1
|
Panahipour L, Abbasabadi AO, Gruber R. Gingival Fibroblasts Are Sensitive to Oral Cell Lysates Indicated by Their IL11 Expression. Bioengineering (Basel) 2023; 10:1193. [PMID: 37892923 PMCID: PMC10604186 DOI: 10.3390/bioengineering10101193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Damaged cells that appear as a consequence of invasive dental procedures or in response to dental materials are supposed to release damage-associated signals. These damage-associated signals not only support tissue regeneration but might also contribute to unwanted fibrosis. The aim of this study was to identify a molecular target that reflects how fibroblasts respond to necrotic oral tissue cells. To simulate the cell damage, we prepared necrotic cell lysates by sonication of the osteocytic cell line IDG-SW3 and exposed them to gingival fibroblasts. RNAseq revealed a moderate increase in IL11 expression in the gingival fibroblasts, a pleiotropic cytokine involved in fibrosis and inflammation, and also in regeneration following trauma. Necrotic lysates of the human squamous carcinoma cell lines HSC2 and TR146, as well as of gingival fibroblasts, however, caused a robust increase in IL11 expression in the gingival fibroblasts. Consistently, immunoassay revealed significantly increased IL11 levels in the gingival fibroblasts when exposed to the respective lysates. Considering that IL11 is a TGF-β target gene, IL11 expression was partially blocked by SB431542, a TGF-β receptor type I kinase inhibitor. Moreover, lysates from the HSC2, TR146, and gingival fibroblasts caused a moderate smad2/3 nuclear translocation in the gingival fibroblasts. Taken together and based on IL11 expression, our findings show that fibroblasts are sensitive to damaged oral tissue cells.
Collapse
Affiliation(s)
- Layla Panahipour
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (L.P.); (A.O.A.)
| | - Azarakhsh Oladzad Abbasabadi
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (L.P.); (A.O.A.)
| | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (L.P.); (A.O.A.)
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
2
|
Panahipour L, Botta S, Abbasabadi AO, Afradi Z, Gruber R. Enamel Matrix Derivative Suppresses Chemokine Expression in Oral Epithelial Cells. Int J Mol Sci 2023; 24:13991. [PMID: 37762294 PMCID: PMC10530986 DOI: 10.3390/ijms241813991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Epithelial cells in periodontitis patients increasingly express chemokines, suggesting their active involvement in the inflammatory process. Enamel matrix derivative (EMD) is an extract of porcine fetal tooth germs clinically applied to support the regrowth of periodontal tissues. Periodontal regeneration might benefit from the potential anti-inflammatory activity of EMD for epithelial cells. Our aim was, therefore, to set up a bioassay where chemokine expression is initiated in the HSC2 oral squamous carcinoma cell line and then test EMD for its capacity to lower the inflammatory response. To establish the bioassay, HSC2 cells being exposed to TNFα and LPS from E. coli (Escherichia coli) or P. gingivalis (Porphyromonas gingivalis) were subjected to RNAseq. Here, TNFα but not LPS caused a robust increase of chemokines, including CXCL1, CXCL2, CXCL8, CCL5, and CCL20 in HSC2 cells. Polymerase chain reaction confirmed the increased expression of the respective chemokines in cells exposed to TNFα and IL-1β. Under these conditions, EMD reduced the expression of all chemokines at the transcriptional level and CXCL8 by immunoassay. The TGF-β receptor type I kinase-inhibitor SB431542 reversed the anti-inflammatory activity. Moreover, EMD-activated TGF-β-canonical signaling was visualized by phosphorylation of smad3 and nuclear translocation of smad2/3 in HSC2 cells and blocked by SB431542. This observation was confirmed with primary oral epithelial cells where EMD significantly lowered the SB431542-dependent expression of CXCL8. In summary, our findings suggest that TGF-β signaling mediates the effects of EMD to lower the forced expression of chemokines in oral epithelial cells.
Collapse
Affiliation(s)
- Layla Panahipour
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (L.P.); (S.B.); (A.O.A.); (Z.A.)
| | - Sara Botta
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (L.P.); (S.B.); (A.O.A.); (Z.A.)
| | - Azarakhsh Oladzad Abbasabadi
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (L.P.); (S.B.); (A.O.A.); (Z.A.)
| | - Zohreh Afradi
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (L.P.); (S.B.); (A.O.A.); (Z.A.)
| | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (L.P.); (S.B.); (A.O.A.); (Z.A.)
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
3
|
Panahipour L, Sordi MB, Kargarpour Z, Gruber R. TGF-β Signalling Mediates the Anti-Inflammatory Activity of Enamel Matrix Derivative In Vitro. Int J Mol Sci 2022; 23:9778. [PMID: 36077174 PMCID: PMC9456059 DOI: 10.3390/ijms23179778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022] Open
Abstract
Enamel matrix derivative (EMD) prepared from extracted porcine fetal tooth material can support the regrow of periodontal tissues. Previous findings suggest that EMD has anti-inflammatory properties and TGF-β activity in vitro. However, the anti-inflammatory activity of EMD is mediated via TGF-β has not been considered. To this aim, we first established a bioassay to confirm the anti-inflammatory activity of EMD. The bioassay was based on the RAW 264.7 macrophage cell line and proven with primary macrophages where EMD significantly reduced the forced expression of IL-6. We then confirmed the presence of TGF-β1 in EMD by immunoassay and by provoking the Smad2/3 nuclear translocation in RAW 264.7 macrophages. Next, we took advantage of the TGF-β receptor type I kinase-inhibitor SB431542 to block the respective signalling pathway. SB431542 reversed the anti-inflammatory activity of EMD and TGF-β in a bioassay when IL-6 and CXCL2 expression was driven by the LPS stimulation of RAW 264.7 macrophages. This central observation was supported by showing that SB431542 reversed the anti-inflammatory activity of EMD using IL-1β and TNF-α-stimulated ST2 bone marrow stromal cells. Together, these findings implicate that the TGF-β activity mediates at least part of the anti-inflammatory activity of EMD in vitro.
Collapse
Affiliation(s)
- Layla Panahipour
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria
| | - Mariane Beatriz Sordi
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria
| | - Zahra Kargarpour
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria
| | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria
- Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland
- Austrian Cluster for Tissue Regeneration, Donaueschingenstraße 13, 1200 Vienna, Austria
| |
Collapse
|
4
|
Panahipour L, Moghaddam DM, Nasirzade J, Kargarpour Z, Gruber R. RNAseq of TGF-β receptor type I kinase-dependent genes in oral fibroblast exposed to milk. BMC Oral Health 2021; 21:581. [PMID: 34789212 PMCID: PMC8597240 DOI: 10.1186/s12903-021-01913-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/05/2021] [Indexed: 11/30/2022] Open
Abstract
Background Milk is a rich source of natural growth factors that may support oral tissue homeostasis and wound healing. We had shown earlier that blocking TGF-β receptor type I kinase with the inhibitor SB431542 abolished the expression of IL11 and other genes in human gingival fibroblasts exposed to the aqueous fraction of milk. Our aim was to identify the entire signature of TGF-β receptor type I kinase-dependent genes regulated by the aqueous fraction of human milk. Result RNAseq revealed 99 genes being strongly regulated by milk requiring activation of the SB431542-dependent TGF-β receptor type I kinase. Among the SB431542-dependent genes is IL11 but also cadherins, claudins, collagens, potassium channels, keratins, solute carrier family proteins, transcription factors, transmembrane proteins, tumor necrosis factor ligand superfamily members, and tetraspanin family members. When focusing on our candidate gene, we could identify D609 to suppress IL11 expression, independent of phospholipase C, sphinosine-1 phosphate synthesis, and Smad-3 phosphorylation and its nuclear translocation. In contrast, genistein and blocking phosphoinositide 3-kinases by wortmannin and LY294002 increased the milk-induced IL11 expression in gingival fibroblasts. Conclusion Taken together, our data revealed TGF-β receptor type I kinase signaling to cause major changes of the genetic signature of gingival fibroblasts exposed to aqueous fraction of human milk. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-021-01913-5.
Collapse
Affiliation(s)
- Layla Panahipour
- Department of Oral Biology, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria
| | | | - Jila Nasirzade
- Department of Oral Biology, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria
| | - Zahra Kargarpour
- Department of Oral Biology, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria
| | - Reinhard Gruber
- Department of Oral Biology, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria. .,Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010, Bern, Switzerland. .,Austrian Cluster for Tissue Regeneration, Donaueschingenstraße 13, 1200, Vienna, Austria.
| |
Collapse
|
5
|
Lin Z, Nica C, Sculean A, Asparuhova MB. Positive Effects of Three-Dimensional Collagen-Based Matrices on the Behavior of Osteoprogenitors. Front Bioeng Biotechnol 2021; 9:708830. [PMID: 34368101 PMCID: PMC8334008 DOI: 10.3389/fbioe.2021.708830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/05/2021] [Indexed: 12/22/2022] Open
Abstract
Recent research has demonstrated that reinforced three-dimensional (3D) collagen matrices can provide a stable scaffold for restoring the lost volume of a deficient alveolar bone. In the present study, we aimed to comparatively investigate the migratory, adhesive, proliferative, and differentiation potential of mesenchymal stromal ST2 and pre-osteoblastic MC3T3-E1 cells in response to four 3D collagen-based matrices. Dried acellular dermal matrix (DADM), hydrated acellular dermal matrix (HADM), non-crosslinked collagen matrix (NCM), and crosslinked collagen matrix (CCM) did all enhance the motility of the osteoprogenitor cells. Compared to DADM and NCM, HADM and CCM triggered stronger migratory response. While cells grown on DADM and NCM demonstrated proliferative rates comparable to control cells grown in the absence of a biomaterial, cells grown on HADM and CCM proliferated significantly faster. The pro-proliferative effects of the two matrices were supported by upregulated expression of genes regulating cell division. Increased expression of genes encoding the adhesive molecules fibronectin, vinculin, CD44 antigen, and the intracellular adhesive molecule-1 was detected in cells grown on each of the scaffolds, suggesting excellent adhesive properties of the investigated biomaterials. In contrast to genes encoding the bone matrix proteins collagen type I (Col1a1) and osteopontin (Spp1) induced by all matrices, the expression of the osteogenic differentiation markers Runx2, Alpl, Dlx5, Ibsp, Bglap2, and Phex was significantly increased in cells grown on HADM and CCM only. Short/clinically relevant pre-coating of the 3D biomaterials with enamel matrix derivative (EMD) or recombinant bone morphogenetic protein-2 (rBMP-2) significantly boosted the osteogenic differentiation of both osteoprogenitor lines on all matrices, including DADM and NCM, indicating that EMD and BMP-2 retained their biological activity after being released from the matrices. Whereas EMD triggered the expression of all osteogenesis-related genes, rBMP-2 upregulated early, intermediate, and late osteogenic differentiation markers except for Col1a1 and Spp1. Altogether, our results support favorable influence of HADM and CCM on the recruitment, growth, and osteogenic differentiation of the osteoprogenitor cell types. Furthermore, our data strongly support the biofunctionalization of the collagen-based matrices with EMD or rBMP-2 as a potential treatment modality for bone defects in the clinical practice.
Collapse
Affiliation(s)
- Zhikai Lin
- Laboratory of Oral Cell Biology, Dental Research Center, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Cristina Nica
- Laboratory of Oral Cell Biology, Dental Research Center, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Maria B Asparuhova
- Laboratory of Oral Cell Biology, Dental Research Center, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Qu C, He L, Yao N, Li J, Jiang Y, Li B, Peng S, Hu K, Chen D, Chen G, Huang W, Cao M, Fan J, Yuan Y, Ye W, Hong J. Myofibroblast-Specific Msi2 Knockout Inhibits HCC Progression in a Mouse Model. Hepatology 2021; 74:458-473. [PMID: 33609283 DOI: 10.1002/hep.31754] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/31/2020] [Accepted: 01/11/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIMS Myofibroblasts play a pivotal role in the development and progression of HCC. Here, we aimed to explore the role and mechanism of myofibroblast Musashi RNA binding protein 2 (MSI2) in HCC progression. APPROACH AND RESULTS Myofibroblast infiltration and collagen deposition were detected and assessed in the tissues from 117 patients with HCC. Transgenic mice (Msi2ΔCol1a1 ) with floxed Msi2 allele and collagen type I alpha 1 chain (Col1a1)-ligand inducible Cre recombinases (CreER) were constructed to generate a myofibroblast-specific Msi2 knockout model. Mouse HCC cells were orthotopically transplanted into the Msi2ΔCol1a1 or the control mice (Msi2F/F ). We found that the deposition of collagen fibers, the main product of myofibroblasts, predicted a poor prognosis for HCC; meanwhile, we detected high MSI2 expression in the peritumoral infiltrated myofibroblasts. Conditional deletion of Msi2 in myofibroblasts significantly inhibited the growth of orthotopically implanted HCC, reduced both intrahepatic and lung metastasis, and prolonged the overall survival of tumor-bearing mice (P = 0.002). In vitro analysis demonstrated that myofibroblasts promoted cell proliferation, invasion, and epithelial-mesenchymal transformation of HCC cells, whereas Msi2 deletion in myofibroblasts reversed these effects. Mechanically, Msi2 knockout decreased myofibroblast-derived IL-6 and IL-11 secretion by inhibiting the extracellular signal-regulated kinase 1/2 pathway, and thus attenuated the cancer stem cell-promoting effect of myofibroblasts. Interestingly, we found that the simultaneous knockout of Msi2 in myofibroblasts and knockdown of Msi2 in HCC cells could not further attenuate the implanted HCC progression. CONCLUSIONS Myofibroblast-specific Msi2 knockout abrogated the tumor-promoting function of myofibroblasts and inhibited HCC progression in mouse models. Targeting myofibroblast MSI2 expression may therefore prove to be a therapeutic strategy for HCC treatment in the future.
Collapse
Affiliation(s)
- Chen Qu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| | - Lu He
- Department of Radiotherapy, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Nan Yao
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Jinying Li
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yuchuan Jiang
- Department of Hepatological Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Binkui Li
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shuang Peng
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| | - Kunpeng Hu
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dong Chen
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guo Chen
- Department of Biochemistry, School of Medicine, Jinan University, Guangzhou, China
| | - Wei Huang
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Mingrong Cao
- Department of Hepatological Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jun Fan
- Department of Biochemistry, School of Medicine, Jinan University, Guangzhou, China
| | - Yunfei Yuan
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wencai Ye
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Jian Hong
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China.,Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Hepatological Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
7
|
Panahipour L, Husejnovic S, Nasirzade J, Semelmayer S, Gruber R. Micellar Casein and Whey Powder Hold a TGF-β Activity and Regulate ID Genes In Vitro. Molecules 2021; 26:507. [PMID: 33477984 PMCID: PMC7835755 DOI: 10.3390/molecules26020507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 11/08/2022] Open
Abstract
Casein and whey being food supplements have been considered to be used in oral health care products. However, the response of oral cells to micellar casein and whey powder remains unclear. Considering that milk contains the growth factor TGF-β, and lactoperoxidase was recently reported to decrease the expression of inhibitor of DNA-binding (ID) proteins, there is a rationale to assume that casein and whey can also provoke these responses in oral cells. To examine the TGF-β activity, gingival fibroblasts were exposed to reconstituted casein and whey powder from food supplement before the expression of TGF-β target genes were analyzed by reverse transcription-quantitative polymerase chain reaction. Immunoassays were performed for interleukin11 (IL11) in the cell culture supernatant and for TGF-β in the reconstituted casein and whey. We blocked TGF-β by neutralizing the antibody and the TGF-β receptor type I kinase with the inhibitor SB431542. We also showed smad3 phosphorylation and smad2/3 nuclear translocation by Western blot and immunostaining, respectively. Moreover, with reconstituted casein and whey powder, ID1 and ID3 expression analysis was evaluated in HSC2 human oral squamous carcinoma cells. We report here that casein and whey powder caused a robust increase of TGF-β target genes interleukin11 (IL11), NADPH oxidase 4 (NOX4) and proteoglycan4 (PRG4) in gingival fibroblasts that was blocked by SB431542 and the neutralizing antibody. Moreover, casein and whey powder increased the phosphorylation of smad3 and nuclear translocation of smad2/3. No changes of proliferation markers Ki67 and cyclinD1 were observed. Furthermore, reconstituted casein and whey powder decreased ID1 and ID3 expression in the HSC2 oral squamous carcinoma cells. These findings suggest that the processing of milk into casein and whey powder maintains the TGF-β activity and its capacity to regulate ID1 and ID3 genes in oral fibroblasts and oral squamous carcinoma cells, respectively. These data increase the scientific knowledge on the biological activity of casein and whey with a special emphasis on oral health.
Collapse
Affiliation(s)
- Layla Panahipour
- Department of Oral Biology, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (L.P.); (S.H.); (J.N.); (S.S.)
| | - Selma Husejnovic
- Department of Oral Biology, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (L.P.); (S.H.); (J.N.); (S.S.)
| | - Jila Nasirzade
- Department of Oral Biology, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (L.P.); (S.H.); (J.N.); (S.S.)
| | - Stephan Semelmayer
- Department of Oral Biology, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (L.P.); (S.H.); (J.N.); (S.S.)
| | - Reinhard Gruber
- Department of Oral Biology, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (L.P.); (S.H.); (J.N.); (S.S.)
- Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland
- Austrian Cluster for Tissue Regeneration, Donaueschingenstraße 13, 1200 Vienna, Austria
| |
Collapse
|
8
|
TGF-β Activity of a Demineralized Bone Matrix. Int J Mol Sci 2021; 22:ijms22020664. [PMID: 33440877 PMCID: PMC7827646 DOI: 10.3390/ijms22020664] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 12/25/2022] Open
Abstract
Allografts consisting of demineralized bone matrix (DBM) are supposed to retain the growth factors of native bone. However, it is not clear if transforming growth factor β1 (TGF-β1) is maintained in the acid-extracted human bone. To this aim, the aqueous solutions of supernatants and acid lysates of OraGRAFT® Demineralized Cortical Particulate and OraGRAFT® Prime were prepared. Exposing fibroblasts to the aqueous solution caused a TGF-β receptor type I kinase-inhibitor SB431542-dependent increase in interleukin 11 (IL11), NADPH oxidase 4 (NOX4), and proteoglycan 4 (PRG4) expression. Interleukin 11 expression and the presence of TGF-β1 in the aqueous solutions were confirmed by immunoassay. Immunofluorescence further confirmed the nuclear translocation of Smad2/3 when fibroblasts were exposed to the aqueous solutions of both allografts. Moreover, allografts released matrix metalloprotease-2 activity and blocking proteases diminished the cellular TGF-β response to the supernatant. These results suggest that TGF-β is preserved upon the processing of OraGRAFT® and released by proteolytic activity into the aqueous solution.
Collapse
|
9
|
TGF-β Activity Related to the Use of Collagen Membranes: In Vitro Bioassays. Int J Mol Sci 2020; 21:ijms21186636. [PMID: 32927851 PMCID: PMC7555929 DOI: 10.3390/ijms21186636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 01/04/2023] Open
Abstract
Collagen membranes commonly used in guided bone regeneration are supposed to actively influence tissue regeneration and are not exclusively serving as passive barriers shielding away the soft tissue. The molecular mechanisms by which collagen membranes might affect tissue regeneration might involve the activation of transforming growth factor beta (TGF-β) signaling pathways. Here, we determined the TGF-β activity of supernatants and proteolytic lysates of five commercially available collagen membranes. The expression of TGF-β target genes interleukin 11 (IL11), NADPH oxidase 4 (NOX4), and proteoglycan 4 (PRG4) was evaluated by reverse transcriptase polymerase chain reaction and IL11 immunoassay in gingival fibroblasts. TGF-β signaling activation was further assessed by blocking the TGF-β receptor I kinase, a TGF-β neutralizing antibody, and showing the nuclear localization of phosphorylated Smad3 and total Smad2/3. We could identify two collagen membranes whose supernatants and lysates caused a robust increase of TGF-β receptor I kinase-dependent expression of IL11 in gingival fibroblasts. Moreover, the supernatant of a particular one membrane caused the nuclear localization of phosphorylated Smad3 and Smad2/3 in the fibroblasts. These results strengthen the evidence that some collagen membranes possess an intrinsic TGF-β activity that might actively influence the process of guided bone regeneration.
Collapse
|
10
|
Liquid Platelet-Rich Fibrin and Heat-Coagulated Albumin Gel: Bioassays for TGF-β Activity. MATERIALS 2020; 13:ma13163466. [PMID: 32781631 PMCID: PMC7475845 DOI: 10.3390/ma13163466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023]
Abstract
Liquid platelet-rich fibrin (PRF) can be prepared by high centrifugation forces separating the blood into a platelet-poor plasma (PPP) layer and a cell-rich buffy coat layer, termed concentrated PRF (C-PRF). Heating the liquid PPP was recently introduced to prepare an albumin gel (Alb-gel) that is later mixed back with the concentrated liquid C-PRF to generate Alb-PRF. PRF is a rich source of TGF-β activity; however, the overall TGF-β activity in the PPP and the impact of heating the upper plasma layer remains unknown. Here, we investigated for the first time the in vitro TGF-β activity of all fractions of Alb-PRF. We report that exposure of oral fibroblasts with lysates of PPP and the buffy coat layer, but not with heated PPP, provoked a robust increase in the TGF-β target genes interleukin 11 and NADPH oxidase 4 by RT-PCR, and for IL11 by immunoassay. Consistent with the activation of TGF-β signaling, expression changes were blocked in the presence of the TGF-β receptor type I kinase inhibitor SB431542. Immunofluorescence and Western blot further confirmed that lysates of PPP and the buffy coat layer, but not heated PPP, induced the nuclear translocation of Smad2/3 and increased phosphorylation of Smad3. The immunoassay further revealed that PPP and particularly BC are rich in active TGF-β compared to heated PPP. These results strengthen the evidence that not only the cell-rich C-PRF but also PPP comprise a TGF-β activity that is, however, heat sensitive. It thus seems relevant to mix the heated PPP with the buffy coat C-PRF layer to regain TGF-β activity, as proposed during the preparation of Alb-PRF.
Collapse
|
11
|
TGFβ activity released from platelet-rich fibrin adsorbs to titanium surface and collagen membranes. Sci Rep 2020; 10:10203. [PMID: 32576959 PMCID: PMC7311486 DOI: 10.1038/s41598-020-67167-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 05/26/2020] [Indexed: 02/07/2023] Open
Abstract
Platelet-rich fibrin (PRF) contains a broad spectrum of bioactive molecules that can trigger several cellular responses. However, these molecules along with their upstream responses remain mostly uninvestigated. By means of proteomics we revealed that PRF lysates contain more than 650 proteins, being TGF-β one of the few growth factors found. To uncover the major target genes regulated by PRF lysates, gingival fibroblasts were exposed to lysates obtained from PRF membranes followed by a whole genome array. We identified 51 genes strongly regulated by PRF including IL11, NOX4 and PRG4 which are characteristic TGF-β target genes. RT-PCR and immunoassay analysis confirmed the TGF-β receptor I kinase-dependent increased expression of IL11, NOX4 and PRG4. The PRF-derived TGF-β activity was verified by the translocation of Smad2/3 into the nucleus along with the increased phosphorylation of Smad3. Considering that PRF is clinically used in combination with dental implants and collagen membranes, we showed here that PRF-derived TGF-β activity adsorbs to titanium implants and collagen membranes indicated by the changes in gene expression and immunoassay analysis. Our study points towards TGF-β as major target of PRF and suggest that TGF-β activity released by PRF adsorbs to titanium surface and collagen membranes
Collapse
|
12
|
Nica C, Lin Z, Sculean A, Asparuhova MB. Adsorption and Release of Growth Factors from Four Different Porcine-Derived Collagen Matrices. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2635. [PMID: 32526991 PMCID: PMC7321618 DOI: 10.3390/ma13112635] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 12/26/2022]
Abstract
Xenogeneic acellular collagen matrices represent a safe alternative to autologous soft tissue transplants in periodontology and implant dentistry. Here, we aimed to investigate the adsorption and release of growth factors from four porcine-derived collagen matrices using enzyme-linked immunosorbent assay. Non-crosslinked collagen matrix (NCM), crosslinked collagen matrix (CCM), dried acellular dermal matrix (DADM), and hydrated acellular dermal matrix (HADM) adsorbed each of the following growth factors, TGF-β1, FGF-2, PDGF-BB, GDF-5 and BMP-2, with an efficiency close to 100%. Growth factor release for a 13-day period was in the range of 10-50% of the adsorbed protein, except for the BMP-2 release that was in the range of 5-7%. Generally, protein release occurred in two phases. Phase I was arbitrary defined by the highest release from the matrices, usually within 24 h. Phase II, spanning the period immediately after the peak release until day 13, corresponded to the delayed release of the growth factors from the deeper layers of the matrices. HADM showed significantly (P < 0.001) higher TGF-β1, FGF-2, and PDGF-BB release in phase II, compared to the rest of the matrices. NCM exhibited significantly (P < 0.001) higher FGF-2 release in phase II, compared to CCM and DADM as well as a characteristic second peak in PDGF-BB release towards the middle of the tested period. In contrast to NCM and HADM, CCM and DADM showed a gradual and significantly higher release of GDF-5 in the second phase. Several burst releases of BMP-2 were characteristic for all matrices. The efficient adsorption and sustained protein release in the first 13 days, and the kinetics seen for HADM, with a burst release within hours and high amount of released growth factor within a secondary phase, may be beneficial for the long-term tissue regeneration following reconstructive periodontal surgery.
Collapse
Affiliation(s)
- Cristina Nica
- Laboratory of Oral Cell Biology, Dental Research Center, School of Dental Medicine, University of Bern, Freiburgstrasse 3, 3010 Bern, Switzerland; (C.N.); (Z.L.)
- Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland;
| | - Zhikai Lin
- Laboratory of Oral Cell Biology, Dental Research Center, School of Dental Medicine, University of Bern, Freiburgstrasse 3, 3010 Bern, Switzerland; (C.N.); (Z.L.)
- Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland;
- Department of Periodontology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiaotong University, Zhizaoju Road 639, Shanghai 200011, China
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland;
| | - Maria B. Asparuhova
- Laboratory of Oral Cell Biology, Dental Research Center, School of Dental Medicine, University of Bern, Freiburgstrasse 3, 3010 Bern, Switzerland; (C.N.); (Z.L.)
- Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland;
| |
Collapse
|
13
|
Zhu H, Gomez M, Xiao J, Perale G, Betge F, Lyngstadaas SP, Haugen HJ. Xenohybrid Bone Graft Containing Intrinsically Disordered Proteins Shows Enhanced In Vitro Bone Formation. ACS APPLIED BIO MATERIALS 2020; 3:2263-2274. [DOI: 10.1021/acsabm.0c00064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hao Zhu
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030 Wuhan, China
- Corticalis AS, Oslo Sciencepark, Gaustadallén 21, NO-0349 Oslo, Norway
| | - Manuel Gomez
- Corticalis AS, Oslo Sciencepark, Gaustadallén 21, NO-0349 Oslo, Norway
| | - Jun Xiao
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030 Wuhan, China
| | - Giuseppe Perale
- Industrie Biomediche Insubri SA, Via Cantonale 67, 6805 Mezzovico-Vira, Switzerland
- Faculty of Biomedical Sciences, University of Southern Switzerland, Via G. Buffi 13, 6900 Lugano, Switzerland
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Donaueschingenstrasse 13, 1200 Vienna, Austria
| | - Felice Betge
- Industrie Biomediche Insubri SA, Via Cantonale 67, 6805 Mezzovico-Vira, Switzerland
| | | | | |
Collapse
|
14
|
Effect of enamel matrix derivative on wound healing following gingival recession coverage using the modified coronally advanced tunnel and subepithelial connective tissue graft: a randomised, controlled, clinical study. Clin Oral Investig 2019; 24:1043-1051. [PMID: 31290017 DOI: 10.1007/s00784-019-03008-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/01/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVES The potential effect of enamel matrix derivative (EMD) on wound healing following recession coverage surgery is still controversially discussed in the literature. The aim of this randomised, controlled, single blinded clinical study was, therefore, to investigate clinically and immunologically the potential effects of EMD on early wound healing and clinical results following treatment of single and multiple gingival recessions by the modified coronally advanced tunnel technique (MCAT) and subepithelial connective tissue graft (sCTG). MATERIALS AND METHODS A total of 40 systemically healthy patients with Miller class I, II or III single or multiple gingival recessions were treated with MCAT + sCTG with or without EMD. Patients were consecutively enrolled and randomly assigned to test or control treatment. Inflammatory markers (interleukin (IL)-1β, IL-8, IL-10 and matrix metalloprotease (MMP)-8) were measured at baseline, 2 days and 1 week postoperatively. The following clinical parameters were assessed at baseline and at 6 months postoperatively: Recession Depth (RD), Recession Width (RW), Width of Keratinized Tissue (KT) and Probing Depth (PD). Patient-reported outcomes were analysed by means of a visual analogue scale. RESULTS No statistically significant differences were detected between the 2 groups in terms of inflammatory markers and patient-reported outcomes during early wound healing. In the test group, RD was reduced from 4.0 ± 1.2 mm at baseline to 0.9 ± 1.3 mm at 6 months (p < 0.001), while the corresponding values in the control group were 4.5 ± 2.0 mm at baseline and 1.0 ± 1.0 mm at 6 months, respectively. At 6 months, mean root coverage measured 78 ± 26% in the test group and 77 ± 18% in the control group, respectively. CONCLUSION Within their limits, the present data have failed to show an influence of EMD on the clinical and immunological parameters related to wound healing following recession coverage surgery using MCAT and sCTG. CLINICAL RELEVANCE Early wound healing following recession coverage by means of MCAT and sCTG does not seem to be influenced by the additional application of EMD.
Collapse
|
15
|
Strauss FJ, Di Summa F, Stähli A, Matos L, Vaca F, Schuldt G, Gruber R. TGF-β activity in acid bone lysate adsorbs to titanium surface. Clin Implant Dent Relat Res 2019; 21:336-343. [PMID: 30817088 PMCID: PMC6593995 DOI: 10.1111/cid.12734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/19/2019] [Accepted: 01/22/2019] [Indexed: 11/29/2022]
Abstract
Objectives Osteoblasts lay down new bone on implant surfaces. The underlying cellular mechanism and the spatio‐temporal mode of action, however, remain unclear. It can be proposed that growth factors released upon acidification by osteoclasts adsorb to the implant surface and control the early stages of osseointegration. Methods To simulate bone lysis by osteoclasts, titanium discs were exposed to acid bone lysate (ABL) followed by vigorous washing and seeding of oral fibroblasts. The expression of TGF‐β target genes interleukin 11 (IL11) and NADPH oxidase 4 (NOX4) was evaluated by reverse transcriptase polymerase chain reaction and IL11 ELISA. TGF‐β signaling activation was assessed via Smad2/3 immunofluorescence. The impact of ABL on osteogenic differentiation was determined with murine ST2 mesenchymal stromal cells. Results We report here that ABL‐conditioned titanium discs, independent of turned or rough surface, increased the expression of IL11 and NOX4. This increase was blocked by the TGF‐β receptor 1 antagonist SB431542. Further support for the TGF‐β signaling activation came from the translocation of Smad2/3 into the nucleus of oral fibroblasts. Moreover, titanium discs exposed to ABL decreased alkaline phosphatase and osteopontin in ST2 cells. Conclusions These in vitro findings suggest that titanium can adsorb TGF‐β from ABLs. The data provide a strong impetus for studies on the protein adsorption on implant surfaces in vitro and in vivo, specifically for growth factors including bone‐derived TGF‐β during successful and failed osseointegration.
Collapse
Affiliation(s)
- Franz Josef Strauss
- Department of Oral Biology, Medical University of Vienna, Vienna, Austria.,Department of Conservative Dentistry, School of Dentistry, University of Chile, Santiago, Chile
| | - Francesca Di Summa
- Department of Oral Biology, Medical University of Vienna, Vienna, Austria
| | - Alexandra Stähli
- Department of Oral Biology, Medical University of Vienna, Vienna, Austria.,Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Luiza Matos
- Department of Oral Biology, Medical University of Vienna, Vienna, Austria
| | - Fabiola Vaca
- Department of Oral Biology, Medical University of Vienna, Vienna, Austria
| | - Guenther Schuldt
- Department of Periodontics, University of Southern Santa Catarina, Grande Florianopolis, Brazil
| | - Reinhard Gruber
- Department of Oral Biology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
Strauss FJ, Stähli A, Beer L, Mitulović G, Gilmozzi V, Haspel N, Schwab G, Gruber R. Acid bone lysate activates TGFβ signalling in human oral fibroblasts. Sci Rep 2018; 8:16065. [PMID: 30375456 PMCID: PMC6207660 DOI: 10.1038/s41598-018-34418-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/12/2018] [Indexed: 02/07/2023] Open
Abstract
Demineralized bone matrix is a widely used allograft from which not only the inorganic mineral but also embedded growth factors are removed by hydrochloric acid (HCl). The cellular response to the growth factors released during the preparation of demineralized bone matrix, however, has not been studied. Here we investigated the in vitro impact of acid bone lysate (ABL) prepared from porcine cortical bone chips on oral fibroblasts. Proteomic analysis of ABL revealed a large spectrum of bone-derived proteins including TGF-β1. Whole genome microarrays and RT-PCR together with the pharmacologic blocking of TGF-β receptor type I kinase with SB431542 showed that ABL activates the TGF-β target genes interleukin 11, proteoglycan 4, and NADPH oxidase 4. Interleukin 11 expression was confirmed at the protein level by ELISA. Immunofluorescence and Western blot showed the nuclear localization of Smad2/3 and increased phosphorylation of Smad3 with ABL, respectively. This effect was independent of whether ABL was prepared from mandible, calvaria or tibia. These results demonstrate that TGF-β is a major growth factor that is removed upon the preparation of demineralized bone matrix.
Collapse
Affiliation(s)
- Franz Josef Strauss
- Department of Oral Biology, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria
- Department of Conservative Dentistry, School of Dentistry, University of Chile, Sergio Livingstone 943, Santiago, Chile
| | - Alexandra Stähli
- Department of Oral Biology, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria
- Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010, Bern, Switzerland
| | - Lucian Beer
- Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Christian Doppler Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Medical University Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Goran Mitulović
- Clinical Department of Laboratory Medicine Proteomics Core Facility, Medical University Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Valentina Gilmozzi
- Department of Oral Biology, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria
| | - Nina Haspel
- Department of Oral Biology, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria
| | - Gerhild Schwab
- Department of Oral Biology, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria
| | - Reinhard Gruber
- Department of Oral Biology, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria.
- Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010, Bern, Switzerland.
| |
Collapse
|
17
|
Panahipour L, Stähli A, Haiden N, Gruber R. TGF-β activity in cow milk and fermented milk products: An in vitro bioassay with oral fibroblasts. Arch Oral Biol 2018; 95:15-21. [PMID: 30036732 DOI: 10.1016/j.archoralbio.2018.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 06/19/2018] [Accepted: 07/08/2018] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Milk is a rich source of transforming growth factor (TGF)-β which supports intestinal mucosal homeostasis of infants. Milk may also have beneficial effects on the integrity of the oral cavity, its being part of the gastrointestinal tract. However, it is unclear if milk and fermented milk products provoke a TGF-β response in oral cells. MATERIAL AND METHODS Human gingival fibroblasts were exposed to pasteurized cow milk, yoghurt, sour milk, buttermilk and whey, followed by a reverse transcriptase polymerase chain reaction of the TGF-β target genes interleukin11 (IL11), proteoglycan4 (PRG4), and NADPH oxidase 4 (NOX4). Immunoassays were performed for IL11 and TGF-β in cell culture supernatant and milk products, respectively. Signaling was investigated with the TGF-β receptor type I kinase inhibitor SB431542. RESULTS We report here that pasteurized cow milk and the aqueous fractions of yoghurt, sour milk, buttermilk and whey enhanced the expression of IL11, NOX4 and PRG4 in gingival fibroblasts. Moreover, IL11 protein levels in the respective supernatant were significantly increased. Cow milk, yoghurt, sour milk and buttermilk contain approximately 1-2 ng TGF-β1, whereas active TGF-β1 is hardly detectable in whey. SB431542 reduced the response of gingival fibroblasts to pasteurized cow milk and fermented milk products based on IL11 release into the supernatant. CONCLUSIONS These results demonstrate that gingival fibroblasts respond to pasteurized cow milk and to fermented milk products with an increased expression of TGF-β target genes.
Collapse
Affiliation(s)
- Layla Panahipour
- Department of Oral Biology, School of Dentistry, Medical University of Vienna, Austria
| | - Alexandra Stähli
- Department of Oral Biology, School of Dentistry, Medical University of Vienna, Austria; Department of Periodontology, School of Dental Medicine, University of Bern, Switzerland
| | - Nadja Haiden
- Department of Paediatrics and Adolescent Medicine, Division of Neonatology, Medical University of Vienna, Vienna, Austria
| | - Reinhard Gruber
- Department of Oral Biology, School of Dentistry, Medical University of Vienna, Austria; Department of Periodontology, School of Dental Medicine, University of Bern, Switzerland.
| |
Collapse
|
18
|
Sufaru IG, Beikircher G, Weinhaeusel A, Gruber R. Inhibitors of DNA methylation support TGF-β1-induced IL11 expression in gingival fibroblasts. J Periodontal Implant Sci 2017; 47:66-76. [PMID: 28462005 PMCID: PMC5410554 DOI: 10.5051/jpis.2017.47.2.66] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 02/07/2017] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Oral wound healing requires gingival fibroblasts to respond to local growth factors. Epigenetic silencing through DNA methylation can potentially decrease the responsiveness of gingival fibroblasts to local growth factors. In this study, our aim was to determine whether the inhibition of DNA methylation sensitized gingival fibroblasts to transforming growth factor-β1 (TGF-β1). METHODS Gingival fibroblasts were exposed to 5-aza-2'-deoxycytidine (5-aza), a clinically approved demethylating agent, before stimulation with TGF-β1. Gene expression changes were evaluated using quantitative polymerase chain reaction (PCR) analysis. DNA methylation was detected by methylation-sensitive restriction enzymes and PCR amplification. RESULTS We found that 5-aza enhanced TGF-β1-induced interleukin-11 (IL11) expression in gingival fibroblasts 2.37-fold (P=0.008). 5-aza had no significant effects on the expression of proteoglycan 4 (PRG4) and NADPH oxidase 4 (NOX4). Consistent with this, 5-aza caused demethylation of the IL11 gene commonly next to a guanosine (CpG) island in gingival fibroblasts. The TGF-β type I receptor kinase inhibitor SB431542 impeded the changes in IL11 expression, indicating that the effects of 5-aza require TGF-β signaling. 5-aza moderately increased the expression of TGF-β type II receptor (1.40-fold; P=0.009), possibly enhancing the responsiveness of fibroblasts to TGF-β1. As part of the feedback response, 5-aza increased the expression of the DNA methyltransferases 1 (DNMT1) (P=0.005) and DNMT3B (P=0.002), which are enzymes responsible for gene methylation. CONCLUSIONS These in vitro data suggest that the inhibition of DNA methylation by 5-aza supports TGF-β-induced IL11 expression in gingival fibroblasts.
Collapse
Affiliation(s)
- Irina-Georgeta Sufaru
- Department of Oral Biology, Medical University of Vienna, Vienna, Austria.,Department of Periodontology, Faculty of Dental Medicine, University of Medicine and Pharmacy "Grigore T. Popa" Iasi, Romania
| | - Gabriel Beikircher
- AIT-Molecular Diagnostics, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Andreas Weinhaeusel
- AIT-Molecular Diagnostics, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Reinhard Gruber
- Department of Oral Biology, Medical University of Vienna, Vienna, Austria.,Department of Periodontology, University of Bern, Bern, Switzerland.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
19
|
Stähli A, Miron RJ, Bosshardt DD, Sculean A, Gruber R. Collagen Membranes Adsorb the Transforming Growth Factor-β Receptor I Kinase-Dependent Activity of Enamel Matrix Derivative. J Periodontol 2016; 87:583-90. [PMID: 26777762 DOI: 10.1902/jop.2016.150538] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Enamel matrix derivative (EMD) and collagen membranes (CMs) are simultaneously applied in regenerative periodontal surgery. The aim of this study is to evaluate the ability of two CMs and a collagen matrix to adsorb the activity intrinsic to EMD that provokes transforming growth factor (TGF)-β signaling in oral fibroblasts. METHODS Three commercially available collagen products were exposed to EMD or recombinant TGF-β1, followed by vigorous washing. Oral fibroblasts were either seeded directly onto collagen products or were incubated with the respective supernatant. Expression of TGF-β target genes interleukin (IL)-11 and proteoglycan 4 (PRG4) was evaluated by real time polymerase chain reaction. Proteomic analysis was used to study the fraction of EMD proteins binding to collagen. RESULTS EMD or TGF-β1 provoked a significant increase of IL-11 and PRG4 expression of oral fibroblasts when seeded onto collagen products and when incubated with the respective supernatant. Gene expression was blocked by the TGF-β receptor I kinase inhibitor SB431542. Amelogenin bound most abundantly to gelatin-coated culture dishes. However, incubation of palatal fibroblasts with recombinant amelogenin did not alter expression of IL-11 and PRG4. CONCLUSION These in vitro findings suggest that collagen products adsorb a TGF-β receptor I kinase-dependent activity of EMD and make it available for potential target cells.
Collapse
Affiliation(s)
- Alexandra Stähli
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Richard J Miron
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Preventive, Restorative and Pediatric Dentistry, School of Dental Medicine, University of Bern
| | - Dieter D Bosshardt
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Robert K. Schenk Laboratory of Oral Histology, School of Dental Medicine, University of Bern
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Reinhard Gruber
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Preventive, Restorative and Pediatric Dentistry, School of Dental Medicine, University of Bern.,Department of Oral Biology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|