1
|
Lin F, Ding Y, Liang X. Comparative Proteomic and Phosphoproteomic Analyses Reveal Molecular Signatures of Myocardial Infarction and Transverse Aortic Constriction in Aged Mouse Models. Cardiol Res Pract 2024; 2024:9395213. [PMID: 39502510 PMCID: PMC11535427 DOI: 10.1155/2024/9395213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 09/11/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
In the elderly population, coronary heart disease (CHD) often coexists with hypertension. However, excessive blood pressure reduction can paradoxically increase the incidence of adverse events. Understanding the molecular mechanisms underlying hypertension and CHD in aged populations is crucial for developing targeted therapies and improving clinical outcomes. In this study, we constructed myocardial infarction (MI) and transverse aortic constriction (TAC) modelsY in aged mice to simulate the disease states of CHD and hypertension, respectively. Using integrated proteomic and phosphoproteomic analyses, we investigated the molecular signatures associated with MI and TAC in these models. Our aim was to identify key molecules involved in these conditions and to understand their unique and shared characteristics. Through our comprehensive proteomic and phosphoproteomic analysis, we identified a total of 1583 proteins and 232 phosphorylated proteins. We observed significant upregulation of heart disease markers such as Myh7, Xirp2, and Acta1, indicating the successful establishment of the MI and TAC models. The overlapped differentially expressed proteins (DEPs) and differentially phosphorylated proteins (DPPs) in MI and TAC were involved in heart failure-related processes including cardiac muscle contraction and hypertrophic cardiomyopathy, further supporting the validity of the models. Among the DEPs, Ppme1 was upregulated in the TAC model but downregulated in the MI model, while Sec31a and Gm56451 displayed the opposite expression patterns. Among the DPPs, Ablim1 and Atp2a2 were found to be significantly upregulated in the TAC model, whereas their expression was markedly reduced in the MI model. In addition, five other DPPs, including REV_Q3TAY5, Cbx3, PITPNB, Eif4b, and A0A1Y7VP73, were elevated in the MI model but decreased in the TAC model. In conclusion, these findings suggest that MI and TAC not only share certain molecular features but also retain their unique characteristics, providing potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Fang Lin
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Tongji University, Shanghai, China
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yue Ding
- Department of Organ Transplantation, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xiaoting Liang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Tongji University, Shanghai, China
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Liu ZY, Lin LC, Liu ZY, Yang JJ, Tao H. m6A epitranscriptomic and epigenetic crosstalk in cardiac fibrosis. Mol Ther 2024; 32:878-889. [PMID: 38311850 PMCID: PMC11163196 DOI: 10.1016/j.ymthe.2024.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/27/2023] [Accepted: 01/31/2024] [Indexed: 02/06/2024] Open
Abstract
Cardiac fibrosis, a crucial pathological characteristic of various cardiac diseases, presents a significant treatment challenge. It involves the deposition of the extracellular matrix (ECM) and is influenced by genetic and epigenetic factors. Prior investigations have predominantly centered on delineating the substantial influence of epigenetic and epitranscriptomic mechanisms in driving the progression of fibrosis. Recent studies have illuminated additional avenues for modulating the progression of fibrosis, offering potential solutions to the challenging issues surrounding fibrosis treatment. In the context of cardiac fibrosis, an intricate interplay exists between m6A epitranscriptomic and epigenetics. This interplay governs various pathophysiological processes: mitochondrial dysfunction, mitochondrial fission, oxidative stress, autophagy, apoptosis, pyroptosis, ferroptosis, cell fate switching, and cell differentiation, all of which affect the advancement of cardiac fibrosis. In this comprehensive review, we meticulously analyze pertinent studies, emphasizing the interplay between m6A epitranscriptomics and partial epigenetics (including histone modifications and noncoding RNA), aiming to provide novel insights for cardiac fibrosis treatment.
Collapse
Affiliation(s)
- Zhi-Yan Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, P.R. China
| | - Li-Chan Lin
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, P.R. China
| | - Zhen-Yu Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, P.R. China
| | - Jing-Jing Yang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, P.R. China.
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, P.R. China; Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, P.R. China; Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China.
| |
Collapse
|
3
|
Carvalho RA. The glycolytic pathway to heart failure. GLYCOLYSIS 2024:235-266. [DOI: 10.1016/b978-0-323-91704-9.00010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Wang XQ, Yuan F, Yu BR. Whole-Exome Sequencing Reveals Mutational Signature of Hypertrophic Cardiomyopathy. Int J Gen Med 2023; 16:4617-4628. [PMID: 37850193 PMCID: PMC10577257 DOI: 10.2147/ijgm.s422598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/21/2023] [Indexed: 10/19/2023] Open
Abstract
Background Hypertrophic cardiomyopathy (HCM) is an extremely insidious and lethal disease caused by genetic variation. It has been studied for nearly 70 years since its discovery, but its cause of the disease remains a mystery. This study is aimed to explore the genetic pathogenesis of HCM in order to provide new insight for the diagnosis and treatment of HCM. Methods Patients with HCM at 4 hospitals from January 1, 2020, to December 31, 2021, were collected. Peripheral blood of these patients was collected for whole exome sequencing. Moreover, data on the HCM transcriptome were analyzed in the GEO database. Results Totally, 14 patients were enrolled, and 6 single-nucleotide variation (SNV) mutant genes represented by MUC12 were observed. Most of the gene mutations in HCM patients were synonymous and non-synonymous, and the types of base mutations were mainly C > T and G > A. Copy number variants (CNVs) predominantly occurred on chromosome 1 in HCM patients. Furthermore, we found that the only ATP2A2 gene was differentially expressed in 3 groups of transcriptome data in GEO database, and the presence of ATP2A2 mutation in 10 samples was observed in this study. Conclusion In summary, 7 mutated genes represented by MUC12 and ATP2A2 were found in this study, which may provide novel insights into the pathogenic mechanism of HCM.
Collapse
Affiliation(s)
- Xi-Qin Wang
- Department of Internal Medicine, Yuhua Yunfang Integrated Traditional Chinese and Western Medicine Clinic, Shijiazhuang, Hebei, 050023, People’s Republic of China
| | - Fang Yuan
- Department of Cardiovascular Medicine, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, 450000, People’s Republic of China
| | - Bao-Rui Yu
- Department of Cardiovascular Medicine, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, 450000, People’s Republic of China
| |
Collapse
|
5
|
Mhatre I, Abdelhalim H, Degroat W, Ashok S, Liang BT, Ahmed Z. Functional mutation, splice, distribution, and divergence analysis of impactful genes associated with heart failure and other cardiovascular diseases. Sci Rep 2023; 13:16769. [PMID: 37798313 PMCID: PMC10556087 DOI: 10.1038/s41598-023-44127-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 10/04/2023] [Indexed: 10/07/2023] Open
Abstract
Cardiovascular disease (CVD) is caused by a multitude of complex and largely heritable conditions. Identifying key genes and understanding their susceptibility to CVD in the human genome can assist in early diagnosis and personalized treatment of the relevant patients. Heart failure (HF) is among those CVD phenotypes that has a high rate of mortality. In this study, we investigated genes primarily associated with HF and other CVDs. Achieving the goals of this study, we built a cohort of thirty-five consented patients, and sequenced their serum-based samples. We have generated and processed whole genome sequence (WGS) data, and performed functional mutation, splice, variant distribution, and divergence analysis to understand the relationships between each mutation type and its impact. Our variant and prevalence analysis found FLNA, CST3, LGALS3, and HBA1 linked to many enrichment pathways. Functional mutation analysis uncovered ACE, MME, LGALS3, NR3C2, PIK3C2A, CALD1, TEK, and TRPV1 to be notable and potentially significant genes. We discovered intron, 5' Flank, 3' UTR, and 3' Flank mutations to be the most common among HF and other CVD genes. Missense mutations were less common among HF and other CVD genes but had more of a functional impact. We reported HBA1, FADD, NPPC, ADRB2, ADBR1, MYH6, and PLN to be consequential based on our divergence analysis.
Collapse
Affiliation(s)
- Ishani Mhatre
- Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson Street, New Brunswick, NJ, 08901, USA
| | - Habiba Abdelhalim
- Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson Street, New Brunswick, NJ, 08901, USA
| | - William Degroat
- Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson Street, New Brunswick, NJ, 08901, USA
| | - Shreya Ashok
- Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson Street, New Brunswick, NJ, 08901, USA
| | - Bruce T Liang
- Pat and Jim Calhoun Cardiology Center, UConn Health, 263 Farmington Ave, Farmington, CT, USA
- UConn School of Medicine, University of Connecticut, 263 Farmington Ave, Farmington, CT, USA
| | - Zeeshan Ahmed
- Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson Street, New Brunswick, NJ, 08901, USA.
- Department of Genetics and Genome Sciences, UConn Health, 400 Farmington Ave, Farmington, CT, USA.
- Department of Medicine/Cardiovascular Disease and Hypertension, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences, 125 Paterson St, New Brunswick, NJ, USA.
| |
Collapse
|
6
|
Kho C. Targeting calcium regulators as therapy for heart failure: focus on the sarcoplasmic reticulum Ca-ATPase pump. Front Cardiovasc Med 2023; 10:1185261. [PMID: 37534277 PMCID: PMC10392702 DOI: 10.3389/fcvm.2023.1185261] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/06/2023] [Indexed: 08/04/2023] Open
Abstract
Impaired myocardial Ca2+ cycling is a critical contributor to the development of heart failure (HF), causing changes in the contractile function and structure remodeling of the heart. Within cardiomyocytes, the regulation of sarcoplasmic reticulum (SR) Ca2+ storage and release is largely dependent on Ca2+ handling proteins, such as the SR Ca2+ ATPase (SERCA2a) pump. During the relaxation phase of the cardiac cycle (diastole), SERCA2a plays a critical role in transporting cytosolic Ca2+ back to the SR, which helps to restore both cytosolic Ca2+ levels to their resting state and SR Ca2+ content for the next contraction. However, decreased SERCA2a expression and/or pump activity are key features in HF. As a result, there is a growing interest in developing therapeutic approaches to target SERCA2a. This review provides an overview of the regulatory mechanisms of the SERCA2a pump and explores potential strategies for SERCA2a-targeted therapy, which are being investigated in both preclinical and clinical studies.
Collapse
Affiliation(s)
- Changwon Kho
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
7
|
Bao J, Zhang C, Chen J, Xuan H, Wang C, Wang S, Yin J, Liu Y, Li D, Xu T. LncRNA JPX targets SERCA2a to mitigate myocardial ischemia/reperfusion injury by binding to EZH2. Exp Cell Res 2023; 427:113572. [PMID: 36990422 DOI: 10.1016/j.yexcr.2023.113572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/21/2023] [Accepted: 03/26/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are pivotal regulators in heart disease, including myocardial ischemia/reperfusion (I/R) injury. LncRNA just proximal to XIST (JPX) is a molecular switch for X-chromosome inactivation. Enhancer of zeste homolog 2 (EZH2) is a core catalytic subunit of the polycomb repressive complex 2 (PRC2), which is involved in chromatin compaction and gene repression. This study aims to explore the mechanism of JPX regulating the expression of Sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a (SERCA2a) by binding to EZH2 and preventing cardiomyocyte I/R damage in vivo and in vitro. METHODS The adenovirus transfection technology was utilized before establishing the mouse myocardial I/R or HL1 cells hypoxia/reoxygenation injury model. Functional studies performed western blotting, qRT-PCR, ELISA, echocardiography, TTC-Evans blue staining, and TUNEL staining. Western blotting was used to determine the expression of EZH2, SERCA2a, anti-apoptosis protein Bcl2/Bax, cleaved-caspase 3/caspase 3, and cleaved-caspase 9/caspase 9. Fluorescence in situ hybridization (FISH) and native RNA immunoprecipitations (RIP) assays were employed to verify the interaction between JPX and EZH2. Chromatin immunoprecipitation (ChIP) assay was used to further explore the relationship between EZH2 and SERCA2a on the molecular level. RESULTS JPX overexpression alleviated cardiomyocyte apoptosis in vivo and in vitro, reduced the I/R-induced infarct size in mouse hearts, lowered the serum cTnI concentration, and promoted mouse cardiac systolic function. The evidence implies that JPX can alleviate I/R-induced acute cardiac damage. Mechanistically, the FISH and RIP assays showed that JPX could bind to EZH2. The ChIP assay revealed EZH2 enrichment at the promoter region of SERCA2a. Both the EZH2 and H3K27me3 levels at the promoter region of SERCA2a were reduced in the JPX overexpression group compared to those in the Ad-EGFP group (P < 0.01). CONCLUSIONS LncRNA JPX is directly bound to EZH2 and reduced the EZH2-mediated H3K27me3 in the SERCA2a promoter region, protecting the heart from acute myocardial I/R injury. Therefore, JPX might be a potential therapeutic target for I/R injury.
Collapse
|
8
|
Alur V, Raju V, Vastrad B, Vastrad C, Kavatagimath S, Kotturshetti S. Bioinformatics Analysis of Next Generation Sequencing Data Identifies Molecular Biomarkers Associated With Type 2 Diabetes Mellitus. Clin Med Insights Endocrinol Diabetes 2023; 16:11795514231155635. [PMID: 36844983 PMCID: PMC9944228 DOI: 10.1177/11795514231155635] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 01/19/2023] [Indexed: 02/23/2023] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is the most common metabolic disorder. The aim of the present investigation was to identify gene signature specific to T2DM. Methods The next generation sequencing (NGS) dataset GSE81608 was retrieved from the gene expression omnibus (GEO) database and analyzed to identify the differentially expressed genes (DEGs) between T2DM and normal controls. Then, Gene Ontology (GO) and pathway enrichment analysis, protein-protein interaction (PPI) network, modules, miRNA (micro RNA)-hub gene regulatory network construction and TF (transcription factor)-hub gene regulatory network construction, and topological analysis were performed. Receiver operating characteristic curve (ROC) analysis was also performed to verify the prognostic value of hub genes. Results A total of 927 DEGs (461 were up regulated and 466 down regulated genes) were identified in T2DM. GO and REACTOME results showed that DEGs mainly enriched in protein metabolic process, establishment of localization, metabolism of proteins, and metabolism. The top centrality hub genes APP, MYH9, TCTN2, USP7, SYNPO, GRB2, HSP90AB1, UBC, HSPA5, and SQSTM1 were screened out as the critical genes. ROC analysis provides prognostic value of hub genes. Conclusion The potential crucial genes, especially APP, MYH9, TCTN2, USP7, SYNPO, GRB2, HSP90AB1, UBC, HSPA5, and SQSTM1, might be linked with risk of T2DM. Our study provided novel insights of T2DM into genetics, molecular pathogenesis, and novel therapeutic targets.
Collapse
Affiliation(s)
- Varun Alur
- Department of Endocrinology, J.J.M
Medical College, Davanagere, Karnataka, India
| | - Varshita Raju
- Department of Obstetrics and
Gynecology, J.J.M Medical College, Davanagere, Karnataka, India
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry,
K.L.E. College of Pharmacy, Gadag, Karnataka, India
| | | | - Satish Kavatagimath
- Department of Pharmacognosy, K.L.E.
College of Pharmacy, Belagavi, Karnataka, India
| | | |
Collapse
|
9
|
Neres-Santos RS, Armentano GM, da Silva JV, Falconi CA, Carneiro-Ramos MS. Progress and Challenges of Understanding Cardiorenal Syndrome Type 3. Rev Cardiovasc Med 2023; 24:8. [PMID: 39076878 PMCID: PMC11270482 DOI: 10.31083/j.rcm2401008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 07/31/2024] Open
Abstract
The pathologies of the kidney and heart have instigated a large number of researchers around the world to try to better understand what the exact connectors responsible for the emergence and establishment of these diseases are. The classification of these pathologies into different types of cardiorenal syndromes (CRSs) over the last 15 years has greatly contributed to understanding pathophysiological and diagnostic aspects, as well as treatment strategies. However, with the advent of new technologies classified as "Omics", a new range of knowledge and new possibilities have opened up in order to effectively understand the intermediaries between the kidney-heart axis. The universe of micro-RNAs (miRNAs), epigenetic factors, and components present in extracellular vesicles (EVs) have been protagonists in studying different types of CRSs. Thus, the new challenge that is imposed is to select and link the large amount of information generated from the use of large-scale analysis techniques. The present review seeks to present some of the future perspectives related to understanding CRSs, with an emphasis on CRS type 3.
Collapse
Affiliation(s)
- Raquel Silva Neres-Santos
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, 09210-170 Santo André, SP, Brazil
| | - Giovana Marchini Armentano
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, 09210-170 Santo André, SP, Brazil
| | - Jéssica Verônica da Silva
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, 09210-170 Santo André, SP, Brazil
| | - Carlos Alexandre Falconi
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, 09210-170 Santo André, SP, Brazil
| | - Marcela Sorelli Carneiro-Ramos
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, 09210-170 Santo André, SP, Brazil
| |
Collapse
|
10
|
Dube P, Khalaf FK, DeRiso A, Mohammed CJ, Connolly JA, Battepati D, Lad A, Breidenbach JD, Kleinhenz AL, Khatib-Shahidi B, Patel M, Tassavvor I, Gohara AF, Malhotra D, Morgan EE, Haller ST, Kennedy DJ. Cardioprotective Role for Paraoxonase-1 in Chronic Kidney Disease. Biomedicines 2022; 10:2301. [PMID: 36140402 PMCID: PMC9496500 DOI: 10.3390/biomedicines10092301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Paraoxonase-1 (PON-1) is a hydrolytic enzyme associated with HDL, contributing to its anti-inflammatory, antioxidant, and anti-atherogenic properties. Deficiencies in PON-1 activity result in oxidative stress and detrimental clinical outcomes in the context of chronic kidney disease (CKD). However, it is unclear if a decrease in PON-1 activity is mechanistically linked to adverse cardiovascular events in CKD. We investigated the hypothesis that PON-1 is cardioprotective in a Dahl salt-sensitive model of hypertensive renal disease. Experiments were performed on control Dahl salt-sensitive rats (SSMcwi, hereafter designated SS-WT rats) and mutant PON-1 rats (SS-Pon1em1Mcwi, hereafter designated SS-PON-1 KO rats) generated using CRISPR gene editing technology. Age-matched 10-week-old SS and SS-PON-1 KO male rats were maintained on high-salt diets (8% NaCl) for five weeks to induce hypertensive renal disease. Echocardiography showed that SS-PON-1 KO rats but not SS-WT rats developed compensated left ventricular hypertrophy after only 4 weeks on the high-salt diet. RT-PCR analysis demonstrated a significant increase in the expression of genes linked to cardiac hypertrophy, inflammation, and fibrosis, as well as a significant decrease in genes essential to left ventricular function in SS-PON-1 KO rats compared to SS-WT rats. A histological examination also revealed a significant increase in cardiac fibrosis and immune cell infiltration in SS-PON-1 KO rats, consistent with their cardiac hypertrophy phenotype. Our data suggest that a loss of PON-1 in the salt-sensitive hypertensive model of CKD leads to increased cardiac inflammation and fibrosis as well as a molecular and functional cardiac phenotype consistent with compensated left ventricular hypertrophy.
Collapse
Affiliation(s)
- Prabhatchandra Dube
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Fatimah K. Khalaf
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43606, USA
- Department of Clinical Pharmacy, University of Alkafeel, Najaf 54001, Iraq
| | - Armelle DeRiso
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Chrysan J. Mohammed
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Jacob A. Connolly
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Dhanushya Battepati
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Apurva Lad
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Joshua D. Breidenbach
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Andrew L. Kleinhenz
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Bella Khatib-Shahidi
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Mitra Patel
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Iman Tassavvor
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Amira F. Gohara
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Deepak Malhotra
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Eric E. Morgan
- Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA
| | - Steven T. Haller
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43606, USA
| | - David J. Kennedy
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
11
|
Yeh HH, Chang YM, Chang YW, Lu MYJ, Chen YH, Lee CC, Chen CC. Multiomic analyses reveal enriched glycolytic processes in β-myosin heavy chain-expressed cardiomyocytes in early cardiac hypertrophy. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2022; 1:100011. [PMID: 39801720 PMCID: PMC11708374 DOI: 10.1016/j.jmccpl.2022.100011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/24/2022] [Accepted: 06/16/2022] [Indexed: 01/16/2025]
Abstract
Background Cardiac pressure overload induces cardiac hypertrophy and eventually leads to heart failure. One distinct feature of pathological cardiac hypertrophy is fetal-gene re-expression, but not every cardiomyocyte exhibits fetal gene re-expression in the diseased heart. Adult cardiomyocytes are terminally differentiated cells, so we do not know how the heterogeneity is determined and whether the differential fetal-gene reprogramming indicates a different degree of remodeling among cardiomyocytes. We hypothesized that fetal gene-expressed cardiomyocytes show more pathological features in the pressure-overloaded heart. Results We induced pressure overload in mice by transverse aortic constriction (TAC) and observed a cardiomyocyte population with expression of β-myosin heavy chain (βMHC, a fetal gene encoded by Myh7) after TAC for 3 days. On transcriptomic and proteomic analyses, βMHC-expressed cardiomyocytes of 3-day TAC hearts were enriched in genes in cardiomyopathy-associated pathways and glycolytic processes. Moreover, results of immunoblotting and enzyme activity assay suggested higher glycolytic activity in βMHC-expressed than non-expressed cardiomyocytes. When we inhibited the glycolytic flux by 2-deoxy-d-glucose, a widely used glycolysis inhibitor, the number of βMHC-expressed cardiomyocytes was reduced, and the level of TEA domain family member 1 (TEAD1), a transcriptional enhancer, was decreased. Also, our spatial transcriptomic results demonstrated that naïve and 3-day TAC hearts had fetal-gene-rich tissue domains that were enriched in pathways in extracellular matrix organization and tissue remodeling. As well, gene levels of glycolytic enzymes were higher in Myh7-positive than Myh7-negative domains. Conclusions Our data suggest that βMHC-expressed cardiomyocytes progress to pathological remodeling in the early stages of cardiac hypertrophy. In addition, the diverse glycolytic activity among cardiomyocytes might play a role in regulating gene expression via TEAD1 signaling.
Collapse
Affiliation(s)
- Hsiao-hui Yeh
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Yao-Ming Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Wang Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Mei-Yeh Jade Lu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-Hua Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Chia-Che Lee
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Chien-Chang Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| |
Collapse
|
12
|
Yan F, Chen Z, Cui W. H3K9me2 regulation of BDNF expression via G9a partakes in the progression of heart failure. BMC Cardiovasc Disord 2022; 22:182. [PMID: 35439934 PMCID: PMC9020036 DOI: 10.1186/s12872-022-02621-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/11/2022] [Indexed: 11/23/2022] Open
Abstract
Background Heart disease is a major cause of mortality in developed countries. The associated pathology is mainly characterized by the loss of cardiomyocytes that contributes to heart failure (HF). This study aims to investigate the mechanism of euchromatic histone lysine methyltransferase 2 (EHMT2, also term G9a) in HF in rats. Methods Differentially expressed mRNAs in HF were screened using GEO database. Sera from subjects with or without HF were collected, and PCR was performed to detect the G9a expression. G9a was downregulated in cardiomyocytes exposed to oxygen–glucose deprivation (OGD), followed by CCK8, flow cytometry, colorimetric method, and western blot assays. Established HF rats were delivered with lentiviral vectors carrying sh-G9a, and TTC staining, HE staining, TUNEL, ELISA, and western blot were performed. The regulation of G9a on the downstream target BDNF was investigated by RT-qPCR, Western blot, and ChIP-qPCR. Finally, rescue experiments were carried out to substantiate the effect of G9a on cardiomyocyte apoptosis and injury via the BDNF/TrkB axis. Results G9a was overexpressed, whereas BDNF was downregulated in HF. Knockdown of G9a inhibited apoptosis and injury in OGD-treated cardiomyocytes and attenuated the extent of HF and myocardial injury in rats. Silencing of G9a promoted BDNF transcription by repressing H3K9me2 modification of the BDNF promoter. Further depletion of BDNF partially reversed the effect of sh-G9a in alleviating cardiomyocyte apoptosis and injury by inhibiting the TrkB signaling pathway. Conclusion G9a inhibits BDNF expression through H3K9me2 modification, thereby impairing the TrkB signaling pathway and exacerbating the development of HF. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-022-02621-w.
Collapse
Affiliation(s)
- Fang Yan
- Department of Cardiac Surgery, Hebei Medical University, Shijiazhuang, 050011, Hebei, People's Republic of China.,Department of Cardiac Surgery, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Ziying Chen
- Department of Cardiac Surgery, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, 050000, Hebei, People's Republic of China.
| | - Wei Cui
- Department of Cardiology, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, 050000, Hebei, People's Republic of China.
| |
Collapse
|
13
|
Li Y, Karim MR, Wang B, Peng J. Effects of Green Tea (-)-Epigallocatechin-3-Gallate (EGCG) on Cardiac Function - A Review of the Therapeutic Mechanism and Potentials. Mini Rev Med Chem 2022; 22:2371-2382. [PMID: 35345998 DOI: 10.2174/1389557522666220328161826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/10/2022] [Accepted: 02/09/2022] [Indexed: 11/22/2022]
Abstract
Heart disease, the leading cause of death globally, refers to various illnesses that affect heart structure and function. Specific abnormalities affecting cardiac muscle contractility and remodeling and common factors including oxidative stress, inflammation, and apoptosis underlie the pathogenesis of heart diseases. Epidemiology studies have associated green tea consumption with lower morbidity and mortality of cardiovascular diseases, including heart and blood vessel dysfunction. Among the various compounds found in green tea, catechins are believed to play a significant role in producing benefits to cardiovascular health. Comprehensive literature reviews have been published to summarize the tea catechins' antioxidative, anti-inflammatory, and anti-apoptosis effects in the context of various diseases, such as cardiovascular diseases, cancers, and metabolic diseases. However, recent studies on tea catechins, especially the most abundant (-)-Epigallocatechin-3-Gallate (EGCG), revealed their capabilities in regulating cardiac muscle contraction by directly altering myofilament Ca2+ sensitivity on force development and Ca2+ ion handling in cardiomyocytes under both physiological and pathological conditions. In vitro and in vivo data also demonstrated that green tea extract or EGCG protected or rescued cardiac function, independent of their well-known effects against oxidative stress and inflammation. This minireview will focus on the specific effects of tea catechins on heart muscle contractility at the molecular and cellular level, revisit their effects on oxidative stress and inflammation in a variety of heart diseases, and discuss EGCG's potential as one of the lead compounds for new drug discovery for heart diseases.
Collapse
Affiliation(s)
- Yuejin Li
- Department of Biology, Morgan State University, Baltimore
| | | | - Buheng Wang
- Department of Biology, Morgan State University, Baltimore
| | - Jiangnan Peng
- Department of Biology, Morgan State University, Baltimore
- Department of Chemistry, Morgan State University, Baltimore
| |
Collapse
|
14
|
Kolur V, Vastrad B, Vastrad C, Kotturshetti S, Tengli A. Identification of candidate biomarkers and therapeutic agents for heart failure by bioinformatics analysis. BMC Cardiovasc Disord 2021; 21:329. [PMID: 34218797 PMCID: PMC8256614 DOI: 10.1186/s12872-021-02146-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Heart failure (HF) is a heterogeneous clinical syndrome and affects millions of people all over the world. HF occurs when the cardiac overload and injury, which is a worldwide complaint. The aim of this study was to screen and verify hub genes involved in developmental HF as well as to explore active drug molecules. METHODS The expression profiling by high throughput sequencing of GSE141910 dataset was downloaded from the Gene Expression Omnibus (GEO) database, which contained 366 samples, including 200 heart failure samples and 166 non heart failure samples. The raw data was integrated to find differentially expressed genes (DEGs) and were further analyzed with bioinformatics analysis. Gene ontology (GO) and REACTOME enrichment analyses were performed via ToppGene; protein-protein interaction (PPI) networks of the DEGs was constructed based on data from the HiPPIE interactome database; modules analysis was performed; target gene-miRNA regulatory network and target gene-TF regulatory network were constructed and analyzed; hub genes were validated; molecular docking studies was performed. RESULTS A total of 881 DEGs, including 442 up regulated genes and 439 down regulated genes were observed. Most of the DEGs were significantly enriched in biological adhesion, extracellular matrix, signaling receptor binding, secretion, intrinsic component of plasma membrane, signaling receptor activity, extracellular matrix organization and neutrophil degranulation. The top hub genes ESR1, PYHIN1, PPP2R2B, LCK, TP63, PCLAF, CFTR, TK1, ECT2 and FKBP5 were identified from the PPI network. Module analysis revealed that HF was associated with adaptive immune system and neutrophil degranulation. The target genes, miRNAs and TFs were identified from the target gene-miRNA regulatory network and target gene-TF regulatory network. Furthermore, receiver operating characteristic (ROC) curve analysis and RT-PCR analysis revealed that ESR1, PYHIN1, PPP2R2B, LCK, TP63, PCLAF, CFTR, TK1, ECT2 and FKBP5 might serve as prognostic, diagnostic biomarkers and therapeutic target for HF. The predicted targets of these active molecules were then confirmed. CONCLUSION The current investigation identified a series of key genes and pathways that might be involved in the progression of HF, providing a new understanding of the underlying molecular mechanisms of HF.
Collapse
Affiliation(s)
- Vijayakrishna Kolur
- Vihaan Heart Care & Super Specialty Centre, Vivekananda General Hospital, Deshpande Nagar, Hubli, Karnataka, 580029, India
| | - Basavaraj Vastrad
- Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka, 582103, India
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad, 580001, Karnataka, India.
| | - Shivakumar Kotturshetti
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad, 580001, Karnataka, India
| | - Anandkumar Tengli
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru and JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570015, India
| |
Collapse
|
15
|
Abstract
Alterations in cardiac energy metabolism contribute to the severity of heart failure. However, the energy metabolic changes that occur in heart failure are complex and are dependent not only on the severity and type of heart failure present but also on the co-existence of common comorbidities such as obesity and type 2 diabetes. The failing heart faces an energy deficit, primarily because of a decrease in mitochondrial oxidative capacity. This is partly compensated for by an increase in ATP production from glycolysis. The relative contribution of the different fuels for mitochondrial ATP production also changes, including a decrease in glucose and amino acid oxidation, and an increase in ketone oxidation. The oxidation of fatty acids by the heart increases or decreases, depending on the type of heart failure. For instance, in heart failure associated with diabetes and obesity, myocardial fatty acid oxidation increases, while in heart failure associated with hypertension or ischemia, myocardial fatty acid oxidation decreases. Combined, these energy metabolic changes result in the failing heart becoming less efficient (ie, a decrease in cardiac work/O2 consumed). The alterations in both glycolysis and mitochondrial oxidative metabolism in the failing heart are due to both transcriptional changes in key enzymes involved in these metabolic pathways, as well as alterations in NAD redox state (NAD+ and nicotinamide adenine dinucleotide levels) and metabolite signaling that contribute to posttranslational epigenetic changes in the control of expression of genes encoding energy metabolic enzymes. Alterations in the fate of glucose, beyond flux through glycolysis or glucose oxidation, also contribute to the pathology of heart failure. Of importance, pharmacological targeting of the energy metabolic pathways has emerged as a novel therapeutic approach to improving cardiac efficiency, decreasing the energy deficit and improving cardiac function in the failing heart.
Collapse
Affiliation(s)
- Gary D Lopaschuk
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada (G.D.L., Q.G.K.)
| | - Qutuba G Karwi
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada (G.D.L., Q.G.K.)
| | - Rong Tian
- Mitochondria and Metabolism Center, University of Washington, Seattle (R.T.)
| | - Adam R Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham (A.R.W.)
| | - E Dale Abel
- Division of Endocrinology and Metabolism, University of Iowa Carver College of Medicine, Iowa City (E.D.A.).,Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City (E.D.A.)
| |
Collapse
|
16
|
Kashyap S, Mukker A, Gupta D, Datta PK, Rappaport J, Jacobson JM, Ebert SN, Gupta MK. Antiretroviral Drugs Regulate Epigenetic Modification of Cardiac Cells Through Modulation of H3K9 and H3K27 Acetylation. Front Cardiovasc Med 2021; 8:634774. [PMID: 33898535 PMCID: PMC8062764 DOI: 10.3389/fcvm.2021.634774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Antiretroviral therapy (ART) has significantly reduced the rate of mortality in HIV infected population, but people living with HIV (PLWH) show higher rates of cardiovascular disease (CVD). However, the effect of antiretroviral (ARV) drug treatment on cardiac cells is not clear. In this study, we explored the effect of ARV drugs in cardiomyocyte epigenetic remodeling. Primary cardiomyocytes were treated with a combination of four ARV drugs (ritonavir, abacavir, atazanavir, and lamivudine), and epigenetic changes were examined. Our data suggest that ARV drugs treatment significantly reduces acetylation at H3K9 and H3K27 and promotes methylation at H3K9 and H3K27, which are histone marks for gene expression activation and gene repression, respectively. Besides, ARV drugs treatment causes pathological changes in the cell through increased production of reactive oxygen species (ROS) and cellular hypertrophy. Further, the expression of chromatin remodeling enzymes was monitored in cardiomyocytes treated with ARV drugs using PCR array. The PCR array data indicated that the expression of epigenetic enzymes was differentially regulated in the ARV drugs treated cardiomyocytes. Consistent with the PCR array result, SIRT1, SUV39H1, and EZH2 protein expression was significantly upregulated in ARV drugs treated cardiomyocytes. Furthermore, gene expression analysis of the heart tissue from HIV+ patients showed that the expression of SIRT1, SUV39H1, and EZH2 was up-regulated in patients with a history of ART. Additionally, we found that expression of SIRT1 can protect cardiomyocytes in presence of ARV drugs through reduction of cellular ROS and cellular hypertrophy. Our results reveal that ARV drugs modulate the epigenetic histone markers involved in gene expression, and play a critical role in histone deacetylation at H3K9 and H3K27 during cellular stress. This study may lead to development of novel therapeutic strategies for the treatment of CVD in PLWH.
Collapse
Affiliation(s)
- Shiridhar Kashyap
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Avni Mukker
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Deepti Gupta
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Prasun K Datta
- Division of Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Jay Rappaport
- Division of Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Jeffrey M Jacobson
- Department of Medicine, Center for AIDS Research, Case Medical Center, Case Western Reserve University and University Hospital, Cleveland, OH, United States
| | - Steven N Ebert
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Manish K Gupta
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
17
|
Abstract
Gene expression is needed for the maintenance of heart function under normal conditions and in response to stress. Each cell type of the heart has a specific program controlling transcription. Different types of stress induce modifications of these programs and, if prolonged, can lead to altered cardiac phenotype and, eventually, to heart failure. The transcriptional status of a gene is regulated by the epigenome, a complex network of DNA and histone modifications. Until a few years ago, our understanding of the role of the epigenome in heart disease was limited to that played by histone deacetylation. But over the last decade, the consequences for the maintenance of homeostasis in the heart and for the development of cardiac hypertrophy of a number of other modifications, including DNA methylation and hydroxymethylation, histone methylation and acetylation, and changes in chromatin architecture, have become better understood. Indeed, it is now clear that many levels of regulation contribute to defining the epigenetic landscape required for correct cardiomyocyte function, and that their perturbation is responsible for cardiac hypertrophy and fibrosis. Here, we review these aspects and draw a picture of what epigenetic modification may imply at the therapeutic level for heart failure.
Collapse
Affiliation(s)
- Roberto Papait
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy; Humanitas Clinical Research Center-IRCCS, Rozzano, Italy; Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Italy; and National Research Council of Italy, Institute of Genetics and Biomedical Research, Milan Unit, Rozzano, Italy
| | - Simone Serio
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy; Humanitas Clinical Research Center-IRCCS, Rozzano, Italy; Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Italy; and National Research Council of Italy, Institute of Genetics and Biomedical Research, Milan Unit, Rozzano, Italy
| | - Gianluigi Condorelli
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy; Humanitas Clinical Research Center-IRCCS, Rozzano, Italy; Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Italy; and National Research Council of Italy, Institute of Genetics and Biomedical Research, Milan Unit, Rozzano, Italy
| |
Collapse
|
18
|
Soler-Botija C, Gálvez-Montón C, Bayés-Genís A. Epigenetic Biomarkers in Cardiovascular Diseases. Front Genet 2019; 10:950. [PMID: 31649728 PMCID: PMC6795132 DOI: 10.3389/fgene.2019.00950] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/05/2019] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular diseases are the number one cause of death worldwide and greatly impact quality of life and medical costs. Enormous effort has been made in research to obtain new tools for efficient and quick diagnosis and predicting the prognosis of these diseases. Discoveries of epigenetic mechanisms have related several pathologies, including cardiovascular diseases, to epigenetic dysregulation. This has implications on disease progression and is the basis for new preventive strategies. Advances in methodology and big data analysis have identified novel mechanisms and targets involved in numerous diseases, allowing more individualized epigenetic maps for personalized diagnosis and treatment. This paves the way for what is called pharmacoepigenetics, which predicts the drug response and develops a tailored therapy based on differences in the epigenetic basis of each patient. Similarly, epigenetic biomarkers have emerged as a promising instrument for the consistent diagnosis and prognosis of cardiovascular diseases. Their good accessibility and feasible methods of detection make them suitable for use in clinical practice. However, multicenter studies with a large sample population are required to determine with certainty which epigenetic biomarkers are reliable for clinical routine. Therefore, this review focuses on current discoveries regarding epigenetic biomarkers and its controversy aiming to improve the diagnosis, prognosis, and therapy in cardiovascular patients.
Collapse
Affiliation(s)
- Carolina Soler-Botija
- Heart Failure and Cardiac Regeneration (ICREC) Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Badalona, Spain
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Carolina Gálvez-Montón
- Heart Failure and Cardiac Regeneration (ICREC) Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Badalona, Spain
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Antoni Bayés-Genís
- Heart Failure and Cardiac Regeneration (ICREC) Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Badalona, Spain
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
- Cardiology Service, HUGTiP, Badalona, Spain
- Department of Medicine, Barcelona Autonomous University (UAB), Badalona, Spain
| |
Collapse
|
19
|
Satoh M, Nomura S, Harada M, Yamaguchi T, Ko T, Sumida T, Toko H, Naito AT, Takeda N, Tobita T, Fujita T, Ito M, Fujita K, Ishizuka M, Kariya T, Akazawa H, Kobayashi Y, Morita H, Takimoto E, Aburatani H, Komuro I. High-throughput single-molecule RNA imaging analysis reveals heterogeneous responses of cardiomyocytes to hemodynamic overload. J Mol Cell Cardiol 2019; 128:77-89. [PMID: 30611794 DOI: 10.1016/j.yjmcc.2018.12.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/10/2018] [Accepted: 12/30/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND The heart responds to hemodynamic overload through cardiac hypertrophy and activation of the fetal gene program. However, these changes have not been thoroughly examined in individual cardiomyocytes, and the relation between cardiomyocyte size and fetal gene expression remains elusive. We established a method of high-throughput single-molecule RNA imaging analysis of in vivo cardiomyocytes and determined spatial and temporal changes during the development of heart failure. METHODS AND RESULTS We applied three novel single-cell analysis methods, namely, single-cell quantitative PCR (sc-qPCR), single-cell RNA sequencing (scRNA-seq), and single-molecule fluorescence in situ hybridization (smFISH). Isolated cardiomyocytes and cross sections from pressure overloaded murine hearts after transverse aortic constriction (TAC) were analyzed at an early hypertrophy stage (2 weeks, TAC2W) and at a late heart failure stage (8 weeks, TAC8W). Expression of myosin heavy chain β (Myh7), a representative fetal gene, was induced in some cardiomyocytes in TAC2W hearts and in more cardiomyocytes in TAC8W hearts. Expression levels of Myh7 varied considerably among cardiomyocytes. Myh7-expressing cardiomyocytes were significantly more abundant in the middle layer, compared with the inner or outer layers of TAC2W hearts, while such spatial differences were not observed in TAC8W hearts. Expression levels of Myh7 were inversely correlated with cardiomyocyte size and expression levels of mitochondria-related genes. CONCLUSIONS We developed a new image-analysis pipeline to allow automated and unbiased quantification of gene expression at the single-cell level and determined the spatial and temporal regulation of heterogenous Myh7 expression in cardiomyocytes after pressure overload.
Collapse
Affiliation(s)
- Masahiro Satoh
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chiba, Japan; Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Seitaro Nomura
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan; Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mutsuo Harada
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshihiro Yamaguchi
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshiyuki Ko
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan; Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomokazu Sumida
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Haruhiro Toko
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Atsuhiko T Naito
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Norifumi Takeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takashige Tobita
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan; Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Takanori Fujita
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Masamichi Ito
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kanna Fujita
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masato Ishizuka
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Taro Kariya
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Akazawa
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshio Kobayashi
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hiroyuki Morita
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Eiki Takimoto
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.
| | - Issei Komuro
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
20
|
Liu L, Zhao W, Liu J, Gan Y, Liu L, Tian J. Epigallocatechin-3 gallate prevents pressure overload-induced heart failure by up-regulating SERCA2a via histone acetylation modification in mice. PLoS One 2018; 13:e0205123. [PMID: 30286210 PMCID: PMC6171916 DOI: 10.1371/journal.pone.0205123] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 09/08/2018] [Indexed: 02/07/2023] Open
Abstract
Heart failure is a common, costly, and potentially fatal condition. The cardiac sarcoplasmic reticulum Ca-ATPase (SERCA2a) plays a critical role in the regulation of cardiac function. Previously, low SERCA2a expression was revealed in mice with heart failure. Epigallocatechin-3-gallate (EGCG) can function as an epigenetic regulator and has been reported to enhance cardiac function. However, the underlying epigenetic regulatory mechanism is still unclear. In this study, we investigated whether EGCG can up-regulate SERCA2a via histone acetylation and play role in preventing heart failure. For this, we generated a mouse model of heart failure by performing a minimally invasive transverse aortic constriction (TAC) operation and used this to test the effects of EGCG. The TAC+EGCG group showed nearly normal cardiac function compared to that in the SHAM group. The expression of SERCA2a was decreased at both the mRNA and protein levels in the TAC group but was enhanced in the TAC+EGCG group. Levels of AcH3 and AcH3K9 were determined to decrease near the promoter region of Atp2a2 (the gene encoding SERCA-2a) in the TAC group, but were elevated in the TAC+EGCG group. Meanwhile, HDAC1 activity and binding near the Atp2a2 promoter were increased in the TAC group but decreased with EGCG addition. Further, binding levels of GATA4 and Mef2c near the Atp2a2 promoter region were reduced in TAC hearts, which might have been caused by histone hypoacetylation; this was reversed by EGCG. Together, upregulation of SERCA2a via the modification of histone acetylation plays a role in EGCG-mediated prevention of pressure overload-induced heart failure, and this might represent a novel pharmacological target for the treatment of heart failure.
Collapse
Affiliation(s)
- Lifei Liu
- Department of Anesthesiology, Children’s Hospital of Chongqing Medical University, Chongqing, PR China
| | - Weian Zhao
- Department of Cardiology, Heart Center, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Jianxia Liu
- Department of Anesthesiology, Children’s Hospital of Chongqing Medical University, Chongqing, PR China
| | - Yi Gan
- Ministry of Education Key Laboratory of Child Development and Disorders, PR China
| | - Lingjuan Liu
- Key Laboratory of Pediatrics in Chongqing, Chongqing, PR China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, PR China
| | - Jie Tian
- Department of Cardiology, Heart Center, Children's Hospital of Chongqing Medical University, Chongqing, PR China
- * E-mail:
| |
Collapse
|
21
|
Schiattarella GG, Boccella N, Paolillo R, Cattaneo F, Trimarco V, Franzone A, D’Apice S, Giugliano G, Rinaldi L, Borzacchiello D, Gentile A, Lombardi A, Feliciello A, Esposito G, Perrino C. Loss of Akap1 Exacerbates Pressure Overload-Induced Cardiac Hypertrophy and Heart Failure. Front Physiol 2018; 9:558. [PMID: 29892230 PMCID: PMC5985454 DOI: 10.3389/fphys.2018.00558] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/30/2018] [Indexed: 01/05/2023] Open
Abstract
Left ventricular hypertrophy (LVH) is a major contributor to the development of heart failure (HF). Alterations in cyclic adenosine monophosphate (cAMP)-dependent signaling pathways participate in cardiomyocyte hypertrophy and mitochondrial dysfunction occurring in LVH and HF. cAMP signals are received and integrated by a family of cAMP-dependent protein kinase A (PKA) anchor proteins (AKAPs), tethering PKA to discrete cellular locations. AKAPs encoded by the Akap1 gene (mitoAKAPs) promote PKA mitochondrial targeting, regulating mitochondrial structure and function, reactive oxygen species production, and cell survival. To determine the role of mitoAKAPs in LVH development, in the present investigation, mice with global genetic deletion of Akap1 (Akap1-/-), Akap1 heterozygous (Akap1+/-), and their wild-type (wt) littermates underwent transverse aortic constriction (TAC) or SHAM procedure for 1 week. In wt mice, pressure overload induced the downregulation of AKAP121, the major cardiac mitoAKAP. Compared to wt, Akap1-/- mice did not display basal alterations in cardiac structure or function and cardiomyocyte size or fibrosis. However, loss of Akap1 exacerbated LVH and cardiomyocyte hypertrophy induced by pressure overload and accelerated the progression toward HF in TAC mice, and these changes were not observed upon prevention of AKAP121 degradation in seven in absentia homolog 2 (Siah2) knockout mice (Siah2-/-). Loss of Akap1 was also associated to a significant increase in cardiac apoptosis as well as lack of activation of Akt signaling after pressure overload. Taken together, these results demonstrate that in vivo genetic deletion of Akap1 enhances LVH development and accelerates pressure overload-induced cardiac dysfunction, pointing at Akap1 as a novel repressor of pathological LVH. These results confirm and extend the important role of mitoAKAPs in cardiac response to stress.
Collapse
Affiliation(s)
| | - Nicola Boccella
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Roberta Paolillo
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Fabio Cattaneo
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Valentina Trimarco
- Department of Neuroscience, Reproductive Science and Odontostomatology, University of Naples Federico II, Naples, Italy
| | - Anna Franzone
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
- Department of Cardiology, Inselspital, Universitätsspital Bern, Bern, Switzerland
| | - Stefania D’Apice
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Giuseppe Giugliano
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Laura Rinaldi
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Domenica Borzacchiello
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | | | - Assunta Lombardi
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Antonio Feliciello
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Giovanni Esposito
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
22
|
Russell‐Hallinan A, Watson CJ, Baugh JA. Epigenetics of Aberrant Cardiac Wound Healing. Compr Physiol 2018; 8:451-491. [DOI: 10.1002/cphy.c170029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Schiattarella GG, Madonna R, Van Linthout S, Thum T, Schulz R, Ferdinandy P, Perrino C. Epigenetic modulation of vascular diseases: Assessing the evidence and exploring the opportunities. Vascul Pharmacol 2018; 107:S1537-1891(17)30468-8. [PMID: 29548901 DOI: 10.1016/j.vph.2018.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 01/27/2018] [Accepted: 02/22/2018] [Indexed: 02/09/2023]
Abstract
Vascular adaptations to either physiological or pathophysiological conditions commonly require gene expression modifications in the most represented cellular elements of the vessel wall, i.e. endothelial and smooth muscle cells. In addition to transcription factors, a number of mechanisms contribute to the regulation of gene expression in these cells including noncoding RNAs, histone and DNA modifications, collectively indicated as epigenetic modifications. Here, we summarize the state of art regarding the role of epigenetic changes in major vascular diseases, and discuss the potential diagnostic and therapeutic applications of epigenetic modulation in this context.
Collapse
Affiliation(s)
| | - Rosalinda Madonna
- Center for Aging Sciences and Translational Medicine - CESI-MeT, Institute of Cardiology, Department of Neurosciences, Imaging and Clinical Sciences, "G. D'Annunzio" University, Chiety, Italy; Center for Cardiovascular Biology and Atherosclerosis Research, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Sophie Van Linthout
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany; Charité University Medicine Berlin, Campus Rudolf Virchow, Department of Cardiology, Berlin, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University of Giessen, Giessen, Germany
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy.
| |
Collapse
|
24
|
De Majo F, Calore M. Chromatin remodelling and epigenetic state regulation by non-coding RNAs in the diseased heart. Noncoding RNA Res 2018; 3:20-28. [PMID: 30159436 PMCID: PMC6084839 DOI: 10.1016/j.ncrna.2018.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/08/2018] [Accepted: 02/26/2018] [Indexed: 02/06/2023] Open
Abstract
Epigenetics refers to all the changes in phenotype and gene expression which are not due to alterations in the DNA sequence. These mechanisms have a pivotal role not only in the development but also in the maintenance during adulthood of a physiological phenotype of the heart. Because of the crucial role of epigenetic modifications, their alteration can lead to the arise of pathological conditions. Heart failure affects an estimated 23 million people worldwide and leads to substantial numbers of hospitalizations and health care costs: ischemic heart disease, hypertension, rheumatic fever and other valve diseases, cardiomyopathy, cardiopulmonary disease, congenital heart disease and other factors may all lead to heart failure, either alone or in concert with other risk factors. Epigenetic alterations have recently been included among these risk factors as they can affect gene expression in response to external stimuli. In this review, we provide an overview of all the major classes of chromatin remodellers, providing examples of how their disregulation in the adult heart alters specific gene programs with subsequent development of major cardiomyopathies. Understanding the functional significance of the different epigenetic marks as points of genetic control may be useful for developing promising future therapeutic tools.
Collapse
Affiliation(s)
| | - M. Calore
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
25
|
Wang Z, Zhang XJ, Ji YX, Zhang P, Deng KQ, Gong J, Ren S, Wang X, Chen I, Wang H, Gao C, Yokota T, Ang YS, Li S, Cass A, Vondriska TM, Li G, Deb A, Srivastava D, Yang HT, Xiao X, Li H, Wang Y. The long noncoding RNA Chaer defines an epigenetic checkpoint in cardiac hypertrophy. Nat Med 2016; 22:1131-1139. [PMID: 27618650 PMCID: PMC5053883 DOI: 10.1038/nm.4179] [Citation(s) in RCA: 304] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 08/05/2016] [Indexed: 12/13/2022]
Abstract
Epigenetic reprogramming is a critical process of pathological gene induction during cardiac hypertrophy and remodeling, but the underlying regulatory mechanisms remain to be elucidated. Here we identified a heart-enriched long noncoding (lnc)RNA, named cardiac-hypertrophy-associated epigenetic regulator (Chaer), which is necessary for the development of cardiac hypertrophy. Mechanistically, Chaer directly interacts with the catalytic subunit of polycomb repressor complex 2 (PRC2). This interaction, which is mediated by a 66-mer motif in Chaer, interferes with PRC2 targeting to genomic loci, thereby inhibiting histone H3 lysine 27 methylation at the promoter regions of genes involved in cardiac hypertrophy. The interaction between Chaer and PRC2 is transiently induced after hormone or stress stimulation in a process involving mammalian target of rapamycin complex 1, and this interaction is a prerequisite for epigenetic reprogramming and induction of genes involved in hypertrophy. Inhibition of Chaer expression in the heart before, but not after, the onset of pressure overload substantially attenuates cardiac hypertrophy and dysfunction. Our study reveals that stress-induced pathological gene activation in the heart requires a previously uncharacterized lncRNA-dependent epigenetic checkpoint.
Collapse
Affiliation(s)
- Zhihua Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Animal Experiment Center–Animal Biosafety Level 3 Laboratory, Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, California, USA
| | - Xiao-Jing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Animal Experiment Center–Animal Biosafety Level 3 Laboratory, Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Yan-Xiao Ji
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Animal Experiment Center–Animal Biosafety Level 3 Laboratory, Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Peng Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Animal Experiment Center–Animal Biosafety Level 3 Laboratory, Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Ke-Qiong Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Animal Experiment Center–Animal Biosafety Level 3 Laboratory, Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Jun Gong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Animal Experiment Center–Animal Biosafety Level 3 Laboratory, Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Shuxun Ren
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, California, USA
| | - Xinghua Wang
- Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Iris Chen
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, California, USA
| | - He Wang
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, California, USA
| | - Chen Gao
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, California, USA
| | - Tomohiro Yokota
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, California, USA
| | - Yen Sin Ang
- Gladstone Institute of Cardiovascular Diseases, San Francisco, California, USA
- University of California San Francisco, School of Medicine, San Francisco, California, USA
| | - Shen Li
- Department of Medicine, Cardiology Division, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA
- Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA
| | - Ashley Cass
- Department of Integrative Biology and Physiology, College of Life Sciences, Molecular Biology Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA
- Bioinformatics Interdepartmental Program, University of California at Los Angeles, Los Angeles, California, USA
| | - Thomas M. Vondriska
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, California, USA
| | - Guangping Li
- Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Arjun Deb
- Department of Medicine, Cardiology Division, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA
- Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA
| | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Diseases, San Francisco, California, USA
- University of California San Francisco, School of Medicine, San Francisco, California, USA
| | - Huang-Tian Yang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinshu Xiao
- Department of Integrative Biology and Physiology, College of Life Sciences, Molecular Biology Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA
- Bioinformatics Interdepartmental Program, University of California at Los Angeles, Los Angeles, California, USA
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Animal Experiment Center–Animal Biosafety Level 3 Laboratory, Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Yibin Wang
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, California, USA
- Department of Medicine, Cardiology Division, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA
- Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA
| |
Collapse
|
26
|
Role of Histone Demethylases in Cardiomyocytes Induced to Hypertrophy. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2634976. [PMID: 27722168 PMCID: PMC5046009 DOI: 10.1155/2016/2634976] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/17/2016] [Accepted: 08/22/2016] [Indexed: 11/18/2022]
Abstract
Epigenetic changes induced by histone demethylases play an important role in differentiation and pathological changes in cardiac cells. However, the role of the jumonji family of demethylases in the development of cardiac hypertrophy remains elusive. In this study, the presence of different histone demethylases in cardiac cells was evaluated after hypertrophy was induced with neurohormones. A cell line from rat cardiomyocytes was used as a biological model. The phenotypic profiles of the cells, as well as the expression of histone demethylases, were studied through immunofluorescence, transient transfection, western blot, and qRT-PCR analysis after inducing hypertrophy by angiotensin II and endothelin-1. An increase in fetal gene expression (ANP, BNP, and β-MHC) was observed in cardiomyocytes after treatment with angiotensin II and endothelin-1. A significant increase in JMJD2A expression, but not in UTX or JMJD2C expression, was observed. When JMJD2A was overexpressed in cardiomyocytes through transient transfection, the effect of neurohormones on fetal cardiac gene expression was increased. We conclude that JMJD2A plays a principal role in the regulation of fetal cardiac genes, which increase in expression during the pathological hypertrophic process.
Collapse
|
27
|
Schiattarella GG, Cattaneo F, Pironti G, Magliulo F, Carotenuto G, Pirozzi M, Polishchuk R, Borzacchiello D, Paolillo R, Oliveti M, Boccella N, Avvedimento M, Sepe M, Lombardi A, Busiello RA, Trimarco B, Esposito G, Feliciello A, Perrino C. Akap1 Deficiency Promotes Mitochondrial Aberrations and Exacerbates Cardiac Injury Following Permanent Coronary Ligation via Enhanced Mitophagy and Apoptosis. PLoS One 2016; 11:e0154076. [PMID: 27136357 PMCID: PMC4852950 DOI: 10.1371/journal.pone.0154076] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/08/2016] [Indexed: 11/19/2022] Open
Abstract
A-kinase anchoring proteins (AKAPs) transmit signals cues from seven-transmembrane receptors to specific sub-cellular locations. Mitochondrial AKAPs encoded by the Akap1 gene have been shown to modulate mitochondrial function and reactive oxygen species (ROS) production in the heart. Under conditions of hypoxia, mitochondrial AKAP121 undergoes proteolytic degradation mediated, at least in part, by the E3 ubiquitin ligase Seven In-Absentia Homolog 2 (Siah2). In the present study we hypothesized that Akap1 might be crucial to preserve mitochondrial function and structure, and cardiac responses to myocardial ischemia. To test this, eight-week-old Akap1 knockout mice (Akap1-/-), Siah2 knockout mice (Siah2-/-) or their wild-type (wt) littermates underwent myocardial infarction (MI) by permanent left coronary artery ligation. Age and gender matched mice of either genotype underwent a left thoracotomy without coronary ligation and were used as controls (sham). Twenty-four hours after coronary ligation, Akap1-/- mice displayed larger infarct size compared to Siah2-/- or wt mice. One week after MI, cardiac function and survival were also significantly reduced in Akap1-/- mice, while cardiac fibrosis was significantly increased. Akap1 deletion was associated with remarkable mitochondrial structural abnormalities at electron microscopy, increased ROS production and reduced mitochondrial function after MI. These alterations were associated with enhanced cardiac mitophagy and apoptosis. Autophagy inhibition by 3-methyladenine significantly reduced apoptosis and ameliorated cardiac dysfunction following MI in Akap1-/- mice. These results demonstrate that Akap1 deficiency promotes cardiac mitochondrial aberrations and mitophagy, enhancing infarct size, pathological cardiac remodeling and mortality under ischemic conditions. Thus, mitochondrial AKAPs might represent important players in the development of post-ischemic cardiac remodeling and novel therapeutic targets.
Collapse
Affiliation(s)
- Gabriele Giacomo Schiattarella
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Fabio Cattaneo
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Gianluigi Pironti
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Fabio Magliulo
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Giuseppe Carotenuto
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Marinella Pirozzi
- Institute of Protein Biochemistry, Italian National Research Council (CNR-IBP), Naples, Italy
| | - Roman Polishchuk
- Telethon Institute of Genetic and Medicine (TIGEM), Naples, Italy
| | | | - Roberta Paolillo
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Marco Oliveti
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Nicola Boccella
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Marisa Avvedimento
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Maria Sepe
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy
| | | | | | - Bruno Trimarco
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Giovanni Esposito
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
- * E-mail: (CP); (GE)
| | - Antonio Feliciello
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
- * E-mail: (CP); (GE)
| |
Collapse
|
28
|
Schiattarella GG, Cerulo G, De Pasquale V, Cocchiaro P, Paciello O, Avallone L, Belfiore MP, Iacobellis F, Di Napoli D, Magliulo F, Perrino C, Trimarco B, Esposito G, Di Natale P, Pavone LM. The Murine Model of Mucopolysaccharidosis IIIB Develops Cardiopathies over Time Leading to Heart Failure. PLoS One 2015; 10:e0131662. [PMID: 26147524 PMCID: PMC4493027 DOI: 10.1371/journal.pone.0131662] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/04/2015] [Indexed: 01/03/2023] Open
Abstract
Mucopolysaccharidosis (MPS) IIIB is a lysosomal disease due to the deficiency of the enzyme α-N-acetylglucosaminidase (NAGLU) required for heparan sulfate (HS) degradation. The disease is characterized by mild somatic features and severe neurological disorders. Very little is known on the cardiac dysfunctions in MPS IIIB. In this study, we used the murine model of MPS IIIB (NAGLU knockout mice, NAGLU-/-) in order to investigate the cardiac involvement in the disease. Echocardiographic analysis showed a marked increase in left ventricular (LV) mass, reduced cardiac function and valvular defects in NAGLU-/- mice as compared to wild-type (WT) littermates. The NAGLU-/- mice exhibited a significant increase in aortic and mitral annulus dimension with a progressive elongation and thickening of anterior mitral valve leaflet. A severe mitral regurgitation with reduction in mitral inflow E-wave-to-A-wave ratio was observed in 32-week-old NAGLU-/- mice. Compared to WT mice, NAGLU-/- mice exhibited a significantly lower survival with increased mortality observed in particular after 25 weeks of age. Histopathological analysis revealed a significant increase of myocardial fiber vacuolization, accumulation of HS in the myocardial vacuoles, recruitment of inflammatory cells and collagen deposition within the myocardium, and an increase of LV fibrosis in NAGLU-/- mice compared to WT mice. Biochemical analysis of heart samples from affected mice showed increased expression levels of cardiac failure hallmarks such as calcium/calmodulin-dependent protein kinase II, connexin43, α-smooth muscle actin, α-actinin, atrial and brain natriuretic peptides, and myosin heavy polypeptide 7. Furthermore, heart samples from NAGLU-/- mice showed enhanced expression of the lysosome-associated membrane protein-2 (LAMP2), and the autophagic markers Beclin1 and LC3 isoform II (LC3-II). Overall, our findings demonstrate that NAGLU-/- mice develop heart disease, valvular abnormalities and cardiac failure associated with an impaired lysosomal autophagic flux.
Collapse
Affiliation(s)
| | - Giuliana Cerulo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Valeria De Pasquale
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Pasquale Cocchiaro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Orlando Paciello
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Luigi Avallone
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | | | | | | | - Fabio Magliulo
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Bruno Trimarco
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Giovanni Esposito
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Paola Di Natale
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- * E-mail:
| |
Collapse
|
29
|
Butts B, Gary RA, Dunbar SB, Butler J. The Importance of NLRP3 Inflammasome in Heart Failure. J Card Fail 2015; 21:586-93. [PMID: 25982825 DOI: 10.1016/j.cardfail.2015.04.014] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/08/2015] [Accepted: 04/30/2015] [Indexed: 12/11/2022]
Abstract
Patients with heart failure continue to suffer adverse health consequences despite advances in therapies over the past 2 decades. Identification of novel therapeutic targets that may attenuate disease progression is therefore needed. The inflammasome may play a central role in modulating chronic inflammation and in turn affecting heart failure progression. The inflammasome is a complex of intracellular interaction proteins that trigger maturation of proinflammatory cytokines interleukin-1β and interleukin-18 to initiate the inflammatory response. This response is amplified through production of tumor necrosis factor α and activation of inducible nitric oxide synthase. The purpose of this review is to discuss recent evidence implicating this inflammatory pathway in the pathophysiology of heart failure.
Collapse
Affiliation(s)
- Brittany Butts
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA
| | - Rebecca A Gary
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA
| | - Sandra B Dunbar
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA
| | - Javed Butler
- Cardiology Division, Stony Brook University, Stony Brook, NY.
| |
Collapse
|
30
|
Cui H, Dhroso A, Johnson N, Korkin D. The variation game: Cracking complex genetic disorders with NGS and omics data. Methods 2015; 79-80:18-31. [PMID: 25944472 DOI: 10.1016/j.ymeth.2015.04.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 03/27/2015] [Accepted: 04/17/2015] [Indexed: 12/14/2022] Open
Abstract
Tremendous advances in Next Generation Sequencing (NGS) and high-throughput omics methods have brought us one step closer towards mechanistic understanding of the complex disease at the molecular level. In this review, we discuss four basic regulatory mechanisms implicated in complex genetic diseases, such as cancer, neurological disorders, heart disease, diabetes, and many others. The mechanisms, including genetic variations, copy-number variations, posttranscriptional variations, and epigenetic variations, can be detected using a variety of NGS methods. We propose that malfunctions detected in these mechanisms are not necessarily independent, since these malfunctions are often found associated with the same disease and targeting the same gene, group of genes, or functional pathway. As an example, we discuss possible rewiring effects of the cancer-associated genetic, structural, and posttranscriptional variations on the protein-protein interaction (PPI) network centered around P53 protein. The review highlights multi-layered complexity of common genetic disorders and suggests that integration of NGS and omics data is a critical step in developing new computational methods capable of deciphering this complexity.
Collapse
Affiliation(s)
- Hongzhu Cui
- Department of Computer Science, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States
| | - Andi Dhroso
- Department of Computer Science, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States
| | - Nathan Johnson
- Department of Computer Science, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States
| | - Dmitry Korkin
- Department of Computer Science, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States; Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States
| |
Collapse
|
31
|
Abstract
The molecular signatures of epigenetic regulation and chromatin architectures are fundamental to genetically determined biological processes. Covalent and post-translational chemical modification of the chromatin template can sensitize the genome to changing environmental conditions to establish diverse functional states. Recent interest and research focus surrounds the direct connections between metabolism and chromatin dynamics, which now represents an important conceptual challenge to explain many aspects of metabolic dysfunction. Several components of the epigenetic machinery require intermediates of cellular metabolism for enzymatic function. Furthermore, changes to intracellular metabolism can alter the expression of specific histone methyltransferases and acetyltransferases conferring widespread variations in epigenetic modification patterns. Specific epigenetic influences of dietary glucose and lipid consumption, as well as undernutrition, are observed across numerous organs and pathways associated with metabolism. Studies have started to define the chromatin-dependent mechanisms underlying persistent and pathophysiological changes induced by altered metabolism. Importantly, numerous recent studies demonstrate that gene regulation underlying phenotypic determinants of adult metabolic health is influenced by maternal and early postnatal diet. These emerging concepts open new perspectives to combat the rising global epidemic of metabolic disorders.
Collapse
Affiliation(s)
- Samuel T. Keating
- From the Epigenetics in Human Health and Disease Laboratory (S.T.K., A.E.-O.) and Epigenomics Profiling Facility (S.T.K., A.E.-O.), Baker IDI Heart & Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia; Department of Pathology, The University of Melbourne, Victoria, Australia (A.E.-O.); and Central Clinical School, Department of Medicine, Monash University, Melbourne, Victoria, Australia (A.E.-O.)
| | - Assam El-Osta
- From the Epigenetics in Human Health and Disease Laboratory (S.T.K., A.E.-O.) and Epigenomics Profiling Facility (S.T.K., A.E.-O.), Baker IDI Heart & Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia; Department of Pathology, The University of Melbourne, Victoria, Australia (A.E.-O.); and Central Clinical School, Department of Medicine, Monash University, Melbourne, Victoria, Australia (A.E.-O.)
| |
Collapse
|