALF is increased in cigarette smokers. Respir Res 2017; 18:78. [PMID: 28464871 PMCID: PMC5414124 DOI: 10.1186/s12931-017-0561-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/21/2017] [Indexed: 01/22/2023] Open
Abstract
Background Identification of biomarkers of cigarette smoke –induced lung damage and early COPD is an area of intense interest. Glucose regulated protein of 78 kD (i.e., GRP78), a multi-functional protein which mediates cell responses to oxidant stress, is increased in the lungs of cigarette smokers and in the serum of subjects with COPD. We have suggested that secretion of GRP78 by lung cells may explain the increase in serum GRP78 in COPD. To assess GRP78 secretion by the lung, we assayed GRP78 in bronchoalveolar lavage fluid (BALF) in chronic smokers and non-smokers. We also directly assessed the acute effect of cigarette smoke material on GRP78 secretion in isolated human airway epithelial cells (HAEC). Methods GRP78 was measured in BALF of smokers (S; n = 13) and non-smokers (NS; n = 11) by Western blotting. GRP78 secretion by HAEC was assessed by comparing its concentration in cell culture medium and cell lysates. Cells were treated for 24 h with either the volatile phase of cigarette smoke (cigarette smoke extract (CSE) or the particulate phase (cigarette smoke condensate (CSC)). Results GRP78 was present in the BALF of both NS and S but levels were significantly greater in S (p = 0.04). GRP78 was secreted constitutively in HAEC. CSE 15% X 24 h increased GRP78 in cell-conditioned medium without affecting its intracellular concentration. In contrast, CSC X 24 h increased intracellular GRP78 expression but did not affect GRP78 secretion. Brefeldin A, an inhibitor of classical Golgi secretion pathways, did not inhibit GRP78 secretion indicating that non-classical pathways were involved. Conclusion The present study indicates that GRP78 is increased in BALF in cigarette smokers; that HAEC secrete GRP78; and that GRP78 secretion by HAEC is augmented by cigarette smoke particulates. Enhanced secretion of GRP78 by lung cells makes it a potential biomarker of cigarette smoke–induced lung injury.
Collapse
Affiliation(s)
- Mark O Aksoy
- Department of Thoracic Medicine and Surgery, Temple University School of Medicine, Philadelphia, PA, 19140, USA. .,761 Parkinson Pavilion, Temple University Hospital, 3401 N. Broad St., Philadelphia, PA, 19140, USA.
| | - Victor Kim
- Department of Thoracic Medicine and Surgery, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - William D Cornwell
- Department of Thoracic Medicine and Surgery, Temple University School of Medicine, Philadelphia, PA, 19140, USA.,Center for Inflammation, Translational and Clinical Lung Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Thomas J Rogers
- Department of Thoracic Medicine and Surgery, Temple University School of Medicine, Philadelphia, PA, 19140, USA.,Center for Inflammation, Translational and Clinical Lung Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Beata Kosmider
- Department of Thoracic Medicine and Surgery, Temple University School of Medicine, Philadelphia, PA, 19140, USA.,Department of Physiology, Temple University School of Medicine, Philadelphia, PA, 19140, USA.,Center for Inflammation, Translational and Clinical Lung Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Karim Bahmed
- Department of Thoracic Medicine and Surgery, Temple University School of Medicine, Philadelphia, PA, 19140, USA.,Center for Inflammation, Translational and Clinical Lung Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Carlos Barrero
- Temple University School of Pharmacy, Philadelphia, PA, 19140, USA
| | - Salim Merali
- Temple University School of Pharmacy, Philadelphia, PA, 19140, USA
| | - Neena Shetty
- Department of Thoracic Medicine and Surgery, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Steven G Kelsen
- Department of Thoracic Medicine and Surgery, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| |
Collapse
|
13
|
Dubé BP, Guerder A, Morelot-Panzini C, Laveneziana P. The clinical relevance of the emphysema-hyperinflated phenotype in COPD. ACTA ACUST UNITED AC 2016. [DOI: 10.1186/s40749-015-0017-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
14
|
Yu WL, Sun Y. Comment on Rondas et al. Citrullinated glucose-regulated protein 78 is an autoantigen in type 1 diabetes. Diabetes 2015;64:573-586. Diabetes 2015; 64:e4. [PMID: 25713204 DOI: 10.2337/db14-1463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Wei-Li Yu
- Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yun Sun
- Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|