1
|
Yadav S. Advanced therapeutics avenues in hepatocellular carcinoma: a novel paradigm. Med Oncol 2023; 40:239. [PMID: 37442842 DOI: 10.1007/s12032-023-02104-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most frequent type of primary liver cancer, and it poses a significant risk to patients health and longevity due to its high morbidity and fatality rates. Surgical ablation, radiotherapy, chemotherapy, and, most recently, immunotherapy have all been investigated for HCC, but none have yielded the desired outcomes. Several unique nanocarrier drug delivery techniques have been studied for their potential therapeutic implications in the treatment of HCC. Nanoparticle-based imaging could be effective for more accurate HCC diagnosis. Since its inception, nanomedicine has significantly transformed the approach to both the treatment and diagnostics of liver cancer. Nanoparticles (NPs) are being studied as a potential treatment for liver cancer because of their ability to carry small substances, such as treatment with chemotherapy, microRNA, and therapeutic genes. The primary focus of this study is on the most current discoveries and practical uses of nanomedicine-based diagnostic and therapeutic techniques for liver cancer. In this section, we had gone over what we know about metabolic dysfunction in HCC and the treatment options that attempt to fix it by targeting metabolic pathways. Furthermore, we propose a multi-target metabolic strategy as a viable HCC treatment option. Based on the findings given here, the scientists believe that smart nanomaterials have great promise for improving cancer theranostics and opening up new avenues for tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Shikha Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Plot No.2, Sector 17-A, Yamuna Expressway, Gautam Buddhnagar, Greater Noida, Uttar Pradesh, 201310, India.
| |
Collapse
|
2
|
Hanna A, Nixon MJ, Estrada MV, Sanchez V, Sheng Q, Opalenik SR, Toren AL, Bauer J, Owens P, Mason FM, Cook RS, Sanders ME, Arteaga CL, Balko JM. Combined Dusp4 and p53 loss with Dbf4 amplification drives tumorigenesis via cell cycle restriction and replication stress escape in breast cancer. Breast Cancer Res 2022; 24:51. [PMID: 35850776 PMCID: PMC9290202 DOI: 10.1186/s13058-022-01542-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 06/28/2022] [Indexed: 11/10/2022] Open
Abstract
AIM Deregulated signaling pathways are a hallmark feature of oncogenesis and driver of tumor progression. Dual specificity protein phosphatase 4 (DUSP4) is a critical negative regulator of the mitogen-activated protein kinase (MAPK) pathway and is often deleted or epigenetically silenced in tumors. DUSP4 alterations lead to hyperactivation of MAPK signaling in many cancers, including breast cancer, which often harbor mutations in cell cycle checkpoint genes, particularly in TP53. METHODS Using a genetically engineered mouse model, we generated mammary-specific Dusp4-deleted primary epithelial cells to investigate the necessary conditions in which DUSP4 loss may drive breast cancer oncogenesis. RESULTS We found that Dusp4 loss alone is insufficient in mediating tumorigenesis, but alternatively converges with loss in Trp53 and MYC amplification to induce tumorigenesis primarily through chromosome 5 amplification, which specifically upregulates Dbf4, a cell cycle gene that promotes cellular replication by mediating cell cycle checkpoint escape. CONCLUSIONS This study identifies a novel mechanism for breast tumorigenesis implicating Dusp4 loss and p53 mutations in cellular acquisition of Dbf4 upregulation as a driver of cellular replication and cell cycle checkpoint escape.
Collapse
Affiliation(s)
- Ann Hanna
- Departments of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2200 Pierce Ave, 777 PRB, Nashville, TN, 37232, USA
| | - Mellissa J Nixon
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Early Discovery Oncology, Merck & Co., Boston, MA, USA
| | - M Valeria Estrada
- Department of Pathology, Microbiology & Immunology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2200 Pierce Ave, 777 PRB, Nashville, TN, 37232, USA
- Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2200 Pierce Ave, 777 PRB, Nashville, TN, 37232, USA
| | - Violeta Sanchez
- Department of Pathology, Microbiology & Immunology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2200 Pierce Ave, 777 PRB, Nashville, TN, 37232, USA
| | - Quanhu Sheng
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Susan R Opalenik
- Departments of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2200 Pierce Ave, 777 PRB, Nashville, TN, 37232, USA
| | - Abigail L Toren
- Departments of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2200 Pierce Ave, 777 PRB, Nashville, TN, 37232, USA
| | - Joshua Bauer
- Vanderbilt Institute of Chemical Biology, Nashville, TN, USA
| | - Phillip Owens
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Frank M Mason
- Departments of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2200 Pierce Ave, 777 PRB, Nashville, TN, 37232, USA
| | - Rebecca S Cook
- Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, TN, USA
| | - Melinda E Sanders
- Department of Pathology, Microbiology & Immunology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2200 Pierce Ave, 777 PRB, Nashville, TN, 37232, USA
- Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2200 Pierce Ave, 777 PRB, Nashville, TN, 37232, USA
| | - Carlos L Arteaga
- Simmons Comprehensive Cancer Center, University of Texas Southwester, Dallas, TX, USA
| | - Justin M Balko
- Departments of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2200 Pierce Ave, 777 PRB, Nashville, TN, 37232, USA.
- Department of Pathology, Microbiology & Immunology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2200 Pierce Ave, 777 PRB, Nashville, TN, 37232, USA.
- Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2200 Pierce Ave, 777 PRB, Nashville, TN, 37232, USA.
| |
Collapse
|
3
|
Cyclin-dependent kinases as potential targets for colorectal cancer: past, present and future. Future Med Chem 2022; 14:1087-1105. [PMID: 35703127 DOI: 10.4155/fmc-2022-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Colorectal cancer (CRC) is a common cancer in the world and its prevalence is increasing in developing countries. Deregulated cell cycle traverse is a hallmark of malignant transformation and is often observed in CRC as a result of imprecise activity of cell cycle regulatory components, viz. cyclins and cyclin-dependent kinases (CDKs). Apart from cell cycle regulation, some CDKs also regulate processes such as transcription and have also been shown to be involved in colorectal carcinogenesis. This article aims to review cyclin-dependent kinases as potential targets for CRC. Furthermore, therapeutic candidates to target CDKs are also discussed.
Collapse
|
4
|
Tarvainen I, Nunn RC, Tuominen RK, Jäntti MH, Talman V. Protein kinase A Mediated Effects of Protein kinase C Partial Agonist HMI-1a3 in Colorectal Cancer Cells. J Pharmacol Exp Ther 2021; 380:54-62. [PMID: 34697230 DOI: 10.1124/jpet.121.000848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/14/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer is the third most commonly occurring cancer in men and the second in women. The global burden of colorectal cancer is projected to increase to over 2 million new cases with over 1 million deaths within the next 10 years and there is a great need for new compounds with novel mechanisms of action. Our group has developed PKC modulating isophthalic acid derivatives that induce cytotoxicity towards human cervical and prostate cancer cell lines. In this study, we investigated the effects of 5-(hydroxymethyl)isophthalate 1a3 (HMI-1a3) on colorectal cancer cell lines (Caco2, Colo205 and HT29). HMI-1a3 inhibited cell proliferation, decreased cell viability and induced an apoptotic response in all studied cell lines. These effects, however, were independent of PKC. Using serine/threonine kinome profiling and pharmacological kinase inhibitors we identified activation of the cAMP/PKA pathway as a new mechanism-of-action for HMI-1a3-induced anti-cancer activity in colorectal cancer cell lines. Our current results strengthen the hypothesis for HMI-1a3 as a potential anti-cancer agent against various malignancies. Significance Statement Colorectal cancer (CRC) is a common solid organ malignancy. Here, we demonstrate that the protein kinase C (PKC) C1 domain-targeted isophthalatic acid derivative HMI-1a3 has anti-cancer activity on CRC cell lines independently of PKC. We identified protein kinase A (PKA) activation as a mechanism of HMI-1a3 induced anti-cancer effects. Our results reveal a new anti-cancer mechanism of action for the partial PKC agonist HMI-1a3 and thus provide new insights for the development of PKC and PKA modulators for cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | - Virpi Talman
- Faculty of Pharmacy, University of Helsinki, Finland
| |
Collapse
|
5
|
Wang Z, Hu T, Jin C, Yu J, Zhu D, Liu J. The anti-tumor effect of miR-539-3p on colon cancer via regulating cell viability, motility, and nude mouse tumorigenicity with CDK14 inhibition. J Gastrointest Oncol 2020; 11:899-910. [PMID: 33209486 PMCID: PMC7657824 DOI: 10.21037/jgo-20-387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/29/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Colon cancer is one of the major causes of morbidity and mortality worldwide. MicroRNAs (miRNAs) play important functions in the growth and metastasis of colon cancer. This study aimed to investigate the anti-tumor effect of micro ribonucleic acid 539-3p (miR-539-3p) on colon cancer via regulation of cell viability, motility, and nude mouse tumorigenicity with cyclin-dependent kinase 14 (CDK14) inhibition. METHODS The target relationship between miR-539-3p and CDK14 was predicted using TargetScan software, and were detected by luciferase reporter assay. Cell counting kit-8 (CCK-8) assay and flow cytometry were employed to examine cell proliferation and apoptosis. Western blotting was employed to measure the protein expression levels of p27, cleaved caspase-3, and epithelial (E)- and neural (N)-cadherin. The effect of miR-539-3p on tumor growth was evaluated by establishing a xenograft tumor model in nude mice. RESULTS The target relationship of CDK14 and miR-539-3p was identified as a negative regulator. Overexpression of miR-539-3p significantly inhibited SW620 and SW480 cell proliferation, promoted cell apoptosis, and suppressed cell invasion by targeting CDK14. The xenograft tumor model showed that the overexpression of miR-539-3p reduced tumor weight and volume. Immunohistochemical staining revealed that the overexpression of miR-539-3p inhibited the expression of Ki67 and E-cadherin. Additionally, terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) staining showed that overexpression of miR-539-3p induced apoptosis. CONCLUSIONS Overexpression of miR-539-3p inhibited SW620 and SW480 cell proliferation, promoted cell apoptosis, and suppressed cell invasion by targeting CDK14. Therefore, miR-539-3p may be a useful diagnostic and therapeutic biomarker for colon cancer.
Collapse
Affiliation(s)
- Zhuo Wang
- Department of General Surgery, Chengdu Fifth People's Hospital, Chengdu, China
| | - Tao Hu
- Department of General Surgery, Chengdu Fifth People's Hospital, Chengdu, China
| | - Chengwu Jin
- Department of General Surgery, Chengdu Fifth People's Hospital, Chengdu, China
| | - Jiangui Yu
- Department of General Surgery, Chengdu Fifth People's Hospital, Chengdu, China
| | - Dongqiang Zhu
- Department of General Surgery, Chengdu Fifth People's Hospital, Chengdu, China
| | - Jian Liu
- Department of General Surgery, Chengdu Fifth People's Hospital, Chengdu, China
| |
Collapse
|
6
|
Ferguson FM, Doctor ZM, Ficarro SB, Browne CM, Marto JA, Johnson JL, Yaron TM, Cantley LC, Kim ND, Sim T, Berberich MJ, Kalocsay M, Sorger PK, Gray NS. Discovery of Covalent CDK14 Inhibitors with Pan-TAIRE Family Specificity. Cell Chem Biol 2019; 26:804-817.e12. [PMID: 30930164 DOI: 10.1016/j.chembiol.2019.02.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/23/2019] [Accepted: 02/24/2019] [Indexed: 12/19/2022]
Abstract
Cyclin-dependent kinase 14 (CDK14) and other TAIRE family kinases (CDKs 15-18) are proteins that lack functional annotation but are frequent off-targets of clinical kinase inhibitors. In this study we develop and characterize FMF-04-159-2, a tool compound that specifically targets CDK14 covalently and possesses a TAIRE kinase-biased selectivity profile. This tool compound and its reversible analog were used to characterize the cellular consequences of covalent CDK14 inhibition, including an unbiased investigation using phospho-proteomics. To reduce confounding off-target activity, washout conditions were used to deconvolute CDK14-specific effects. This investigation suggested that CDK14 plays a supporting role in cell-cycle regulation, particularly mitotic progression, and identified putative CDK14 substrates. Together, these results represent an important step forward in understanding the cellular consequences of inhibiting CDK14 kinase activity.
Collapse
Affiliation(s)
- Fleur M Ferguson
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Zainab M Doctor
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Scott B Ficarro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Christopher M Browne
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Jarrod A Marto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jared L Johnson
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Tomer M Yaron
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Nam Doo Kim
- Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Taebo Sim
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Matthew J Berberich
- HMS LINCS Center and Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Marian Kalocsay
- HMS LINCS Center and Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Peter K Sorger
- HMS LINCS Center and Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
7
|
Ma Y, Qin C, Li L, Miao R, Jing C, Cui X. MicroRNA-21 promotes cell proliferation by targeting tumor suppressor TET1 in colorectal cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:1439-1445. [PMID: 31938241 PMCID: PMC6958103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/24/2017] [Indexed: 06/10/2023]
Abstract
MicroRNAs (miRNAs) regulate gene expression by binding to mRNA, and can function as oncogenes or tumor suppressors depending on the target. TET1 acts as tumor-suppressor, which is downregulated in colorectal cancers (CRC) and inhibits cell growth. However, it has not been studied as to whether miRNAs, suppressing target expression by binding to the 3'UTR, regulate TET1 expression in colorectal cancers. Here, our study found that miR-21 has matching sites on TET1. In the tumor tissue samples from 50 patients with CRC, the expression of miR-21 was upregulated compared with that in adjacent tissue samples while the expression of TET1 showed a significant decrease. In addition, miR-21 expression was negatively correlated with the expression of TET1. Moreover, low expression of miR-21 by the transfection of colorectal cancer cell lines with miR-21 inhibitors, the effect on TET1 expression was opposite to the change of miR-21 expression. Furthermore, our results indicated that miR-21 promoted proliferation of colorectal cancer cells by targeting TET1. These findings may provide a theoretical basis for clarifying the physiological and pathological role of miR-21 in colorectal cancer.
Collapse
Affiliation(s)
- Yan Ma
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University Jinan, Shandong Province, China
| | - Chengkun Qin
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University Jinan, Shandong Province, China
| | - Leping Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University Jinan, Shandong Province, China
| | - Ruizheng Miao
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University Jinan, Shandong Province, China
| | - Changqing Jing
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University Jinan, Shandong Province, China
| | - Xianping Cui
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University Jinan, Shandong Province, China
| |
Collapse
|
8
|
Lucke-Wold B, Bonasso PC, Turner R, Cassim R. Adenocarcinoma of the Cecum with Rare Splenic Metastasis. THE WEST VIRGINIA MEDICAL JOURNAL 2017; 113:32-34. [PMID: 28579648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 09/28/2022]
Abstract
Isolated splenic metasisis is a rare finding in colorectal carcinoma. We report a case of metastatic cecal adenocarcinoma to the spleen. In spring 2011, a 53-yearold woman underwent en bloc right hemicolectomy with partial omentectomy. The tumor was Stage III pT3 pN2a M0. She received four months of modified FOLFOX6 chemotherapy and one month of capecitabine. In spring 2012, a PET/CT revealed a low attenuation focus in the spleen consistent with metastatic adenocarcinoma, so she underwent splenectomy. Additional imaging has revealed no disease recurrence. There are only a small number of case reports for isolated splenic metastasis; thus, no standardized treatment course has been developed.
Collapse
Affiliation(s)
- Brandon Lucke-Wold
- Depts. of Surgery & Neurosurgery, West Virginia University School of Medicine, Morgantown, WV
| | - Patrick C Bonasso
- Department of Surgery, West Virginia University School of Medicine, Morgantown, WV
| | - Ryan Turner
- Depts. of Surgery & Neurosurgery, West Virginia University School of Medicine, Morgantown, WV
| | - Riaz Cassim
- Department of Surgery, West Virginia University School of Medicine, Morgantown, WV
| |
Collapse
|
9
|
Peritoneal expression of Matrilysin helps identify early post-operative recurrence of colorectal cancer. Oncotarget 2016; 6:13402-15. [PMID: 25596746 PMCID: PMC4537023 DOI: 10.18632/oncotarget.2830] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 11/27/2014] [Indexed: 12/20/2022] Open
Abstract
Recurrence of colorectal cancer (CRC) following a potentially curative resection is a challenging clinical problem. Matrix metalloproteinase-7 (MMP-7) is over-expressed by CRC cells and supposed to play a major role in CRC cell diffusion and metastasis. MMP-7 RNA expression was assessed by real-time PCR using specific primers in peritoneal washing fluid obtained during surgical procedure. After surgery, patients underwent a regular follow up for assessing recurrence. transcripts for MMP-7 were detected in 31/57 samples (54%). Patients were followed-up (range 20-48 months) for recurrence prevention. Recurrence was diagnosed in 6 out of 55 patients (11%) and two patients eventually died because of this. Notably, all the six patients who had relapsed were positive for MMP-7. Sensitivity and specificity of the test were 100% and 49% respectively. Data from patients have also been corroborated by computational approaches. Public available coloncarcinoma datasets have been employed to confirm MMP7 clinical impact on the disease. Interestingly, MMP-7 expression appeared correlated to Tgfb-1, and correlation of the two factors represented a poor prognostic factor. This study proposes positivity of MMP-7 in peritoneal cavity as a novel biomarker for predicting disease recurrence in patients with CRC.
Collapse
|
10
|
Zhang W, Liu R, Tang C, Xi Q, Lu S, Chen W, Zhu L, Cheng J, Chen Y, Wang W, Zhong J, Deng Y. PFTK1 regulates cell proliferation, migration and invasion in epithelial ovarian cancer. Int J Biol Macromol 2016; 85:405-16. [PMID: 26772918 DOI: 10.1016/j.ijbiomac.2016.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 12/31/2015] [Accepted: 01/03/2016] [Indexed: 02/04/2023]
Abstract
PFTK1, also named Cyclin-Dependent Kinase 14 (CDK14), is a member of the cell division cycle 2 (CDC2)-related protein kinase family. It is a serine/threonine-protein kinase involved in the regulation of cell cycle progression and cell proliferation. In this study, we investigated the role of PFTK1 in epithelial ovarian cancer (EOC) development. The expression of PFTK1 was detected by Western blot and immunohistochemistry staining, both of which demonstrated that PFTK1 was overexpressed in EOC tissues and cells. Statistical analysis showed the expression of PFTK1 was associated with multiple clinicopathological factors, including tumor grade, FIGO stage, lymph node metastatis, Ki-67 expression and predicted a poor prognosis of EOC patients. With in vitro studies we found that PFTK1 expression was decreased in serum-starved ovarian cancer cells, and progressively increased after serum-re-feeding. Knocking PFTK1 down by small interfering RNA (siRNA) significantly inhibited ovarian cancer cell proliferation, migration and invasion. Taken together, our study suggested that PFTK1 played an important role in ovarian cancer development.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Rong Liu
- Department of Gynecologic Oncology, Nantong University Cancer Hospital, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Chunhui Tang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Qinghua Xi
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Shumin Lu
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Wenjuan Chen
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Lianxin Zhu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Jialin Cheng
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Yannan Chen
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Wei Wang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Jianxin Zhong
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, People's Republic of China.
| | - Yan Deng
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, People's Republic of China.
| |
Collapse
|
11
|
From mice to men: Murine models of colorectal cancer for use in translational research. Crit Rev Oncol Hematol 2015; 98:94-105. [PMID: 26558688 DOI: 10.1016/j.critrevonc.2015.10.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/28/2015] [Accepted: 10/27/2015] [Indexed: 12/18/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common carcinoma worldwide and despite advances in treatment, survival for patients with metastatic disease remains poor. With nearly 50% of patients developing metastases, in vivo investigation is essential to improve outcomes for these patients and numerous murine models of CRC have been developed to allow the study of chemoprevention and chemotherapy, in addition to improving our understanding of the pathogenesis of CRC. Selecting the most appropriate murine model for a specific application will maximize the conversion of potential therapies from the laboratory to clinical practice and requires an understanding of the various models available. This review will provide an overview of the murine models currently used in CRC research, discussing the limitations and merits of each and their most relevant application. It is aimed at the developing researcher, acting as a guide to prompt further reading in planning a specific study.
Collapse
|
12
|
Zhang W, He J, Du Y, Gao XH, Liu Y, Liu QZ, Chang WJ, Cao GW, Fu CG. Upregulation of nemo-like kinase is an independent prognostic factor in colorectal cancer. World J Gastroenterol 2015; 21:8836-8847. [PMID: 26269673 PMCID: PMC4528026 DOI: 10.3748/wjg.v21.i29.8836] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 02/14/2015] [Accepted: 03/27/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression and oncogenic role of nemo-like kinase (NLK) in colorectal cancer.
METHODS: Expression of NLK protein was assessed by immunohistochemistry in tissue specimens from 56 cases of normal colorectal mucosa, 51 cases of colorectal adenoma, and 712 cases of colorectal cancer. In addition, NLK expression was knocked down using a lentivirus carrying NLK small hairpin RNA in colorectal cancer cells. Cell viability methylthiazoletetrazolium assays, colony formation assays, flow cytometry cell cycle assays, Transwell migration assays, and gene expression assays were performed to explore its role on proliferation and migration of colorectal cancer.
RESULTS: Expression of NLK protein progressively increased in tissues from the normal mucosa through adenoma to various stages of colorectal cancer. Overexpression of NLK protein was associated with advanced tumor-lymph node-metastasis stages, poor differentiation, lymph node and distant metastases, and a higher recurrence rate of colorectal cancer (P < 0.05). Multivariate analyses showed that NLK expression was an independent prognostic factor to predict overall survival (hazard ratio 2.57, 95% confidence interval: 1.66-3.98; P < 0.001) and disease-free survival (hazard ratio 1.96, 95% confidence interval: 1.40-2.74: P < 0.001) of colorectal cancer patients. Furthermore, knockdown of NLK expression in colorectal cancer cell lines reduced cell viability, colony formation, and migration, and arrested tumor cells at the G0/G1 phase of the cell cycle. At the gene level, knockdown of NLK expression inhibited matrix metalloproteinase-2 expression in colorectal cancer cells.
CONCLUSION: NLK overexpression is an independent prognostic factor in colorectal cancer and knockdown of NLK expression inhibits colorectal cancer progression and metastasis.
Collapse
|