1
|
Zablonski KG, Skupa SA, Eiken AP, Sundaram S, Mavis C, Gu JJ, Torka P, Ghione P, El-Gamal D, Hernandez-Ilizaliturri FJ. Targeted BET inhibition with OPN-51107 synergizes with venetoclax in chronic lymphocytic leukemia. Leuk Lymphoma 2024; 65:2129-2137. [PMID: 39331474 DOI: 10.1080/10428194.2024.2398663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/21/2024] [Accepted: 08/24/2024] [Indexed: 09/29/2024]
Abstract
Chronic lymphocytic leukemia (CLL) remains incurable and its ability to acquire resistance to front-line therapeutics has proved challenging. Bromodomain and extra-terminal proteins, particularly bromodomain-containing protein 4 (BRD4), are integral to gene expression in CLL and offer a promising therapeutic target. In this study, we examined the activity of the BRD4 inhibitor OPN-51107 alone and in combination with the BCL-2 inhibitor, venetoclax, in CLL cell lines and patient-derived CLL samples. We demonstrate that OPN-51107 induces anti-tumor activity in both CLL cell lines and patient-derived samples, including relapsed/refractory (R/R) samples and those with high-risk features (i.e. ATM and/or TP53 deletions). Importantly, the combination of OPN-51107 and venetoclax exhibited synergistic cytotoxicity in ibrutinib-resistant CLL cells and patient-derived CLL samples regardless of R/R or deletion status. This study establishes the preclinical efficacy of using OPN-51107 and venetoclax in combination in therapy-resistant and/or high-risk CLL, lending support for its further development as a combination therapy.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Sulfonamides/pharmacology
- Sulfonamides/therapeutic use
- Drug Synergism
- Cell Line, Tumor
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/genetics
- Drug Resistance, Neoplasm/drug effects
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Cell Cycle Proteins/antagonists & inhibitors
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Apoptosis/drug effects
- Cell Proliferation/drug effects
- Bromodomain Containing Proteins
Collapse
Affiliation(s)
- Kevin G Zablonski
- Departments of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Sydney A Skupa
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Alexandria P Eiken
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Suchitra Sundaram
- Departments of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Cory Mavis
- Departments of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Juan Jenny Gu
- Departments of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Pallawi Torka
- Departments of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Paola Ghione
- Departments of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Dalia El-Gamal
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | | |
Collapse
|
2
|
Xu W, Bano N, Guzman-Valdes O, Amberman J, Bandlamudi E, Khanna P, Carmean R, Helmy R. Development and Validation of a Cell-Based Binding Neutralizing Antibody Assay for an Antibody-Drug Conjugate. AAPS J 2024; 26:37. [PMID: 38548953 DOI: 10.1208/s12248-024-00909-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/13/2024] [Indexed: 04/02/2024] Open
Abstract
The utilization of antibody-drug conjugates (ADCs) has gained considerable attention in the field of targeted cancer therapy due to their ability to synergistically combine the specificity of monoclonal antibodies (mAbs) and the potency of small molecular drugs. However, the immunogenic nature of the antibody component within ADCs warrants the need for robust immunogenicity testing, including a neutralizing antibody (NAb) assay. Since the mechanism of action (MOA) of the ADC is to first bind to the target cells and then release the payload intracellularly to kill the cells, the most relevant NAb assay format would be a cell-based killing assay. However, in this paper, we present a case where a cell-based killing assay could not be developed after multiple cell lines and NAb-positive controls (PC) had been tested. Surprisingly, contrary to our expectations, all NAb PCs tested exhibited an increased killing effect on the target cells, instead of the expected protective response. This unexpected phenomenon most likely is due to the non-specific internalization of drug/NAb complexes via FcγRs, as an excessive amount of human IgG1 and mouse IgG2a, but not mouse IgG1, greatly inhibited drug or drug/NAb complexes induced cell death. To overcome this obstacle, we implemented a novel cell-based binding assay utilizing the Meso Scale Discovery (MSD) platform. We also propose that an in vitro cell killing NAb assay is limited to at best monitoring the target binding and internalization induced cell death, but not by-stander killing induced by prematurely released or dead-cell released payload, hence cannot really mimic the in vivo MOA of ADC.
Collapse
Affiliation(s)
- Weifeng Xu
- Merck & Co., Inc., Rahway, New Jersey, 07065, USA.
| | - Nazneen Bano
- Merck & Co., Inc., Rahway, New Jersey, 07065, USA
| | - Olguitza Guzman-Valdes
- PPD Clinical Research Business, Thermo Fisher Scientific, Richmond, Virginia, 23832, USA
| | - Jessica Amberman
- PPD Clinical Research Business, Thermo Fisher Scientific, Richmond, Virginia, 23832, USA
| | | | - Pooja Khanna
- Merck & Co., Inc., Rahway, New Jersey, 07065, USA
| | - Rebecca Carmean
- PPD Clinical Research Business, Thermo Fisher Scientific, Richmond, Virginia, 23832, USA
| | - Roy Helmy
- Merck & Co., Inc., Rahway, New Jersey, 07065, USA
| |
Collapse
|
3
|
Largeot A, Klapp V, Viry E, Gonder S, Fernandez Botana I, Blomme A, Benzarti M, Pierson S, Duculty C, Marttila P, Wierz M, Gargiulo E, Pagano G, An N, El Hachem N, Perez Hernandez D, Chakraborty S, Ysebaert L, François JH, Cortez Clemente S, Berchem G, Efremov DG, Dittmar G, Szpakowska M, Chevigné A, Nazarov PV, Helleday T, Close P, Meiser J, Stamatopoulos B, Désaubry L, Paggetti J, Moussay E. Inhibition of MYC translation through targeting of the newly identified PHB-eIF4F complex as a therapeutic strategy in CLL. Blood 2023; 141:3166-3183. [PMID: 37084385 PMCID: PMC10646824 DOI: 10.1182/blood.2022017839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 02/08/2023] [Accepted: 03/05/2023] [Indexed: 04/23/2023] Open
Abstract
Dysregulation of messenger RNA (mRNA) translation, including preferential translation of mRNA with complex 5' untranslated regions such as the MYC oncogene, is recognized as an important mechanism in cancer. Here, we show that both human and murine chronic lymphocytic leukemia (CLL) cells display a high translation rate, which is inhibited by the synthetic flavagline FL3, a prohibitin (PHB)-binding drug. A multiomics analysis performed in samples from patients with CLL and cell lines treated with FL3 revealed the decreased translation of the MYC oncogene and of proteins involved in cell cycle and metabolism. Furthermore, inhibiting translation induced a proliferation arrest and a rewiring of MYC-driven metabolism. Interestingly, contrary to other models, the RAS-RAF-(PHBs)-MAPK pathway is neither impaired by FL3 nor implicated in translation regulation in CLL cells. Here, we rather show that PHBs are directly associated with the eukaryotic initiation factor (eIF)4F translation complex and are targeted by FL3. Knockdown of PHBs resembled FL3 treatment. Importantly, inhibition of translation controlled CLL development in vivo, either alone or combined with immunotherapy. Finally, high expression of translation initiation-related genes and PHBs genes correlated with poor survival and unfavorable clinical parameters in patients with CLL. Overall, we demonstrated that translation inhibition is a valuable strategy to control CLL development by blocking the translation of several oncogenic pathways including MYC. We also unraveled a new and direct role of PHBs in translation initiation, thus creating new therapeutic opportunities for patients with CLL.
Collapse
MESH Headings
- Humans
- Mice
- Animals
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Eukaryotic Initiation Factor-4F/genetics
- Prohibitins
- Genes, myc
- RNA, Messenger/genetics
Collapse
Affiliation(s)
- Anne Largeot
- Department of Cancer Research, Tumor Stroma Interactions, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Vanessa Klapp
- Department of Cancer Research, Tumor Stroma Interactions, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Elodie Viry
- Department of Cancer Research, Tumor Stroma Interactions, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Susanne Gonder
- Department of Cancer Research, Tumor Stroma Interactions, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Iria Fernandez Botana
- Department of Cancer Research, Tumor Stroma Interactions, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Arnaud Blomme
- Laboratory of Cancer Signaling, GIGA Stem Cells, University of Liège, Liège, Belgium
| | - Mohaned Benzarti
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Cancer Research, Cancer Metabolism Group, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Sandrine Pierson
- Department of Cancer Research, Tumor Stroma Interactions, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Chloé Duculty
- Department of Cancer Research, Tumor Stroma Interactions, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Petra Marttila
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Solna, Sweden
| | - Marina Wierz
- Department of Cancer Research, Tumor Stroma Interactions, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Ernesto Gargiulo
- Department of Cancer Research, Tumor Stroma Interactions, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Giulia Pagano
- Department of Cancer Research, Tumor Stroma Interactions, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Ning An
- Laboratory of Cancer Signaling, GIGA Stem Cells, University of Liège, Liège, Belgium
| | - Najla El Hachem
- Laboratory of Cancer Signaling, GIGA Stem Cells, University of Liège, Liège, Belgium
| | - Daniel Perez Hernandez
- Department of Infection and Immunity, Proteomics of Cellular Signaling, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Supriya Chakraborty
- Molecular Hematology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Loïc Ysebaert
- Haematology Department, Institut Universitaire du Cancer Toulouse Oncopole, Toulouse, France
| | - Jean-Hugues François
- Laboratoire d’hématologie, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - Susan Cortez Clemente
- Département d’hémato-oncologie, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - Guy Berchem
- Département d’hémato-oncologie, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
- Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Dimitar G. Efremov
- Molecular Hematology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Gunnar Dittmar
- Department of Infection and Immunity, Proteomics of Cellular Signaling, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Martyna Szpakowska
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Andy Chevigné
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Petr V. Nazarov
- Department of Cancer Research, Multiomics Data Science, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Thomas Helleday
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Solna, Sweden
- Department of Oncology and Metabolism, Weston Park Cancer Centre, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Pierre Close
- Laboratory of Cancer Signaling, GIGA Stem Cells, University of Liège, Liège, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Johannes Meiser
- Department of Cancer Research, Cancer Metabolism Group, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Basile Stamatopoulos
- Laboratory of Clinical Cell Therapy, ULB-Research Cancer Center, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Laurent Désaubry
- Regenerative Nanomedicine Laboratory (UMR1260), Faculty of Medicine, Fédération de Médecine Translationnelle de Strasbourg, INSERM-University of Strasbourg, Strasbourg, France
| | - Jérôme Paggetti
- Department of Cancer Research, Tumor Stroma Interactions, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Etienne Moussay
- Department of Cancer Research, Tumor Stroma Interactions, Luxembourg Institute of Health, Luxembourg, Luxembourg
| |
Collapse
|
4
|
Karami Fath M, Azami J, Jaafari N, Akbari Oryani M, Jafari N, Karim poor A, Azargoonjahromi A, Nabi-Afjadi M, Payandeh Z, Zalpoor H, Shanehbandi D. Exosome application in treatment and diagnosis of B-cell disorders: leukemias, multiple sclerosis, and arthritis rheumatoid. Cell Mol Biol Lett 2022; 27:74. [PMID: 36064322 PMCID: PMC9446857 DOI: 10.1186/s11658-022-00377-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/16/2022] [Indexed: 11/10/2022] Open
Abstract
Exosomes, known as a type of extracellular vesicles (EVs), are lipid particles comprising heterogeneous contents such as nucleic acids, proteins, and DNA. These bi-layered particles are naturally released into the extracellular periphery by a variety of cells such as neoplastic cells. Given that exosomes have unique properties, they can be used as vectors and carriers of biological and medicinal particles like drugs for delivering to the desired areas. The proteins and RNAs being encompassed by the circulating exosomes in B-cell malignancies are deemed as the promising sources for diagnostic and prognostic biomarkers, as well as therapeutic agents. Exosomes can also provide a "snapshot" view of the tumor and metastatic landscape at any particular time. Further, clinical research has shown that exosomes are produced by immune cells such as dendritic cells can stimulate the immune system, so these exosomes can be used in antitumor vaccines. Despite the great potential of exosomes in the fields of diagnostic and treatment, further studies are in need for these purposes to reach a convergence notion. This review highlights the applications of exosomes in multiple immune-related diseases, including chronic lymphocytic leukemia, multiple sclerosis, and arthritis rheumatoid, as well as explaining sundry aspects of exosome therapy and the function of exosomes in diagnosing diseases.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Jalil Azami
- Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Niloofar Jaafari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Akbari Oryani
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nafiseh Jafari
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | | | | | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Zahra Payandeh
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
- Immunology Research center, Tabriz University of Medical Science, Tabriz, Iran
| | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Dariush Shanehbandi
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
- Immunology Research center, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
5
|
Smith AL, Eiken AP, Skupa SA, Moore DY, Umeta LT, Smith LM, Lyden ER, D’Angelo CR, Kallam A, Vose JM, Kutateladze TG, El-Gamal D. A Novel Triple-Action Inhibitor Targeting B-Cell Receptor Signaling and BRD4 Demonstrates Preclinical Activity in Chronic Lymphocytic Leukemia. Int J Mol Sci 2022; 23:6712. [PMID: 35743155 PMCID: PMC9224275 DOI: 10.3390/ijms23126712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/30/2022] Open
Abstract
B-cell chronic lymphocytic leukemia (CLL) results from intrinsic genetic defects and complex microenvironment stimuli that fuel CLL cell growth through an array of survival signaling pathways. Novel small-molecule agents targeting the B-cell receptor pathway and anti-apoptotic proteins alone or in combination have revolutionized the management of CLL, yet combination therapy carries significant toxicity and CLL remains incurable due to residual disease and relapse. Single-molecule inhibitors that can target multiple disease-driving factors are thus an attractive approach to combat both drug resistance and combination-therapy-related toxicities. We demonstrate that SRX3305, a novel small-molecule BTK/PI3K/BRD4 inhibitor that targets three distinctive facets of CLL biology, attenuates CLL cell proliferation and promotes apoptosis in a dose-dependent fashion. SRX3305 also inhibits the activation-induced proliferation of primary CLL cells in vitro and effectively blocks microenvironment-mediated survival signals, including stromal cell contact. Furthermore, SRX3305 blocks CLL cell migration toward CXCL-12 and CXCL-13, which are major chemokines involved in CLL cell homing and retention in microenvironment niches. Importantly, SRX3305 maintains its anti-tumor effects in ibrutinib-resistant CLL cells. Collectively, this study establishes the preclinical efficacy of SRX3305 in CLL, providing significant rationale for its development as a therapeutic agent for CLL and related disorders.
Collapse
Affiliation(s)
- Audrey L. Smith
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.L.S.); (A.P.E.); (S.A.S.); (D.Y.M.); (L.T.U.)
| | - Alexandria P. Eiken
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.L.S.); (A.P.E.); (S.A.S.); (D.Y.M.); (L.T.U.)
| | - Sydney A. Skupa
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.L.S.); (A.P.E.); (S.A.S.); (D.Y.M.); (L.T.U.)
| | - Dalia Y. Moore
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.L.S.); (A.P.E.); (S.A.S.); (D.Y.M.); (L.T.U.)
| | - Lelisse T. Umeta
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.L.S.); (A.P.E.); (S.A.S.); (D.Y.M.); (L.T.U.)
| | - Lynette M. Smith
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.M.S.); (E.R.L.)
| | - Elizabeth R. Lyden
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.M.S.); (E.R.L.)
| | - Christopher R. D’Angelo
- Division of Hematology and Oncology, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.R.D.); (A.K.); (J.M.V.)
| | - Avyakta Kallam
- Division of Hematology and Oncology, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.R.D.); (A.K.); (J.M.V.)
| | - Julie M. Vose
- Division of Hematology and Oncology, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.R.D.); (A.K.); (J.M.V.)
| | - Tatiana G. Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA;
| | - Dalia El-Gamal
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.L.S.); (A.P.E.); (S.A.S.); (D.Y.M.); (L.T.U.)
| |
Collapse
|
6
|
Selection of a Nuclease-Resistant RNA Aptamer Targeting CD19. Cancers (Basel) 2021; 13:cancers13205220. [PMID: 34680368 PMCID: PMC8533794 DOI: 10.3390/cancers13205220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 01/19/2023] Open
Abstract
Simple Summary Haematological malignancies show a constantly growing incidence, accounting for 6.5% of new cancer cases worldwide. Among them, B-cell neoplasms often show resistance to conventional chemotherapy that is also associated with numerous adverse effects. Therefore, in order for the treatment outcome to be improved, the development of new safe and effective targeted therapeutic approaches represents a main challenge. In this regard, nucleic acid aptamers are very attractive molecules. Indeed, they show high affinity and specificity for their target, increased tumour penetration, and low toxicity. Recently, CD19 has emerged as a key surface marker of malignant B cells, suitable for the development of new compounds for malignant B-cell targeting. Here, we isolated an RNA aptamer targeting the human CD19 antigen on malignant B cells that was able to rapidly internalise into target cells. Therefore, it represents a useful carrier for secondary reagents and a promising tool for the development of new safe and effective targeted therapies for B-cell malignancy treatment. Abstract The transmembrane glycoprotein cluster of differentiation 19 (CD19) is a B cell–specific surface marker, expressed on the majority of neoplastic B cells, and has recently emerged as a very attractive biomarker and therapeutic target for B-cell malignancies. The development of safe and effective ligands for CD19 has become an important need for the development of targeted conventional and immunotherapies. In this regard, aptamers represent a very interesting class of molecules. Additionally referred to as ‘chemical antibodies’, they show many advantages as therapeutics, including low toxicity and immunogenicity. Here, we isolated a nuclease-resistant RNA aptamer binding to the human CD19 glycoprotein. In order to develop an aptamer also useful as a carrier for secondary reagents, we adopted a cell-based SELEX (Systematic Evolution of Ligands by EXponential Enrichment) protocol adapted to isolate aptamers able to internalise upon binding to their cell surface target. We describe a 2′-fluoro pyrimidine modified aptamer, named B85.T2, which specifically binds to CD19 and shows an exquisite stability in human serum. The aptamer showed an estimated dissociation constant (KD) of 49.9 ± 13 nM on purified human recombinant CD19 (rhCD19) glycoprotein, a good binding activity on human B-cell chronic lymphocytic leukaemia cells expressing CD19, and also an effective and rapid cell internalisation, thus representing a promising molecule for CD19 targeting, as well as for the development of new B-cell malignancy-targeted therapies.
Collapse
|
7
|
Nabergoj S, Markovič T, Avsec D, Gobec M, Podgornik H, Jakopin Ž, Mlinarič-Raščan I. EP4 receptor agonist L-902688 augments cytotoxic activities of ibrutinib, idelalisib, and venetoclax against chronic lymphocytic leukemia cells. Biochem Pharmacol 2020; 183:114352. [PMID: 33278351 DOI: 10.1016/j.bcp.2020.114352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 01/10/2023]
Abstract
Treatment of patients with relapsed or refractory chronic lymphocytic leukemia (CLL) has significantly improved more recently with the approval of several new agents, including ibrutinib, idelalisib, and venetoclax. Despite the outstanding efficacies observed with these agents, these treatments are sometimes discontinued due to toxicity, unresponsiveness, transformation of the disease and/or resistance. Constitutive NF-κB activation that protects CLL cells from apoptotic stimuli represents one of molecular mechanisms that underlie the emergence of drug resistance. As prostaglandin E (EP)4 receptor agonists have been shown to successfully inhibit the NF-κB pathway in B-cell lymphoma cells, we investigated the potential of the highly specific EP4 receptor agonist L-902688 for the potential treatment of patients with CLL. We show here that low micromolar concentrations of L-902688 can indeed induce selective cytotoxicity towards several B-cell malignancies, including CLL. Moreover, L-902688-mediated activation of the EP4 receptor in patient derived CLL cells resulted in inhibition of the NF-κB pathway, cell proliferation, and induction of apoptosis. Most importantly, we show for the first time that in combination with ibrutinib, idelalisib, or venetoclax, L-902688 induces synergistic cytotoxic activity against patient derived CLL cells. To conclude, the modulation of NF-κB activity by EP4 receptor agonists represents an innovative approach to improve the treatment of patients with CLL. In particular, EP4 receptor agonists appear to represent promising adjuncts to the already existing therapies for patients with CLL due to these promising synergistic activities.
Collapse
MESH Headings
- Adenine/administration & dosage
- Adenine/analogs & derivatives
- Adult
- Antineoplastic Agents/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Apoptosis/drug effects
- Apoptosis/physiology
- Bridged Bicyclo Compounds, Heterocyclic/administration & dosage
- Dose-Response Relationship, Drug
- Drug Synergism
- Humans
- Jurkat Cells
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/metabolism
- Piperidines/administration & dosage
- Purines/administration & dosage
- Pyrrolidinones/administration & dosage
- Quinazolinones/administration & dosage
- Receptors, Prostaglandin E, EP4 Subtype/agonists
- Receptors, Prostaglandin E, EP4 Subtype/metabolism
- Sulfonamides/administration & dosage
- Tetrazoles/administration & dosage
- U937 Cells
Collapse
Affiliation(s)
- Sanja Nabergoj
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Tijana Markovič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Damjan Avsec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Martina Gobec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Helena Podgornik
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia; University Medical Centre Ljubljana, Department of Haematology, Ljubljana, Slovenia
| | - Žiga Jakopin
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Irena Mlinarič-Raščan
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
8
|
Chichirau BE, Scheidt T, Diechler S, Neuper T, Horejs-Hoeck J, Huber CG, Posselt G, Wessler S. Dissecting the Helicobacter pylori-regulated transcriptome of B cells. Pathog Dis 2020; 78:5899724. [DOI: 10.1093/femspd/ftaa049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/27/2020] [Indexed: 12/21/2022] Open
Abstract
ABSTRACT
Persistent infections with the bacterial group-I carcinogen Helicobacter pylori (H. pylori) have been associated with a broad range of gastric disorders, including gastritis, ulceration, gastric cancer or mucosa-associated lymphoid tissue (MALT) lymphoma. Pathogenesis of H. pylori requires a balance between immune tolerance and defense. Although H. pylori induces inflammatory responses, the immune system cannot eliminate the pathogen. The detailed molecular mechanisms of how H. pylori interferes with cells of the immune system, in particular infiltrated B cells, are not well investigated. Previously, it was shown that the bacterial effector and oncoprotein cytotoxin-associated gene A (CagA) is delivered into B cells followed by its tyrosine-phosphorylation. To investigate the functional consequences in B cells colonized by CagA-positive H. pylori, we analyzed the global transcriptome of H. pylori-infected Mec-1 cells by RNA sequencing. We found 889 differentially expressed genes (DEGs) and validated JUN, FOSL2, HSPA1B, SRC, CXCR3, TLR-4, TNF-α, CXCL8, CCL2, CCL4, MHC class I and MHC class II molecules by qPCR, western blot, flow cytometry and ELISA assays. The H. pylori-specific mRNA expression signature reveals a downregulation of inflammation- and migration-associated genes, whereas central signal transduction regulators of cell survival and death are upregulated.
Collapse
Affiliation(s)
- Bianca E Chichirau
- Department of Biosciences, Division of Microbiology, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Tamara Scheidt
- Department of Biosciences, Bioanalytical Research Labs, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Sebastian Diechler
- Department of Biosciences, Division of Microbiology, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Theresa Neuper
- Department of Biosciences, Division of Molecular Immunology, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Jutta Horejs-Hoeck
- Department of Biosciences, Division of Molecular Immunology, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Christian G Huber
- Department of Biosciences, Bioanalytical Research Labs, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Gernot Posselt
- Department of Biosciences, Division of Microbiology, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Silja Wessler
- Department of Biosciences, Division of Microbiology, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria
| |
Collapse
|
9
|
Qi J, Chen SS, Chiorazzi N, Rader C. An IgG1-like bispecific antibody targeting CD52 and CD20 for the treatment of B-cell malignancies. Methods 2019; 154:70-76. [DOI: 10.1016/j.ymeth.2018.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 10/28/2022] Open
|
10
|
Grgurevic S, Montilla-Perez P, Bradbury A, Gilhodes J, Queille S, Pelofy S, Bancaud A, Filleron T, Ysebaert L, Récher C, Laurent G, Fournié JJ, Cazaux C, Quillet-Mary A, Hoffmann JS. DNA polymerase ν gene expression influences fludarabine resistance in chronic lymphocytic leukemia independently of p53 status. Haematologica 2018; 103:1038-1046. [PMID: 29567785 PMCID: PMC6058778 DOI: 10.3324/haematol.2017.174243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 03/16/2018] [Indexed: 01/09/2023] Open
Abstract
Alteration in the DNA replication, repair or recombination processes is a highly relevant mechanism of genomic instability. Despite genomic aberrations manifested in hematologic malignancies, such a defect as a source of biomarkers has been underexplored. Here, we investigated the prognostic value of expression of 82 genes involved in DNA replication-repair-recombination in a series of 99 patients with chronic lymphocytic leukemia without detectable 17p deletion or TP53 mutation. We found that expression of the POLN gene, encoding the specialized DNA polymerase ν (Pol ν) correlates with time to relapse after first-line therapy with fludarabine. Moreover, we found that POLN was the only gene up-regulated in primary patients’ lymphocytes when exposed in vitro to proliferative and pro-survival stimuli. By using two cell lines that were sequentially established from the same patient during the course of the disease and Pol ν knockout mouse embryonic fibroblasts, we reveal that high relative POLN expression is important for DNA synthesis and cell survival upon fludarabine treatment. These findings suggest that Pol ν could influence therapeutic resistance in chronic lymphocytic leukemia. (Patients’ samples were obtained from the CLL 2007 FMP clinical trial registered at: clinicaltrials.gov identifer: 00564512).
Collapse
Affiliation(s)
- Srdana Grgurevic
- CRCT, Université de Toulouse, Inserm, CNRS, UPS, France; Equipe Labellisée Ligue Contre le Cancer, Laboratoire d'Excellence Toulouse Cancer, France
| | - Patricia Montilla-Perez
- CRCT, Université de Toulouse, Inserm, CNRS, UPS, France; Equipe Labellisée Ligue Contre le Cancer, Laboratoire d'Excellence Toulouse Cancer, France
| | | | - Julia Gilhodes
- Clinical Trials Office - Biostatistics Unit, Institute Claudius Regaud, Institute Universitaire du Cancer Toulouse-Oncopole (IUCT-O), Toulouse, France
| | - Sophie Queille
- CRCT, Université de Toulouse, Inserm, CNRS, UPS, France; Equipe Labellisée Ligue Contre le Cancer, Laboratoire d'Excellence Toulouse Cancer, France
| | | | | | - Thomas Filleron
- Clinical Trials Office - Biostatistics Unit, Institute Claudius Regaud, Institute Universitaire du Cancer Toulouse-Oncopole (IUCT-O), Toulouse, France
| | - Loïc Ysebaert
- Department of Hematology, Institut Universitaire du Cancer Toulouse-Oncopole, Toulouse, France
| | - Christian Récher
- Department of Hematology, Institut Universitaire du Cancer Toulouse-Oncopole, Toulouse, France
| | - Guy Laurent
- Department of Hematology, Institut Universitaire du Cancer Toulouse-Oncopole, Toulouse, France
| | - Jean-Jacques Fournié
- CRCT, Université de Toulouse, Inserm, CNRS, UPS, France; Equipe Labellisée Ligue Contre le Cancer, Laboratoire d'Excellence Toulouse Cancer, France
| | - Christophe Cazaux
- CRCT, Université de Toulouse, Inserm, CNRS, UPS, France; Equipe Labellisée Ligue Contre le Cancer, Laboratoire d'Excellence Toulouse Cancer, France
| | - Anne Quillet-Mary
- CRCT, Université de Toulouse, Inserm, CNRS, UPS, France; Equipe Labellisée Ligue Contre le Cancer, Laboratoire d'Excellence Toulouse Cancer, France
| | - Jean-Sébastien Hoffmann
- CRCT, Université de Toulouse, Inserm, CNRS, UPS, France; Equipe Labellisée Ligue Contre le Cancer, Laboratoire d'Excellence Toulouse Cancer, France
| |
Collapse
|
11
|
Epigenetic Alterations in Epstein-Barr Virus-Associated Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 879:39-69. [PMID: 26659263 DOI: 10.1007/978-3-319-24738-0_3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Klein E, Nagy N, Rasul E. Modification of cell differentiation, one of the mechanisms in the surveillance of malignancy. Cancer Immunol Res 2015; 3:97-102. [PMID: 25660552 DOI: 10.1158/2326-6066.cir-14-0238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Most humans carry the potentially life-endangering Epstein-Barr virus (EBV). The immediate danger after infection is imposed by proliferation of the B cells that carry the viral genome. Although a number of different cell types can be infected with EBV, B lymphocytes are exceptionally sensitive; they express a set of virus-encoded proteins, which collaborate with host proteins to induce proliferation. This phenomenon can be demonstrated in vitro with experimentally infected B cells. These viral genes are expressed only in B lymphocytes and are restricted to a defined differentiation stage. This limitation is of high importance for the maintenance of the controlled EBV-carrier state of humans. The emergence of EBV-induced B-cell malignancies is counteracted by highly efficient immunologic mechanisms. Recognition of EBV-transformed immunoblasts in an MHC class I-restricted manner by cytotoxic CD8 T cells and, to a lesser extent, by CD4 T cells, is thought to play the major role. The in vitro experimental results are in accordance with the emergence of EBV(+) B-cell malignancies in immunosuppressive conditions. In this Masters primer, we emphasize that in addition to eliminating B cells that carry the virus genome, the regulatory circuit of the immune response also operates in surveillance, particularly in the early phase of infection. This mechanism involves T-cell-mediated regulation of B-cell differentiation. Because of the strict dependence of the viral growth program on the expression of host cell factors, altering the differentiation state can curb the proliferation of B cells that harbor the viral genome.
Collapse
Affiliation(s)
- Eva Klein
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Stockholm, Sweden.
| | - Noemi Nagy
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Stockholm, Sweden
| | - Eahsan Rasul
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
13
|
Agathangelidis A, Scarfò L, Barbaglio F, Apollonio B, Bertilaccio MTS, Ranghetti P, Ponzoni M, Leone G, De Pascali V, Pecciarini L, Ghia P, Caligaris-Cappio F, Scielzo C. Establishment and Characterization of PCL12, a Novel CD5+ Chronic Lymphocytic Leukaemia Cell Line. PLoS One 2015; 10:e0130195. [PMID: 26110819 PMCID: PMC4481539 DOI: 10.1371/journal.pone.0130195] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/17/2015] [Indexed: 12/20/2022] Open
Abstract
Immortalized cell lines representative of chronic lymphocytic leukemia (CLL) can assist in understanding disease pathogenesis and testing new therapeutic agents. At present, very few representative cell lines are available. We here describe the characterization of a new cell line (PCL12) that grew spontaneously from the peripheral blood (PB) of a CLL patient with progressive disease and EBV infection. The CLL cell origin of PCL12 was confirmed after the alignment of its IGH sequence against the “original” clonotypic sequence. The IGH gene rearrangement was truly unmutated and no CLL-related cytogenetic or genetic lesions were detected. PCL12 cells express CD19, CD20, CD5, CD23, low levels of IgM and IgD and the poor-outcome-associated prognostic markers CD38, ZAP70 and TCL1. In accordance with its aggressive phenotype the cell line is inactive in terms of LYN and HS1 phosphorylation. BcR signalling pathway is constitutively active and anergic in terms of p-ERK and Calcium flux response to α-IgM stimulation. PCL12 cells strongly migrate in vitro in response to SDF-1 and form clusters. Finally, they grow rapidly and localize in all lymphoid organs when xenotrasplanted in Rag2-/-γc-/- mice. PCL12 represents a suitable preclinical model for testing pharmacological agents.
Collapse
MESH Headings
- Animals
- CD5 Antigens/metabolism
- Cell Line, Tumor
- Gene Rearrangement
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Mice
- Neoplasm Transplantation
- Phenotype
- ZAP-70 Protein-Tyrosine Kinase/metabolism
Collapse
Affiliation(s)
- Andreas Agathangelidis
- IRCCS San Raffaele Scientific Institute, Division of Experimental Oncology, Unit of Lymphoid Malignancies, Milano, Italy
- IRCCS San Raffaele Scientific Institute, Division of Experimental Oncology, Unit of B Cell Neoplasia, Milano, Italy
| | - Lydia Scarfò
- Università Vita-Salute San Raffaele, Milano, Italy
- IRCCS San Raffaele Scientific Institute, Division of Experimental Oncology, Unit of B Cell Neoplasia, Milano, Italy
- IRCCS San Raffaele Scientific Institute, Lymphoma Unit, Department of Onco-Hematology, Milan, Italy
| | - Federica Barbaglio
- IRCCS San Raffaele Scientific Institute, Division of Experimental Oncology, Unit of Lymphoid Malignancies, Milano, Italy
| | - Benedetta Apollonio
- IRCCS San Raffaele Scientific Institute, Division of Experimental Oncology, Unit of Lymphoid Malignancies, Milano, Italy
| | - Maria Teresa Sabrina Bertilaccio
- IRCCS San Raffaele Scientific Institute, Division of Experimental Oncology, Unit of Lymphoid Malignancies, Milano, Italy
- Università Vita-Salute San Raffaele, Milano, Italy
| | - Pamela Ranghetti
- IRCCS San Raffaele Scientific Institute, Division of Experimental Oncology, Unit of Lymphoid Malignancies, Milano, Italy
| | - Maurilio Ponzoni
- IRCCS San Raffaele Scientific Institute, Lymphoma Unit, Department of Onco-Hematology, Milan, Italy
- IRCCS San Raffaele Scientific Institute, Pathology Unit, Milan, Italy
| | - Gabriella Leone
- IRCCS San Raffaele Scientific Institute, Lymphoma Unit, Department of Onco-Hematology, Milan, Italy
- IRCCS San Raffaele Scientific Institute, Pathology Unit, Milan, Italy
| | | | | | - Paolo Ghia
- Università Vita-Salute San Raffaele, Milano, Italy
- IRCCS San Raffaele Scientific Institute, Division of Experimental Oncology, Unit of B Cell Neoplasia, Milano, Italy
- IRCCS San Raffaele Scientific Institute, Lymphoma Unit, Department of Onco-Hematology, Milan, Italy
| | - Federico Caligaris-Cappio
- IRCCS San Raffaele Scientific Institute, Division of Experimental Oncology, Unit of Lymphoid Malignancies, Milano, Italy
- Università Vita-Salute San Raffaele, Milano, Italy
- IRCCS San Raffaele Scientific Institute, Lymphoma Unit, Department of Onco-Hematology, Milan, Italy
| | - Cristina Scielzo
- IRCCS San Raffaele Scientific Institute, Division of Experimental Oncology, Unit of Lymphoid Malignancies, Milano, Italy
- Università Vita-Salute San Raffaele, Milano, Italy
- * E-mail:
| |
Collapse
|