1
|
Fecteau K, Giori L, Eiler H, Esteller-Vico A, Lear A, Videla R. Serum steroid and thyroid hormone concentrations in healthy domestic male and female alpacas. Front Vet Sci 2023; 10:1281053. [PMID: 38144464 PMCID: PMC10748386 DOI: 10.3389/fvets.2023.1281053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023] Open
Abstract
Alpacas are high quality fiber producing animals, kept for production purpose and as pets. Endocrine imbalances from adrenal glands, gonads, or thyroid gland may result in coat abnormalities in domestic animals and affect reproduction. Contrary to many domesticated animals, information on hormone concentrations in alpacas is scarce. The purpose of this study was to provide steroid and thyroid hormone values in domestic alpacas. Blood was collected from healthy male (35 intact, 2 castrated) and female (48 non-pregnant, 3 pregnant) alpacas from local farms in Tennessee. Adrenal, reproductive, and thyroid hormones were analyzed. There were no significant differences in median concentrations of progesterone, estradiol, thyroxine (T4), and triiodothyronine (T3) between intact male and female non-pregnant alpacas. Median concentrations of testosterone, androstenedione, 17-hydroxyprogesterone, and cortisol were significantly higher in intact male alpacas compared to female non-pregnant alpacas. This information provides adrenal, gonadal, and thyroid hormone concentrations in alpacas to help with diagnosis of endocrine disorders.
Collapse
Affiliation(s)
- Kellie Fecteau
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States
| | - Luca Giori
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States
| | - Hugo Eiler
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States
| | - Alex Esteller-Vico
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States
| | - Andrea Lear
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States
| | - Ricardo Videla
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
2
|
Prevalence and multilocus genotypes of Enterocytozoon bieneusi in alpacas (Vicugna pacos) in Shanxi Province, northern China. Parasitol Res 2019; 118:3371-3375. [PMID: 31705288 DOI: 10.1007/s00436-019-06503-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/11/2019] [Indexed: 10/25/2022]
Abstract
Enterocytozoon bieneusi is a single-celled obligate pathogen that seriously threatens animal and public health. However, information on the prevalence and genotypes of E. bieneusi in alpacas in China is limited. In the present study, 366 fresh fecal samples from alpacas in Shanxi Province, northern China, were collected to detect E. bieneusi by nested PCR amplification of the internal transcribed spacer (ITS) of nuclear ribosomal DNA (rDNA). The overall prevalence of E. bieneusi in alpacas was 4.4% (16/366), including 3.9% (12/305) in Yangqu County and 6.6% (4/61) in Dai county, respectively. Four known genotypes were identified, namely ALP1, ALP3, P, and SH11, all of which belong to the zoonotic group 1 by phylogenetic analysis. Moreover, ITS-positive samples were further characterized by PCR amplification of other four targets, including three microsatellites (MS1, MS3, and MS7) and one minisatellite (MS4). Multilocus sequence typing (MLST) showed that 5, 2, 3, and 3 types were identified at MS1, MS3, MS7, and MS4 loci, respectively, representing eight multilocus genotypes (MLGs). These findings contribute to the improved understanding of the prevalence and genotypes of E. bieneusi in alpacas in China and have important implications for controlling E. bieneusi infections in animals and humans.
Collapse
|
3
|
Bastos RG, Franceschi V, Tebaldi G, Connelley T, Morrison WI, Knowles DP, Donofrio G, Fry LM. Molecular and Antigenic Properties of Mammalian Cell-Expressed Theileria parva Antigen Tp9. Front Immunol 2019; 10:897. [PMID: 31110506 PMCID: PMC6501543 DOI: 10.3389/fimmu.2019.00897] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 04/08/2019] [Indexed: 12/12/2022] Open
Abstract
East Coast Fever (ECF), caused by the tick-borne apicomplexan parasite Theileria parva, is a leading cause of morbidity and mortality in cattle of sub-Saharan Africa. The infection and treatment method (ITM) is currently the only vaccine available to control T. parva. Although ITM elicits levels of protection, its widespread adoption is limited by costs, laborious production process, and antibiotic co-treatment requirement, necessitating the development of a more sustainable vaccine. To this end, efforts have been concentrated in the identification of new T. parva vaccine antigens and in the development of suitable platforms for antigen expression. In this study, we investigated the molecular and antigenic properties of T. parva antigen Tp9 expressed by mammalian cells. Data indicate that Tp9 contains a signal peptide that is weakly functional in mammalian cells. Thus, Tp9 secretion from mammalian cells increased 10-fold after the native signal peptide was replaced with the human tissue plasminogen activator signal peptide (tPA). Sera from all T. parva-immune cattle recognized this recombinant, secreted Tp9. Additionally, PBMC from ITM-immunized cattle produced significant (p < 0.05) amounts of IFNγ following ex vivo exposure to Tp9, but this response varied between cattle of different MHC class I and class II genotypes. In addition, depletion experiments demonstrated that IFNγ to Tp9 was primarily produced by CD4+ T cells. Molecular analysis demonstrated that Tp9 presents a signal peptide that is weakly functional in mammalian cells, suggesting that it remains within lymphocytes during infection. Tp9 secretion from mammalian cells was substantially increased when the tPA secretion signal sequence was substituted for the native secretion signal sequence. Using full-length, recombinant Tp9 secreted from mammalian cells, we demonstrated that T. parva-immune cattle develop both humoral and cellular immune responses to this antigen. Collectively, these results provide rationale for further evaluation of Tp9 as a component of a T. parva subunit vaccine.
Collapse
Affiliation(s)
- Reginaldo G Bastos
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | | | - Giulia Tebaldi
- Department of Medical-Veterinary Science, University of Parma, Parma, Italy
| | - Timothy Connelley
- Royal School of Veterinary Sciences, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - W Ivan Morrison
- Royal School of Veterinary Sciences, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Donald P Knowles
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Gaetano Donofrio
- Department of Medical-Veterinary Science, University of Parma, Parma, Italy
| | - Lindsay M Fry
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States.,Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, Pullman, WA, United States
| |
Collapse
|
4
|
Montelli S, Stelletta C, Ruiz JA, Ballarin C, Cozzi B, Peruffo A. Mapping of the Early Intrauterine Morphogenesis in the Alpaca (Vicugna pacos): External Features and Development of the Cephalic Vesicle in Comparison with the Progressive Carnegie Scale. Anat Rec (Hoboken) 2018; 302:1226-1237. [PMID: 30315632 DOI: 10.1002/ar.23980] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/15/2018] [Accepted: 06/04/2018] [Indexed: 11/07/2022]
Abstract
In this study, we characterized the morphological aspects of the early development of the head of the alpaca (Vicugna pacos) and identified the main structures of the central nervous system during the first trimester of pregnancy. The topography and the cytoarchitecture of the fetal brain regions were described by histological analysis of the brain sections. We performed this analysis on alpaca embryos and fetuses presumably aged 20, 30, 45, and 90 days. For the description of the external body structures we considered the shape of the head, the development of the optic primordium, the dorsal curvature of the body, the limb buds, the umbilical cord and relative vessels, and the thickness and transparency of the skin. The prosencephalic, mesencephalic, and the rhomboencephalic vesicles were described by analyzing sagittal sections of the head. The present article provides the first progressive morphological and anatomical description of alpaca brain during early development. A detailed study represents an important basis to further understand the phases of prenatal development in this species, since information about alpaca embryology in incomplete and reproductive failure is a relevant factor. These data are important also for interspecies comparisons and application of reproductive biotechnologies. Anat Rec, 302:1226-1237, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Stefano Montelli
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020, Legnaro, PD, Italy
| | - Calogero Stelletta
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell'Università 16, 35020, Legnaro, PD, Italy
| | - Jaime Antonio Ruiz
- Laboratory of Reproductive Biotechnology, Faculty of Engineer Sciences, Universidad Nacional de Huancavelica, Huancavelica, Peru
| | - Cristina Ballarin
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020, Legnaro, PD, Italy
| | - Bruno Cozzi
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020, Legnaro, PD, Italy
| | | |
Collapse
|
5
|
GRP78 Promotes Hepatocellular Carcinoma proliferation by increasing FAT10 expression through the NF-κB pathway. Exp Cell Res 2018; 365:1-11. [PMID: 29458176 DOI: 10.1016/j.yexcr.2018.02.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 02/06/2018] [Accepted: 02/13/2018] [Indexed: 12/21/2022]
Abstract
Glucose-regulated protein 78(GRP78) and the ubiquitin-like protein FAT10 each promote proliferation in hepatocellular carcinoma(HCC). However, the relationship of GRP78 and FAT10 in HCC proliferation are still not known. In this study, we found that GRP78 and FAT10 were significantly overexpressed in HCC tissues compare with adjacent non-cancerous tissues, and a positive correlation was found between their expression and associated proliferation characteristics. High expression of GRP78 and FAT10 were positively correlated with tumor proliferation and poor prognosis in HCC. Moreover, GRP78 knockdown reduced FAT10 expression and suppressed HCC proliferation in vitro and in vivo. The effects of GRP78 knockdown were rescued by FAT10 up-regulation, whereas FAT10 knockdown reduced HCC proliferation enhanced by GRP78 up-regulation. Furthermore, GRP78 modulated FAT10 expression by regulating the NF-κB pathway, direct activation of the NF-κB pathway increased the expression of FAT10, a gene counteracting the tumor suppressor p53. Taken together, these results suggest that this newly identified GRP78-NF-κB-FAT10 axis will provide novel insight into the understanding of the regulatory mechanisms of proliferation in human HCC.
Collapse
|
6
|
Verna AE, Franceschi V, Tebaldi G, Macchi F, Menozzi V, Pastori C, Lopalco L, Ottonello S, Cavirani S, Donofrio G. Induction of Antihuman C-C Chemokine Receptor Type 5 Antibodies by a Bovine Herpesvirus Type-4 Based Vector. Front Immunol 2017; 8:1402. [PMID: 29118763 PMCID: PMC5660961 DOI: 10.3389/fimmu.2017.01402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/10/2017] [Indexed: 01/04/2023] Open
Abstract
Bovine herpesvirus 4 (BoHV-4) is a promising vector for the delivery and intracellular expression of recombinant antigens and can thus be considered as a new prototype vaccine formulation system. An interesting, and actively pursued, antigen in the context of human immunodeficiency virus (HIV) infection prophylaxis (and therapy) is the C-C chemokine receptor type 5 (CCR5) co-receptor, whose blockage by specific antibodies has been shown to inhibit both viral entry and cell-to-cell transmission of the virus. Building on our previous work on the BoHV-4 vector system, we have engineered and tested a replication-competent derivative of BoHV-4 (BoHV-4-CMV-hCCR5ΔTK) bearing a human CCR5 (hCCR5) expression cassette. We show here that CCR5 is indeed expressed at high levels in multiple types of BoHV-4-CMV-hCCR5ΔTK-infected cells. More importantly, two intravenous inoculations of CCR5-expressing BoHV-4 virions into rabbits led to the production of anti-CCR5 antibodies capable of reacting with the CCR5 receptor exposed on the surface of HEK293T cells through specific recognition of the amino-terminal region (aa 14-34) of the protein. Given the growing interest for anti-CCR5 immunization as an HIV control strategy and the many advantages of virus-based immunogen formulations (especially for poorly immunogenic or self-antigens), the results reported in this study provide preliminary validation of BoHV-4 as a safe viral vector suitable for CCR5 vaccination.
Collapse
Affiliation(s)
| | | | - Giulia Tebaldi
- Department of Medical Veterinary Science, University of Parma, Parma, Italy
| | - Francesca Macchi
- Department of Medical Veterinary Science, University of Parma, Parma, Italy
| | - Valentina Menozzi
- Department of Medical Veterinary Science, University of Parma, Parma, Italy
| | - Claudia Pastori
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Lucia Lopalco
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Simone Ottonello
- Biochemistry and Molecular Biology Unit, Laboratory of Functional Genomics and Protein Engineering, Department of Life Sciences, University of Parma, Parma, Italy
| | - Sandro Cavirani
- Department of Medical Veterinary Science, University of Parma, Parma, Italy
| | - Gaetano Donofrio
- Department of Medical Veterinary Science, University of Parma, Parma, Italy
| |
Collapse
|
7
|
Gonzalez-Sapienza G, Rossotti MA, Tabares-da Rosa S. Single-Domain Antibodies As Versatile Affinity Reagents for Analytical and Diagnostic Applications. Front Immunol 2017; 8:977. [PMID: 28871254 PMCID: PMC5566570 DOI: 10.3389/fimmu.2017.00977] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/31/2017] [Indexed: 12/23/2022] Open
Abstract
With just three CDRs in their variable domains, the antigen-binding site of camelid heavy-chain-only antibodies (HcAbs) has a more limited structural diversity than that of conventional antibodies. Even so, this does not seem to limit their specificity and high affinity as HcAbs against a broad range of structurally diverse antigens have been reported. The recombinant form of their variable domain [nanobody (Nb)] has outstanding properties that make Nbs, not just an alternative option to conventional antibodies, but in many cases, these properties allow them to reach analytical or diagnostic performances that cannot be accomplished with conventional antibodies. These attributes include comprehensive representation of the immune specificity in display libraries, easy adaptation to high-throughput screening, exceptional stability, minimal size, and versatility as affinity building block. Here, we critically reviewed each of these properties and highlight their relevance with regard to recent developments in different fields of immunosensing applications.
Collapse
Affiliation(s)
| | - Martín A Rossotti
- Cátedra de Inmunología, Facultad de Química, Instituto de Higiene, UDELAR, Montevideo, Uruguay
| | - Sofía Tabares-da Rosa
- Cátedra de Inmunología, Facultad de Química, Instituto de Higiene, UDELAR, Montevideo, Uruguay
| |
Collapse
|
8
|
Tebaldi G, Williams LB, Verna AE, Macchi F, Franceschi V, Fry LM, Knowles DP, Donofrio G. Assessment and optimization of Theileria parva sporozoite full-length p67 antigen expression in mammalian cells. PLoS Negl Trop Dis 2017; 11:e0005803. [PMID: 28800590 PMCID: PMC5568440 DOI: 10.1371/journal.pntd.0005803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 08/23/2017] [Accepted: 07/12/2017] [Indexed: 11/18/2022] Open
Abstract
Delivery of various forms of recombinant Theileria parva sporozoite antigen (p67) has been shown to elicit antibody responses in cattle capable of providing protection against East Coast fever, the clinical disease caused by T. parva. Previous formulations of full-length and shorter recombinant versions of p67 derived from bacteria, insect, and mammalian cell systems are expressed in non-native and highly unstable forms. The stable expression of full-length recombinant p67 in mammalian cells has never been described and has remained especially elusive. In this study, p67 was expressed in human-derived cells as a full-length, membrane-linked protein and as a secreted form by omission of the putative transmembrane domain. The recombinant protein expressed in this system yielded primarily two products based on Western immunoblot analysis, including one at the expected size of 67 kDa, and one with a higher than expected molecular weight. Through treatment with PNGase F, our data indicate that the larger product of this mammalian cell-expressed recombinant p67 cannot be attributed to glycosylation. By increasing the denaturing conditions, we determined that the larger sized mammalian cell-expressed recombinant p67 product is likely a dimeric aggregate of the protein. Both forms of this recombinant p67 reacted with a monoclonal antibody to the p67 molecule, which reacts with the native sporozoite. Additionally, through this work we developed multiple mammalian cell lines, including both human and bovine-derived cell lines, transduced by a lentiviral vector, that are constitutively able to express a stable, secreted form of p67 for use in immunization, diagnostics, or in vitro assays. The recombinant p67 developed in this system is immunogenic in goats and cattle based on ELISA and flow cytometric analysis. The development of a mammalian cell system that expresses full-length p67 in a stable form as described here is expected to optimize p67-based immunization. East Coast fever, caused by the tick-borne protozoan parasite Theileria parva, is a disease that results in significant bovine morbidity, mortality, and production losses in regions of sub-Saharan Africa. Susceptible cattle develop clinical signs within a 7–14 days of exposure, which often progress to severe pulmonary edema and death. Control of East Coast fever in affected regions of Africa is largely prohibited by the lack of an affordable and efficacious vaccine. Furthermore, pastoralist farmers in affected regions of Africa often lack resources to prevent losses due to East Coast fever, so these production losses play a significant role in food security and protein availability. Experimental immunization of cattle with a recombinant T. parva-derived antigen, p67, has shown promise in preventing East Coast fever, but this antigen is extremely difficult to produce in full-length in sufficient quantities, and results of immunization studies using truncated recombinant p67 products are highly inconsistent. In this study, p67 antigen production was optimized and produced for use in future immunization studies. Optimization of p67-based immunization strategies is an important step forward in the development of a sustainable, next-generation vaccine against T. parva, which is urgently needed to minimize losses associated with East Coast fever.
Collapse
Affiliation(s)
- Giulia Tebaldi
- Department of Medical-Veterinary Science, University of Parma, Parma, Italy
| | - Laura B. Williams
- United States Department of Agriculture and Department of Veterinary Microbiology & Pathology, Animal Disease Research Unit, Agricultural Research Service, Washington State University, Pullman, WA, United States of America
| | - Andrea E. Verna
- Department of Medical-Veterinary Science, University of Parma, Parma, Italy
| | - Francesca Macchi
- Department of Medical-Veterinary Science, University of Parma, Parma, Italy
| | | | - Lindsay M. Fry
- United States Department of Agriculture and Department of Veterinary Microbiology & Pathology, Animal Disease Research Unit, Agricultural Research Service, Washington State University, Pullman, WA, United States of America
| | - Donald P. Knowles
- United States Department of Agriculture and Department of Veterinary Microbiology & Pathology, Animal Disease Research Unit, Agricultural Research Service, Washington State University, Pullman, WA, United States of America
- * E-mail: (GD); (DPK)
| | - Gaetano Donofrio
- Department of Medical-Veterinary Science, University of Parma, Parma, Italy
- Paul G. Allen School for Global Animal Health, Washington State University College of Veterinary Medicine, Pullman, WA, United States of America
- * E-mail: (GD); (DPK)
| |
Collapse
|
9
|
Shaapan RM. The common zoonotic protozoal diseases causing abortion. J Parasit Dis 2015; 40:1116-1129. [PMID: 27876900 DOI: 10.1007/s12639-015-0661-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 02/06/2015] [Indexed: 11/26/2022] Open
Abstract
Toxoplasmosis, neosporosis, sarcosporidiosis (sarcocystosis) and trypanosomiasis are the common zoonotic protozoal diseases causing abortion which caused by single-celled protozoan parasites; Toxoplasma gondii, Neospora caninum, Sarcocystis spp and Trypanosoma evansi, respectively. Toxoplasmosis is generally considered the most important disease that causing abortion of both pregnant women and different female animals throughout the world, about third of human being population had antibodies against T. gondii. The infection can pass via placenta, causing encephalitis, chorio-retinitis, mental retardation and loss of vision in congenitally-infected children and stillbirth or mummification of the aborted fetuses of livestock. Neosporosis is recognized as a major cause of serious abortion in varieties of wild and domestic animals around the world particularly cattle, the disease cause serious economic losses among dairy and beef cattle due to decrease in milk and meat production. While unlike toxoplasmosis, neosporosis is not recognized as a human pathogen and evidence to date shows that neosporosis is only detected by serology in the human population. Sarcosporidiosis also can cause abortion in animals particularly cattle, buffaloes and sheep with acute infection through high dose of infection with sarcocysts. On the other hand, humans have been reported as final and intermediate host for sarcosporidiosis but not represent a serious health problem. Trypanosomiasis by T. evansi cause dangerous infection among domestic animals in tropical and subtropical areas. Several cases of abortion had been recorded in cattle and buffaloes infected with T. evansi while, a single case of human infection was reported in India. Trichomoniasis and babesiosis abortion occurs with non-zoonotic Trichomonas and Babesia species while the zoonotic species had not been incriminated in induction of abortion in both animals and man. The current review article concluded that there is still need of wide scope for evaluation of the zoonotic impact and control of these diseases.
Collapse
Affiliation(s)
- Raafat Mohamed Shaapan
- Veterinary Research Division, Department of Zoonosis, National Research Center, El-Tahrir Street, Dokki, Post Box: 12622, Giza, Egypt
| |
Collapse
|