1
|
Pinto R, Weigelhofer G, Brito AG, Hein T. Effects of dry-wet cycles on nitrous oxide emissions in freshwater sediments: a synthesis. PeerJ 2021; 9:e10767. [PMID: 33614277 PMCID: PMC7883693 DOI: 10.7717/peerj.10767] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/22/2020] [Indexed: 11/20/2022] Open
Abstract
Background Sediments frequently exposed to dry-wet cycles are potential biogeochemical hotspots for greenhouse gas (GHG) emissions during dry, wet and transitional phases. While the effects of drying and rewetting on carbon fluxes have been studied extensively in terrestrial and aquatic systems, less is known about the effects of dry-wet cycles on N2O emissions from aquatic systems. As a notable part of lotic systems are temporary, and small lentic systems can substantially contribute to GHG emissions, dry-wet cycles in these ecosystems can play a major role on N2O emissions. Methodology This study compiles literature focusing on the effects of drying, rewetting, flooding, and water level fluctuations on N2O emissions and related biogeochemical processes in sediments of lentic and lotic ecosystems. Results N2O pulses were observed following sediment drying and rewetting events. Moreover, exposed sediments during dry phases can be active spots for N2O emissions. The general mechanisms behind N2O emissions during dry-wet cycles are comparable to those of soils and are mainly related to physical mechanisms and enhanced microbial processing in lotic and lentic systems. Physical processes driving N2O emissions are mainly regulated by water fluctuations in the sediment. The period of enhanced microbial activity is driven by increased nutrient availability. Higher processing rates and N2O fluxes have been mainly observed when nitrification and denitrification are coupled, under conditions largely determined by O2 availability. Conclusions The studies evidence the driving role of dry-wet cycles leading to temporarily high N2O emissions in sediments from a wide array of aquatic habitats. Peak fluxes appear to be of short duration, however, their relevance for global emission estimates as well as N2O emissions from dry inland waters has not been quantified. Future research should address the temporal development during drying-rewetting phases in more detail, capturing rapid flux changes at early stages, and further explore the functional impacts of the frequency and intensity of dry-wet cycles.
Collapse
Affiliation(s)
- Renata Pinto
- Instituto Superior de Agronomia, University of Lisbon, LEAF - Linking Landscape, Environment, Agriculture and Food, Lisbon, Portugal.,University of Natural Resources and Life Sciences, Institute of Hydrobiology and Aquatic Ecosystem Management, Vienna, Austria.,WasserCluster Lunz GmbH -Inter-university Center for Aquatic Ecosystem Research, Lunz am See, Austria
| | - Gabriele Weigelhofer
- University of Natural Resources and Life Sciences, Institute of Hydrobiology and Aquatic Ecosystem Management, Vienna, Austria.,WasserCluster Lunz GmbH -Inter-university Center for Aquatic Ecosystem Research, Lunz am See, Austria
| | - António Guerreiro Brito
- Instituto Superior de Agronomia, University of Lisbon, LEAF - Linking Landscape, Environment, Agriculture and Food, Lisbon, Portugal
| | - Thomas Hein
- University of Natural Resources and Life Sciences, Institute of Hydrobiology and Aquatic Ecosystem Management, Vienna, Austria.,WasserCluster Lunz GmbH -Inter-university Center for Aquatic Ecosystem Research, Lunz am See, Austria
| |
Collapse
|
2
|
Lee CM, Hamm SY, Cheong JY, Kim K, Yoon H, Kim M, Kim J. Contribution of nitrate-nitrogen concentration in groundwater to stream water in an agricultural head watershed. ENVIRONMENTAL RESEARCH 2020; 184:109313. [PMID: 32151840 DOI: 10.1016/j.envres.2020.109313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
This study characterized nitrate-nitrogen (NO3-N) concentrations in groundwater and stream water in an agricultural head watershed in South Korea and identified the pollution load of NO3-N as a result of the groundwater entering streams using field surveys, analyses of chemical constituents, and numerical modeling. The mean NO3-N concentration in groundwater was 7.373 mg/L, which is approximately 1.9 times higher than concentrations found in stream water. The groundwater and stream water samples belonged to the Ca-HCO3 type. The concentration of NO3-N in groundwater tended to increase in the lowland areas downstream. There was seasonal variations of NO3-N in both the groundwater and stream water samples, with increases in concentration during the dry season (January-April) and decreases during the wet season (June-October). The NO3-N load in stream water to that in groundwater (R) was higher during the wet season (September) than the dry season (March), with R distinctly increasing in upstream areas relative to downstream areas, indicating that during the wet season, a large amount of NO3-N is introduced into stream water from groundwater. By analyzing the relationship between groundwater and stream water and through NO3-N transport modeling, it was revealed that in the watershed, the nitrate-N load in stream water is greatly augmented by inputs from groundwater, particularly in the middle and downstream areas.
Collapse
Affiliation(s)
- Chung-Mo Lee
- Department of Geological Sciences, Pusan National University, Busan, 46241, South Korea
| | - Se-Yeong Hamm
- Department of Geological Sciences, Pusan National University, Busan, 46241, South Korea.
| | - Jae-Yeol Cheong
- Korea Radioactive Waste Agency, Gyeongju, 38062, South Korea
| | - Kangjoo Kim
- Department of Environmental Engineering, Kunsan National University, Kunsan, 54150, South Korea
| | - Heesung Yoon
- Groundwater Research Center, Korea Institute of Geoscience and Mineral Resources, Daejeon, 34132, South Korea
| | - MoonSu Kim
- Soil and Groundwater Division, National Institute of Environmental Research, Incheon, 22689, South Korea
| | - Jinsoo Kim
- Department of Spatial Information Engineering, Pukyong National University, Busan, 48513, South Korea
| |
Collapse
|
3
|
Tang L, Hamid Y, Zehra A, Sahito ZA, He Z, Khan MB, Feng Y, Yang X. Mechanisms of water regime effects on uptake of cadmium and nitrate by two ecotypes of water spinach (Ipomoea aquatica Forsk.) in contaminated soil. CHEMOSPHERE 2020; 246:125798. [PMID: 31927376 DOI: 10.1016/j.chemosphere.2019.125798] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/20/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
Availability of cadmium (Cd) and nitrate and their transfer to green leafy vegetables is highly dependent on physical, chemical and biochemical conditions of the soil. The phenotypic characteristics, accumulation of hazardous materials and rhizosphere properties of two ecotypes of water spinach in response to water stress were investigated. Flooding significantly enhanced plant growth and decreased Cd and nitrate concentrations in the shoot and root of both ecotypes of water spinach. Flooding extensively changed the physicochemical properties and biological processes in the rhizosphere, including increased pH and activities of urease and acid phosphatase, and decreased availability of Cd and nitrate and activity of nitrate reductase. Furthermore, flooding increased rhizosphere bacteria community diversity (including richness and evenness) and changed their community structure. Denitrifying bacteria (Clostridiales, Azoarcus and Pseudomonas), toxic metal resistant microorganisms (Rhodosporillaceae, Rhizobiales and Geobacter) were enriched in the rhizosphere under flooding conditions, and the plant growth-promoting taxa (Sphingomonadaceae) were preferentially colonized in the high accumulator (HA) rhizosphere region. These results indicated that flooding treatments result in biochemical and microbiological changes in soil, especially in the rhizosphere and reduced the availability of Cd and nitrate to plants, thus decreasing their uptake by water spinach. It is, therefore, possible to promote crop growth and reduce the accumulation of hazardous materials in vegetable crops like water spinach by controlling soil moisture conditions.
Collapse
Affiliation(s)
- Lin Tang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Yasir Hamid
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Afsheen Zehra
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China; Department of Botany, Federal Urdu University of Arts, Science and Technology, Karachi, Pakistan
| | - Zulfiqar Ali Sahito
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Zhenli He
- University of Florida, Institute of Food and Agricultural Sciences, Indian River Research and Education Center, Fort Pierce, Florida, 34945, United States
| | - Muhammad Bilal Khan
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Ying Feng
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Xiaoe Yang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
4
|
Groundwater Depth Overrides Tree-Species Effects on the Structure of Soil Microbial Communities Involved in Nitrogen Cycling in Plantation Forests. FORESTS 2020. [DOI: 10.3390/f11030275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Microbial communities found in soil ecosystems play important roles in decomposing organic materials and recycling nutrients. A clear understanding on how biotic and abiotic factors influence the microbial community and its functional role in ecosystems is fundamental to terrestrial biogeochemistry and plant production. The purpose of this study was to investigate microbial communities and functional genes involved in nitrogen cycling as a function of groundwater depth (deep and shallow), tree species (pine and eucalypt), and season (spring and fall). Soil fungal, bacterial, and archaeal communities were determined by length heterogeneity polymerase chain reaction (LH-PCR). Soil ammonia oxidation archaeal (AOA) amoA gene, ammonia oxidation bacterial (AOB) amoA gene, nitrite oxidoreductase nrxA gene, and denitrifying bacterial narG, nirK, nirS, and nosZ genes were further studied using PCR and denaturing gradient gel electrophoresis (DGGE). Soil fungal and bacterial communities remained similar between tree species and groundwater depths, respectively, regardless of season. Soil archaeal communities remained similar between tree species but differed between groundwater depths in the spring only. Archaeal amoA for nitrification and bacterial nirK and nosZ genes for denitrification were detected in DGGE, whereas bacterial amoA and nrxA for nitrification and bacterial narG and nirS genes for denitrification were undetectable. The detected nitrification and denitrification communities varied significantly with groundwater depth. There was no significant difference of nitrifying archaeal amoA or denitrifying nirK communities between different tree species regardless of season. The seasonal difference in microbial communities and functional genes involved in nitrogen cycling suggests microorganisms exhibit seasonal dynamics that likely impact relative rates of nitrification and denitrification.
Collapse
|
5
|
Tomasek AA, Hondzo M, Kozarek JL, Staley C, Wang P, Lurndahl N, Sadowsky MJ. Intermittent flooding of organic‐rich soil promotes the formation of denitrification hot moments and hot spots. Ecosphere 2019. [DOI: 10.1002/ecs2.2549] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Abigail A. Tomasek
- St. Anthony Falls Laboratory University of Minnesota Minneapolis Minnesota 55455 USA
- Department of Civil, Environmental, and Geo‐Engineering University of Minnesota Minneapolis Minnesota 55455 USA
| | - Miki Hondzo
- St. Anthony Falls Laboratory University of Minnesota Minneapolis Minnesota 55455 USA
- Department of Civil, Environmental, and Geo‐Engineering University of Minnesota Minneapolis Minnesota 55455 USA
| | - Jessica L. Kozarek
- St. Anthony Falls Laboratory University of Minnesota Minneapolis Minnesota 55455 USA
| | - Christopher Staley
- BioTechnology Institute University of Minnesota St. Paul Minnesota 55108 USA
| | - Ping Wang
- BioTechnology Institute University of Minnesota St. Paul Minnesota 55108 USA
| | - Nicole Lurndahl
- Water Resources Science University of Minnesota St. Paul Minnesota 55108 USA
| | - Michael J. Sadowsky
- BioTechnology Institute University of Minnesota St. Paul Minnesota 55108 USA
- Water Resources Science University of Minnesota St. Paul Minnesota 55108 USA
- Department of Soil, Water, and Climate University of Minnesota St. Paul Minnesota 55108 USA
| |
Collapse
|
6
|
Tomasek A, Staley C, Wang P, Kaiser T, Lurndahl N, Kozarek JL, Hondzo M, Sadowsky MJ. Increased Denitrification Rates Associated with Shifts in Prokaryotic Community Composition Caused by Varying Hydrologic Connectivity. Front Microbiol 2017; 8:2304. [PMID: 29213260 PMCID: PMC5702768 DOI: 10.3389/fmicb.2017.02304] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 11/08/2017] [Indexed: 12/22/2022] Open
Abstract
While modern developments in agriculture have allowed for increases in crop yields and rapid human population growth, they have also drastically altered biogeochemical cycles, including the biotransformation of nitrogen. Denitrification is a critical process performed by bacteria and fungi that removes nitrate in surface waters, thereby serving as a potential natural remediation strategy. We previously reported that constant inundation resulted in a coupling of denitrification gene abundances with denitrification rates in sediments, but these relationships were not maintained in periodically-inundated or non-inundated environments. In this study, we utilized Illumina next-generation sequencing to further evaluate how the microbial community responds to these hydrologic regimes and how this community is related to denitrification rates at three sites along a creek in an agricultural watershed over 2 years. The hydrologic connectivity of the sampling location had a significantly greater influence on the denitrification rate (P = 0.010), denitrification gene abundances (P < 0.001), and the prokaryotic community (P < 0.001), than did other spatiotemporal factors (e.g., creek sample site or sample month) within the same year. However, annual variability among denitrification rates was also observed (P < 0.001). Furthermore, the denitrification rate was significantly positively correlated with water nitrate concentration (Spearman's ρ = 0.56, P < 0.0001), denitrification gene abundances (ρ = 0.23-0.47, P ≤ 0.006), and the abundances of members of the families Burkholderiaceae, Anaerolinaceae, Microbacteriaceae, Acidimicrobineae incertae sedis, Cytophagaceae, and Hyphomicrobiaceae (ρ = 0.17-0.25, P ≤ 0.041). Prokaryotic community composition accounted for the least amount of variation in denitrification rates (22%), while the collective influence of spatiotemporal factors and gene abundances accounted for 37%, with 40% of the variation related to interactions among all parameters. Results of this study suggest that the hydrologic connectivity at each location had a greater effect on the prokaryotic community than did spatiotemporal differences, where inundation is associated with shifts favoring increased denitrification potential. We further establish that while complex interactions among the prokaryotic community influence denitrification, the link between hydrologic connectivity, microbial community composition, and genetic potential for biogeochemical cycling is a promising avenue to explore hydrologic remediation strategies such as periodic flooding.
Collapse
Affiliation(s)
- Abigail Tomasek
- St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN, United States.,Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Christopher Staley
- BioTechnology Institute, University of Minnesota, St. Paul, MN, United States
| | - Ping Wang
- BioTechnology Institute, University of Minnesota, St. Paul, MN, United States
| | - Thomas Kaiser
- BioTechnology Institute, University of Minnesota, St. Paul, MN, United States
| | - Nicole Lurndahl
- Water Resources Science, University of Minnesota, St. Paul, MN, United States
| | - Jessica L Kozarek
- St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN, United States
| | - Miki Hondzo
- St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN, United States.,Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Michael J Sadowsky
- BioTechnology Institute, University of Minnesota, St. Paul, MN, United States.,Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
7
|
Correlating microbial community with physicochemical indices and structures of a full-scale integrated constructed wetland system. Appl Microbiol Biotechnol 2016; 100:6917-6926. [DOI: 10.1007/s00253-016-7526-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/30/2016] [Accepted: 04/05/2016] [Indexed: 10/21/2022]
|
8
|
Febria CM, Hosen JD, Crump BC, Palmer MA, Williams DD. Microbial responses to changes in flow status in temporary headwater streams: a cross-system comparison. Front Microbiol 2015; 6:522. [PMID: 26089816 PMCID: PMC4454877 DOI: 10.3389/fmicb.2015.00522] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 05/11/2015] [Indexed: 11/13/2022] Open
Abstract
Microbial communities are responsible for the bulk of biogeochemical processing in temporary headwater streams, yet there is still relatively little known about how community structure and function respond to periodic drying. Moreover, the ability to sample temporary habitats can be a logistical challenge due to the limited capability to measure and predict the timing, intensity and frequency of wet-dry events. Unsurprisingly, published datasets on microbial community structure and function are limited in scope and temporal resolution and vary widely in the molecular methods applied. We compared environmental and microbial community datasets for permanent and temporary tributaries of two different North American headwater stream systems: Speed River (Ontario, Canada) and Parkers Creek (Maryland, USA). We explored whether taxonomic diversity and community composition were altered as a result of flow permanence and compared community composition amongst streams using different 16S microbial community methods (i.e., T-RFLP and Illumina MiSeq). Contrary to our hypotheses, and irrespective of method, community composition did not respond strongly to drying. In both systems, community composition was related to site rather than drying condition. Additional network analysis on the Parkers Creek dataset indicated a shift in the central microbial relationships between temporary and permanent streams. In the permanent stream at Parkers Creek, associations of methanotrophic taxa were most dominant, whereas associations with taxa from the order Nitrospirales were more dominant in the temporary stream, particularly during dry conditions. We compared these results with existing published studies from around the world and found a wide range in community responses to drying. We conclude by proposing three hypotheses that may address contradictory results and, when tested across systems, may expand understanding of the responses of microbial communities in temporary streams to natural and human-induced fluctuations in flow-status and permanence.
Collapse
Affiliation(s)
- Catherine M Febria
- Department of Entomology, University of Maryland College Park, MD, USA ; Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science Solomons, MD, USA ; School of Biological Sciences, University of Canterbury Christchurch, New Zealand
| | - Jacob D Hosen
- Department of Entomology, University of Maryland College Park, MD, USA ; Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science Solomons, MD, USA
| | - Byron C Crump
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University Corvallis, OR, USA
| | - Margaret A Palmer
- Department of Entomology, University of Maryland College Park, MD, USA ; Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science Solomons, MD, USA ; National Socio-Environmental Synthesis Center, University of Maryland College Park, MD, USA
| | - D Dudley Williams
- Department of Biological Sciences, University of Toronto Scarborough Scarborough, ON, Canada
| |
Collapse
|