1
|
Sanow S, Kuang W, Schaaf G, Huesgen P, Schurr U, Roessner U, Watt M, Arsova B. Molecular Mechanisms of Pseudomonas-Assisted Plant Nitrogen Uptake: Opportunities for Modern Agriculture. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:536-548. [PMID: 36989040 DOI: 10.1094/mpmi-10-22-0223-cr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Pseudomonas spp. make up 1.6% of the bacteria in the soil and are found throughout the world. More than 140 species of this genus have been identified, some beneficial to the plant. Several species in the family Pseudomonadaceae, including Azotobacter vinelandii AvOP, Pseudomonas stutzeri A1501, Pseudomonas stutzeri DSM4166, Pseudomonas szotifigens 6HT33bT, and Pseudomonas sp. strain K1 can fix nitrogen from the air. The genes required for these reactions are organized in a nitrogen fixation island, obtained via horizontal gene transfer from Klebsiella pneumoniae, Pseudomonas stutzeri, and Azotobacter vinelandii. Today, this island is conserved in Pseudomonas spp. from different geographical locations, which, in turn, have evolved to deal with different geo-climatic conditions. Here, we summarize the molecular mechanisms behind Pseudomonas-driven plant growth promotion, with particular focus on improving plant performance at limiting nitrogen (N) and improving plant N content. We describe Pseudomonas-plant interaction strategies in the soil, noting that the mechanisms of denitrification, ammonification, and secondary metabolite signaling are only marginally explored. Plant growth promotion is dependent on the abiotic conditions and differs at sufficient and deficient N. The molecular controls behind different plant responses are not fully elucidated. We suggest that superposition of transcriptome, proteome, and metabolome data and their integration with plant phenotype development through time will help fill these gaps. The aim of this review is to summarize the knowledge behind Pseudomonas-driven nitrogen fixation and to point to possible agricultural solutions. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Stefan Sanow
- Institute for Bio- and Geosciences, Plant Sciences (IBG-2), Forschungszentrum Juelich GmbH, Germany
- School of BioSciences, Faculty of Science, The University of Melbourne, Parkville, 3010 Victoria, Australia
| | - Weiqi Kuang
- College of life and Environmental Sciences, Hunan University of Arts and Science, China
| | - Gabriel Schaaf
- Institute of Crop Science and Resource Conservation, University of Bonn, 53115 Bonn, Germany
| | - Pitter Huesgen
- Central institute for Engineering, Electronics and Analytics (ZEA-3), Forschungszentrum Juelich GmbH, Germany
| | - Ulrich Schurr
- Institute for Bio- and Geosciences, Plant Sciences (IBG-2), Forschungszentrum Juelich GmbH, Germany
| | - Ute Roessner
- Research School of Biology, The Australian National University, Acton, 2601 Australian Capital Territory, Australia
| | - Michelle Watt
- School of BioSciences, Faculty of Science, The University of Melbourne, Parkville, 3010 Victoria, Australia
| | - Borjana Arsova
- Institute for Bio- and Geosciences, Plant Sciences (IBG-2), Forschungszentrum Juelich GmbH, Germany
| |
Collapse
|
2
|
Shan S, Hu T, Yang Y. The deletion of HK-1 gene affects the bacterial virulence of Pseudomonas stutzeri LH-42. PLoS One 2022; 17:e0277089. [PMID: 36445858 PMCID: PMC9707753 DOI: 10.1371/journal.pone.0277089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/19/2022] [Indexed: 12/03/2022] Open
Abstract
Two-component systems (TCSs) are widespread regulatory systems in bacteria, which control cellular functions and play an important role in sensing various external stimuli and regulating gene expression in response to environmental changes. Among the nineteen genes for the two-component system found in the whole genome of Pseudomonas stutzeri LH-42, one of the TCS coded by the HK-1 gene, has a structural domain similar to the HAMP domain, which plays an important role in regulating bacterial virulence in other bacteria. In this study, the deletion mutant LH-42△HK-1 was successfully constructed using the lambda Red recombinase system. Compared with the wild-type strain, the mutant strain LH-42△HK-1 showed a significantly slower growth time and a longer stationary phase time. In addition, in the plate bacteriostatic experiment with Escherichia coli DH5α as an indicator strain, the inhibition zone size of the mutant strain showed significantly less than the wild-type strain(P<0.05), indicating that the virulence of the mutant strain was significantly reduced compared with the wild-type strain. Overall, the results indicate that the deletion of the gene HK-1 decreased bacterial virulence in Pseudomonas stutzeri LH-42.
Collapse
Affiliation(s)
- Si Shan
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, China
| | - Tingting Hu
- The First People’s Hospital of Jingzhou, Jingzhou, Hubei, China
| | - Yu Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, China
- Key Laboratory of Biohydrometallurgy of Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, China
- * E-mail:
| |
Collapse
|
3
|
Bioelectrochemical Fixation of Nitrogen to Extracellular Ammonium by Pseudomonas stutzeri. Appl Environ Microbiol 2021; 87:e0199820. [PMID: 33310714 DOI: 10.1128/aem.01998-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diazotrophs can produce bioavailable nitrogen from inert N2 gas by bioelectrochemical nitrogen fixation (e-BNF), which is emerging as an energy-saving and highly selective strategy for agriculture and industry. However, current e-BNF technology is impeded by requirements for NH4+ assimilation inhibitors to facilitate intracellular ammonia secretion and precious metal catalysts to generate H2 as the energy-carrying intermediate. Here, we initially demonstrate inhibitor- and catalystless extracellular NH4+ production by the diazotroph Pseudomonas stutzeri A1501 using an electrode as the sole electron donor. Multiple lines of evidence revealed that P. stutzeri produced 2.32 ± 0.25 mg/liter extracellular NH4+ at a poised potential of -0.3 V (versus standard hydrogen electrode [SHE]) without the addition of inhibitors or expensive catalysts. The electron uptake mechanism was attributed to the endogenous electron shuttle phenazine-1-carboxylic acid, which was excreted by P. stutzeri and mediated electron transfer from electrodes into cells to directly drive N2 fixation. The faradaic efficiency was 20% ± 3%, which was 2 to 4 times that of previous e-BNF attempts using the H2-mediated pathway. This study reports a diazotroph capable of producing secretable NH4+ via extracellular electron uptake, which has important implications for optimizing the performance of e-BNF systems and exploring the novel nitrogen-fixing mode of syntrophic microbial communities in the natural environment. IMPORTANCE Ammonia greatly affects global ecology, agriculture, and the food industry. Diazotrophs with an enhanced capacity of extracellular NH4+ excretion have been proven to be more beneficial to the growth of microalgae and plants, whereas most previously reported diazotrophs produce intracellular organic nitrogen in the absence of chemical suppression and genetic manipulation. Here, we demonstrate that Pseudomonas stutzeri A1501 is capable of extracellular NH4+ production without chemical suppression or genetic manipulation when the extracellular electrode is used as the sole electron donor. We also reveal the electron uptake pathway from the extracellular electron-donating partner to P. stutzeri A1501 via redox electron shuttle phenazines. Since both P. stutzeri A1501 and potential electron-donating partners (such as electroactive microbes and natural semiconductor minerals) are abundant in diverse soils and sediments, P. stutzeri A1501 has broader implications on the improvement of nitrogen fertilization in the natural environment.
Collapse
|
4
|
Mahajan SG, Nandre VS, Salunkhe RC, Shouche YS, Kulkarni MV. Chemotaxis and physiological adaptation of an indigenous abiotic stress tolerant plant growth promoting Pseudomonas stutzeri: Amelioration of salt stress to Cicer arietinum. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
5
|
Mobile Genetic Elements in Pseudomonas stutzeri. Curr Microbiol 2019; 77:179-184. [PMID: 31754823 DOI: 10.1007/s00284-019-01812-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022]
Abstract
Mobile genetic elements (MGE) play a large role in the plasticity of genomes, participating in several phenomena which involve genes acquisition. Pseudomonas stutzeri is an environmental widely distributed bacteria. This bacteria has a very large genomic plasticity, which would explain its occurrence in several different environments. NCBI data bank and online programs were used to build an inventory to investigate diversity and structure of MGE in Pseudomonas stutzeri, searching for insertion sequences (IS), integrases/transposases, plasmids and prophages. Five hundred and forty-eight ISs, 62 integrases, 166 transposases, five plasmids and eight complete prophages were found. MGE location and adjacent genes were investigated. Possible implications of the presence of these mobile elements explaining phenotypic diversity of Pseudomonas stutzeri were discussed. The study showed that MGEs might be good clues to understand the dynamics of genomes and their phenotypic plasticity, although they are not the only elements responsible for these characteristics.
Collapse
|
6
|
The Pseudomonas stutzeri-Specific Regulatory Noncoding RNA NfiS Targets katB mRNA Encoding a Catalase Essential for Optimal Oxidative Resistance and Nitrogenase Activity. J Bacteriol 2019; 201:JB.00334-19. [PMID: 31262840 PMCID: PMC6755748 DOI: 10.1128/jb.00334-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 06/25/2019] [Indexed: 12/18/2022] Open
Abstract
Pseudomonas stutzeri A1501 is a versatile nitrogen-fixing bacterium capable of living in diverse environments and coping with various oxidative stresses. NfiS, a regulatory noncoding RNA (ncRNA) involved in the control of nitrogen fixation in A1501, was previously shown to be required for optimal resistance to H2O2; however, the precise role of NfiS and the target genes involved in the oxidative stress response is entirely unknown. In this work, we systematically investigated the NfiS-based mechanisms underlying the response of this bacterium to H2O2 at the cellular and molecular levels. A mutant strain carrying a deletion of nfiS showed significant downregulation of oxidative stress response genes, especially katB, a catalase gene, and oxyR, an essential regulator for transcription of catalase genes. Secondary structure prediction revealed two binding sites in NfiS for katB mRNA. Complementation experiments using truncated nfiS genes showed that each of two sites is functional, but not sufficient, for NfiS-mediated regulation of oxidative stress resistance and nitrogenase activities. Microscale thermophoresis assays further indicated direct base pairing between katB mRNA and NfiS at both sites 1 and 2, thus enhancing the half-life of the transcript. We also demonstrated that katB expression is dependent on OxyR and that both OxyR and KatB are essential for optimal oxidative stress resistance and nitrogenase activities. H2O2 at low concentrations was detoxified by KatB, leaving O2 as a by-product to support nitrogen fixation under O2-insufficient conditions. Moreover, our data suggest that the direct interaction between NfiS and katB mRNA is a conserved and widespread mechanism among P. stutzeri strains.IMPORTANCE Protection against oxygen damage is crucial for survival of nitrogen-fixing bacteria due to the extreme oxygen sensitivity of nitrogenase. This work exemplifies how the small ncRNA NfiS coordinates oxidative stress response and nitrogen fixation via base pairing with katB mRNA and nifK mRNA. Hence, NfiS acts as a molecular link to coordinate the expression of genes involved in oxidative stress response and nitrogen fixation. Our study provides the first insight into the biological functions of NfiS in oxidative stress regulation and adds a new regulation level to the mechanisms that contribute to the oxygen protection of the MoFe nitrogenase.
Collapse
|
7
|
NfiR, a New Regulatory Noncoding RNA (ncRNA), Is Required in Concert with the NfiS ncRNA for Optimal Expression of Nitrogenase Genes in Pseudomonas stutzeri A1501. Appl Environ Microbiol 2019; 85:AEM.00762-19. [PMID: 31076427 PMCID: PMC6606865 DOI: 10.1128/aem.00762-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 04/23/2019] [Indexed: 12/19/2022] Open
Abstract
Biological nitrogen fixation is an energy-expensive process requiring the hydrolysis of 16 ATPs. Consequently, the expression of nif genes is highly regulated at both transcriptional and posttranscriptional levels through complex regulatory networks. Global regulation involves a number of regulatory proteins, such as the nif-specific activator NifA and the global nitrogen regulator NtrC, as well as various regulatory ncRNAs. We show that the two P. stutzeri ncRNAs, namely NfiS and NfiR (for nitrogen fixation condition-inducible ncRNA), optimize nitrogen fixation and environmental stress responses. NfiS and NfiR respond differently to various environmental signals and differ in their secondary structures. In addition, the two ncRNAs target the mRNAs of nifK and nifD, respectively. Such ncRNA-based posttranscriptional regulation of nitrogenase expression might be an evolved survival strategy, particularly in nitrogen-limiting environments. This study not only highlights the significant roles of regulatory ncRNAs in the coordination and fine tuning of various physiological processes but also provides a new paradigm for posttranscriptional regulation in nitrogen-fixing bacteria. Expression of nitrogenase genes (nifHDK) is strictly regulated at both transcriptional and posttranscriptional levels. Efficient nitrogenase activity requires maintaining sufficient levels of nif mRNAs, yet the underlying mechanism is not fully understood due to its complexity. We have previously shown that a novel regulatory noncoding RNA (ncRNA), NfiS, optimizes nitrogen fixation through targeting nifK mRNA in Pseudomonas stutzeri A1501. Here, we report the identification and characterization of a second ncRNA inducible under nitrogen fixation conditions (nitrogen-free and microaerobic conditions), termed NfiR (for nitrogen fixation condition-inducible ncRNA), the expression of which is dependent on two global regulators, NtrC and Hfq. Comparative phenotypic and proteomic analyses of an nfiR mutant identify a role of NfiR in regulating the expression of nitrogenase genes. Further microscale thermophoresis and genetic complementation showed that an 11-nucleotide (nt) sequence in the stem-loop structure of NfiR (nucleotides 12 to 22) pairs with its counterpart in the coding region of nifD mRNA (nucleotides 1194 to 1207) by eight nucleotides. Significantly, deletion of nfiR caused a 60% reduction of nitrogenase activity, and the half-life of nifD mRNA was reduced from 20 min for the wild type to 15 min for the ΔnfiR mutant. With regard to nitrogenase activity and stability of the nifD and nifK transcripts, phenotypes were more severe for the double deletion mutant lacking nfiR and nfiS, suggesting that NfiR, in concert with NfiS, optimizes nitrogenase production at the posttranscriptional level. IMPORTANCE Biological nitrogen fixation is an energy-expensive process requiring the hydrolysis of 16 ATPs. Consequently, the expression of nif genes is highly regulated at both transcriptional and posttranscriptional levels through complex regulatory networks. Global regulation involves a number of regulatory proteins, such as the nif-specific activator NifA and the global nitrogen regulator NtrC, as well as various regulatory ncRNAs. We show that the two P. stutzeri ncRNAs, namely NfiS and NfiR (for nitrogen fixation condition-inducible ncRNA), optimize nitrogen fixation and environmental stress responses. NfiS and NfiR respond differently to various environmental signals and differ in their secondary structures. In addition, the two ncRNAs target the mRNAs of nifK and nifD, respectively. Such ncRNA-based posttranscriptional regulation of nitrogenase expression might be an evolved survival strategy, particularly in nitrogen-limiting environments. This study not only highlights the significant roles of regulatory ncRNAs in the coordination and fine tuning of various physiological processes but also provides a new paradigm for posttranscriptional regulation in nitrogen-fixing bacteria.
Collapse
|
8
|
Jing X, Cui Q, Li X, Yin J, Ravichandran V, Pan D, Fu J, Tu Q, Wang H, Bian X, Zhang Y. Engineering Pseudomonas protegens Pf-5 to improve its antifungal activity and nitrogen fixation. Microb Biotechnol 2018; 13:118-133. [PMID: 30461205 PMCID: PMC6984399 DOI: 10.1111/1751-7915.13335] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/21/2018] [Accepted: 10/21/2018] [Indexed: 11/26/2022] Open
Abstract
In agricultural production, sustainability is currently one of the most significant concerns. The genetic modification of plant growth‐promoting rhizobacteria may provide a novel way to use natural bacteria as microbial inoculants. In this study, the root‐colonizing strain Pseudomonas protegens Pf‐5 was genetically modified to act as a biocontrol agent and biofertilizer with biological nitrogen fixation activity. Genetic inactivation of retS enhanced the production of 2,4‐diacetylphloroglucinol, which contributed for the enhanced antifungal activity. Then, the entire nitrogenase island with native promoter from Pseudomonas stutzeri DSM4166 was introduced into a retS mutant strain for expression. Root colonization patterns assessed via confocal laser scanning microscopy confirmed that GFP‐tagged bacterial were mainly located on root surfaces and at the junctions between epidermal root cells. Moreover, under pathogen and N‐limited double treatment conditions, the fresh weights of seedlings inoculated with the recombinant retS mutant‐nif strain were increased compared with those of the control. In conclusion, this study has innovatively developed an eco‐friendly alternative to the agrochemicals that will benefit global plant production significantly.
Collapse
Affiliation(s)
- Xiaoshu Jing
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, 266237, Qingdao, China
| | - Qingwen Cui
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, 266237, Qingdao, China
| | - Xiaochen Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, 266237, Qingdao, China
| | - Jia Yin
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, 266237, Qingdao, China
| | - Vinothkannan Ravichandran
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, 266237, Qingdao, China
| | - Deng Pan
- Jinan Yian Biology Institute, Shandong Yian Biological Engineering Co. Ltd., Jinan, 250100, China
| | - Jun Fu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, 266237, Qingdao, China
| | - Qiang Tu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, 266237, Qingdao, China
| | - Hailong Wang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, 266237, Qingdao, China
| | - Xiaoying Bian
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, 266237, Qingdao, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, 266237, Qingdao, China
| |
Collapse
|
9
|
Majeed A, Kaleem Abbasi M, Hameed S, Yasmin S, Hanif MK, Naqqash T, Imran A. Pseudomonas sp. AF-54 containing multiple plant beneficial traits acts as growth enhancer of Helianthus annuus L. under reduced fertilizer input. Microbiol Res 2018; 216:56-69. [PMID: 30269857 DOI: 10.1016/j.micres.2018.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/12/2018] [Accepted: 08/10/2018] [Indexed: 12/23/2022]
Abstract
Plant growth promoting rhizobacteria (PGPR) are capable to increase the growth and yield of crops in eco-friendly and sustainable manner. To evaluate the response of sunflower towards inoculation with PGPR, a sunflower root associated bacterium AF-54 isolated from Diyar Gali Himalayan Mountain region, Azad Jammu and Kashmir (AJK), identified as Pseudomonas sp. by 16S rRNA sequence analysis and was characterized using polyphasic approach. The bacterium produced 23.9 μgmL-1 indole-3-acetic acid in tryptophan-supplemented medium, showed 44.28 nmoles mg-1 protein h-1 nitrogenase activity through acetylene reduction assay and released 48.80 μg mL-1 insoluble phosphorus in Pikovskaya's broth. During P-solubilization, the pH of the Pikovskaya's medium decreased from 7 to 3.04 due to the production of acetic acid, malic acid and gluconic acid. Pseudomonas sp. AF-54 showed metabolic versatility by utilizing 79 carbon sources from BIOLOG GN2 plates and resistance to many antibiotics. Furthermore, it inhibited the growth of Fusarium oxysporum in dual culture assay. To evaluate the plant-inoculation response, series of experiments conducted in hydroponic, sterilized soil and fields at AJK, and Faisalabad where inoculated plants with reduced fertilizer showed a significant increase in growth, yield, oil contents and achene NP uptake as compared to non-inoculated control. AF-54 showed extensive root colonization in sterilized and non-sterile conditions documented through yfp-labeling and fluorescent in situ hybridization coupled with confocal laser scanning microscopy. This study concludes that the Pseudomonas sp. strain AF-54 containing multiple plant growth promoting traits can be a potential candidate for biofertilizer production to enhance sunflower crop yield with reduced application of chemical (NP) fertilizers.
Collapse
Affiliation(s)
- Afshan Majeed
- Department of Soil and Environmental Sciences, The University of Poonch, Rawalakot, Azad Jammu and Kashmir, Pakistan; National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Jhang Road, Faisalabad, Pakistan
| | - M Kaleem Abbasi
- Department of Soil and Environmental Sciences, The University of Poonch, Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - Sohail Hameed
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Jhang Road, Faisalabad, Pakistan; Academics and Coordination (Biology), Pakistan Atomic Energy Commission, Islamabad, Pakistan; Department of Biosciences, University of Wah Research Lab. Complex, University of Wah, Wah Cantt, Pakistan
| | - Sumera Yasmin
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Jhang Road, Faisalabad, Pakistan
| | - Muhammad Kashif Hanif
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Jhang Road, Faisalabad, Pakistan; Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | - Tahir Naqqash
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Jhang Road, Faisalabad, Pakistan; Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Asma Imran
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Jhang Road, Faisalabad, Pakistan.
| |
Collapse
|
10
|
Global investigation of an engineered nitrogen-fixing Escherichia coli strain reveals regulatory coupling between host and heterologous nitrogen-fixation genes. Sci Rep 2018; 8:10928. [PMID: 30026566 PMCID: PMC6053447 DOI: 10.1038/s41598-018-29204-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 07/06/2018] [Indexed: 11/08/2022] Open
Abstract
Transfer of nitrogen fixation (nif) genes from diazotrophs to amenable heterologous hosts is of increasing interest to genetically engineer nitrogen fixation. However, how the non-diazotrophic host maximizes opportunities to fine-tune the acquired capacity for nitrogen fixation has not been fully explored. In this study, a global investigation of an engineered nitrogen-fixing Escherichia coli strain EN-01 harboring a heterologous nif island from Pseudomonas stutzeri was performed via transcriptomics and proteomics analyses. A total of 1156 genes and 206 discriminative proteins were found to be significantly altered when cells were incubated under nitrogen-fixation conditions. Pathways for regulation, metabolic flux and oxygen protection to nitrogenase were particularly discussed. An NtrC-dependent regulatory coupling between E. coli nitrogen regulation system and nif genes was established. Additionally, pentose phosphate pathway was proposed to serve as the primary route for glucose catabolism and energy supply to nitrogenase. Meanwhile, HPLC analysis indicated that organic acids produced by EN-01 might have negative effects on nitrogenase activity. This study provides a global view of the complex network underlying the acquired nif genes in the recombinant E. coli and also provides clues for the optimization and redesign of robust nitrogen-fixing organisms to improve nitrogenase efficiency by overcoming regulatory or metabolic obstacles.
Collapse
|
11
|
Draft Genome Sequence of a Diazotrophic, Plant Growth-Promoting Rhizobacterium of the Pseudomonas syringae Complex. GENOME ANNOUNCEMENTS 2016; 4:4/5/e01023-16. [PMID: 27660794 PMCID: PMC5034145 DOI: 10.1128/genomea.01023-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report here the draft genome sequence of Pseudomonas syringae GR12-2, a nitrogen-fixing, plant growth–promoting bacterium, isolated from the rhizosphere of an Arctic grass. The 6.6-Mbp genome contains 5,676 protein-coding genes, including a nitrogen-fixation island similar to that in P. stutzeri.
Collapse
|
12
|
The novel regulatory ncRNA, NfiS, optimizes nitrogen fixation via base pairing with the nitrogenase gene nifK mRNA in Pseudomonas stutzeri A1501. Proc Natl Acad Sci U S A 2016; 113:E4348-56. [PMID: 27407147 DOI: 10.1073/pnas.1604514113] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Unlike most Pseudomonas, the root-associated bacterium Pseudomonas stutzeri A1501 fixes nitrogen after the horizontal acquisition of a nitrogen-fixing (nif) island. A genome-wide search for small noncoding RNAs (ncRNAs) in P. stutzeri A1501 identified the novel P. stutzeri-specific ncRNA NfiS in the core genome, whose synthesis was significantly induced under nitrogen fixation or sorbitol stress conditions. The expression of NfiS was RNA chaperone Hfq-dependent and activated by the sigma factor RpoN/global nitrogen activator NtrC/nif-specific activator NifA regulatory cascade. The nfiS-deficient mutant displayed reduced nitrogenase activity, as well as increased sensitivity to multiple stresses, such as osmotic and oxidative stresses. Secondary structure prediction and complementation studies confirmed that a stem-loop structure was essential for NfiS to regulate the nitrogenase gene nifK mRNA synthesis and thus nitrogenase activity. Microscale thermophoresis and physiological analysis showed that NfiS directly pairs with nifK mRNA and ultimately enhances nitrogenase activity by increasing the translation efficiency and the half-life of nifK mRNA. Our data also suggest structural and functional divergence of NfiS evolution in diazotrophic and nondiazotrophic backgrounds. It is proposed that NfiS was recruited by nifK mRNA as a novel regulator to integrate the horizontally acquired nif island into host global networks.
Collapse
|
13
|
Yoshida M, Yoshida-Takashima Y, Nunoura T, Takai K. Identification and genomic analysis of temperate Pseudomonas bacteriophage PstS-1 from the Japan trench at a depth of 7000 m. Res Microbiol 2015; 166:668-76. [PMID: 26025640 DOI: 10.1016/j.resmic.2015.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 05/01/2015] [Accepted: 05/06/2015] [Indexed: 01/21/2023]
Abstract
Viruses play important roles in aquatic ecosystems, but deep-sea bacteriophages remain largely unexplored. A temperate bacteriophage (termed vB_PstS-1) was identified from the psychrotolerant gammaproteobacterium Pseudomonas stutzeri 1-1-1b, which was isolated from hadopelagic water (depth of 7000 m) of the Japan Trench in the Northwest Pacific Ocean. The genome size of PstS-1 was 48,666 bp; its genome displayed a 59.8% G + C content and a total of 79 coding sequences were identified in its genome. The PstS-1 phage belongs to the family Siphoviridae, but its genomic sequence and organization are distinct from those of any other well-known Siphoviridae phage. The mosaic genomic structure of PstS-1 suggests the occurrence of genetic exchange between distinct temperate phages in deep-sea Pseudomonas populations. The PstS-1 genome also harbors three distinct sequence regions corresponding to spacers within a single clustered regularly interspaced short palindromic repeat (CRISPR) locus in the rhizosphere-associated diazotrophic P. stutzeri A1501 genome. The extension of these spacers to the soil environment and the presence of many homologs of both the hadal deep-sea phage PstS-1 and terrestrial Pseudomonas phages suggest the early co-evolution of temperate phages and their host genus Pseudomonas prior to the divergence of their habitational and physiological adaptation.
Collapse
Affiliation(s)
- Mitsuhiro Yoshida
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan.
| | - Yukari Yoshida-Takashima
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Takuro Nunoura
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Ken Takai
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| |
Collapse
|