1
|
Martínez-Gutiérrez A, Bertran A, Noya T, Pena-Rodríguez E, Gómez-Escalante S, Pascual S, Luis LS, González MC. New Chalcone-Derived Molecule for the Topical Regulation of Hyperpigmentation and Skin Aging. Pharmaceutics 2024; 16:1405. [PMID: 39598529 PMCID: PMC11597169 DOI: 10.3390/pharmaceutics16111405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Skin hyperpigmentation is a biological process that results in an excessive production of melanin and is highly regulated by several mechanisms, tyrosinase being one of the key enzymes involved. Current reported inhibitors lack clinical efficacy, show toxic side effects, have poor bioavailability, or low formulation compatibility. The aim of this study was to design a new effective tyrosinase inhibitor for topical hyperpigmentation and anti-aging treatments. Methods: Homology modeling was used to build the tridimensional structure of human tyrosinase, and virtual docking was used to predict molecule-enzyme binding modes. The tyrosinase activity of the designed and synthesized compounds was assessed and water solubility was determined by HPLC. Cell assays were performed to determine melanin content, cytotoxicity, wound healing, anti-glycation, antioxidation, and autophagy efficacy. Gene expression and miRNA levels were quantified by qPCR and chromatin accessibility by ATAC-Seq. Human reconstructed epidermis was used to test the depigmenting efficacy as well as the skin irritation potential. Results: The 3D structure of human tyrosinase was designed and validated. The new molecule could effectively inhibit human tyrosinase and melanin synthesis in 2D monocultures and a 3D epidermis model. Two melanogenesis-related miRNAs were increased in treated cells. Anti-glycation, antioxidant, mitochondria protection, autophagy activation, and wound healing properties were also observed, with special emphasis on epigenetics. Conclusions: The designed molecule is a potential candidate to be used as a depigmenting and anti-aging agent, with suitable properties to be introduced in final product formulations for dermatology or cosmetics treatments.
Collapse
Affiliation(s)
| | - Alexandra Bertran
- Biotechnology Unit, Mesoestetic Pharma Group, 08840 Barcelona, Spain
| | - Teresa Noya
- Biotechnology Unit, Mesoestetic Pharma Group, 08840 Barcelona, Spain
| | - Eloy Pena-Rodríguez
- Biomedical Engineering Unit, Mesoestetic Pharma Group, 08840 Barcelona, Spain
| | | | - Sergio Pascual
- R+D Department, Mesoestetic Pharma Group, 08840 Barcelona, Spain
| | - Luis Shotze Luis
- Medical Affairs, Mesoestetic Pharma Group, 08840 Barcelona, Spain
| | | |
Collapse
|
2
|
Salanci Š, Vilková M, Martinez L, Mirossay L, Michalková R, Mojžiš J. The Induction of G2/M Phase Cell Cycle Arrest and Apoptosis by the Chalcone Derivative 1C in Sensitive and Resistant Ovarian Cancer Cells Is Associated with ROS Generation. Int J Mol Sci 2024; 25:7541. [PMID: 39062784 PMCID: PMC11277160 DOI: 10.3390/ijms25147541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Ovarian cancer ranks among the most severe forms of cancer affecting the female reproductive organs, posing a significant clinical challenge primarily due to the development of resistance to conventional therapies. This study investigated the effects of the chalcone derivative 1C on sensitive (A2780) and cisplatin-resistant (A2780cis) ovarian cancer cell lines. Our findings revealed that 1C suppressed cell viability, induced cell cycle arrest at the G2/M phase, and triggered apoptosis in both cell lines. These effects are closely associated with generating reactive oxygen species (ROS). Mechanistically, 1C induced DNA damage, modulated the activity of p21, PCNA, and phosphorylation of Rb and Bad proteins, as well as cleaved PARP. Moreover, it modulated Akt, Erk1/2, and NF-κB signaling pathways. Interestingly, we observed differential effects of 1C on Nrf2 levels between sensitive and resistant cells. While 1C increased Nrf2 levels in sensitive cells after 12 h and decreased them after 48 h, the opposite effect was observed in resistant cells. Notably, most of these effects were suppressed by the potent antioxidant N-acetylcysteine (NAC), underscoring the crucial role of ROS in 1C-induced antiproliferative activity. Moreover, we suggest that modulation of Nrf2 levels can, at least partially, contribute to the antiproliferative effect of chalcone 1C.
Collapse
Affiliation(s)
- Šimon Salanci
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (Š.S.); (L.M.); (R.M.)
| | - Mária Vilková
- Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia;
| | - Lola Martinez
- Flow Cytometry Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain;
| | - Ladislav Mirossay
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (Š.S.); (L.M.); (R.M.)
| | - Radka Michalková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (Š.S.); (L.M.); (R.M.)
| | - Ján Mojžiš
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (Š.S.); (L.M.); (R.M.)
| |
Collapse
|
3
|
ZHOU JIANBO, WAN FENG, XIAO BIN, LI XIN, PENG CHENG, PENG FU. Metochalcone induces senescence-associated secretory phenotype via JAK2/STAT3 pathway in breast cancer. Oncol Res 2024; 32:943-953. [PMID: 38686052 PMCID: PMC11055985 DOI: 10.32604/or.2023.044775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/24/2023] [Indexed: 05/02/2024] Open
Abstract
Breast and lung cancers are the leading causes of mortality and most frequently diagnosed cancers in women and men, respectively, worldwide. Although the antitumor activity of chalcones has been extensively studied, the molecular mechanisms of isoliquiritigenin analog 2', 4', 4-trihydroxychalcone (metochalcone; TEC) against carcinomas remain less well understood. In this study, we found that TEC inhibited cell proliferation of breast cancer BT549 cells and lung cancer A549 cells in a concentration-dependent manner. TEC induced cell cycle arrest in the S-phase, cell migration inhibition in vitro, and reduced tumor growth in vivo. Moreover, transcriptomic analysis revealed that TEC modulated the activity of the JAK2/STAT3 and P53 pathways. TEC triggered the senescence-associated secretory phenotype (SASP) by repressing the JAK2/STAT3 axis. The mechanism of metochalcone against breast cancer depended on the induction of SASP via deactivation of the JAK2/STAT3 pathway, highlighting the potential of chalcone in senescence-inducing therapy against carcinomas.
Collapse
Affiliation(s)
- JIANBO ZHOU
- Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, Chengdu, China
| | - FENG WAN
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chengdu No. 1 Pharmaceutical Co., Ltd., Pengzhou, China
| | - BIN XIAO
- Chengdu Push Bio-Technology Co., Ltd., Chengdu, China
| | - XIN LI
- Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - CHENG PENG
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - FU PENG
- Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Krajka-Kuźniak V, Belka M, Papierska K. Targeting STAT3 and NF-κB Signaling Pathways in Cancer Prevention and Treatment: The Role of Chalcones. Cancers (Basel) 2024; 16:1092. [PMID: 38539427 PMCID: PMC10969505 DOI: 10.3390/cancers16061092] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 11/11/2024] Open
Abstract
Chalcones are a type of natural flavonoid compound that have been found to possess promising anticancer properties. Studies have shown that chalcones can inhibit the growth and proliferation of cancer cells, induce apoptosis, and suppress tumor angiogenesis. In addition to their potential therapeutic applications, chalcones have also been studied for their chemopreventive effects, which involve reducing the risk of cancer development in healthy individuals. Overall, the anticancer properties of chalcones make them a promising area of research for developing new cancer treatments and preventative strategies. This review aims to provide a thorough overview of the central studies reported in the literature concerning cancer prevention and the treatment of chalcones. Although chalcones target many different mechanisms, the STAT and NF-κB signaling pathways are the ones this review will focus on, highlighting the existing crosstalk between these two pathways and considering the potential therapeutic opportunities for chalcone combinations.
Collapse
Affiliation(s)
- Violetta Krajka-Kuźniak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (M.B.); (K.P.)
| | | | | |
Collapse
|
5
|
A Novel Monoclonal Antibody Targeting Cancer-Specific Plectin Has Potent Antitumor Activity in Ovarian Cancer. Cells 2021; 10:cells10092218. [PMID: 34571866 PMCID: PMC8466582 DOI: 10.3390/cells10092218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 01/25/2023] Open
Abstract
Cancer-specific plectin (CSP) is a pro-tumorigenic protein selectively expressed on the cell surface of major cancers, including ovarian cancer (OC). Despite its assessable localization, abundance, and functional significance, the therapeutic efficacy of targeting CSP remains unexplored. Here, we generated and investigated the anticancer effects of a novel CSP-targeting monoclonal antibody, 1H11, in OC models. Its therapeutic efficacy as a monotherapy and in combination with chemotherapy was evaluated in vitro using two OC cell lines and in vivo by a subcutaneous ovarian cancer model. 1H11 demonstrated rapid internalization and high affinity and specificity for both human and murine CSP. Moreover, 1H11 induced significant and selective cytotoxicity (EC50 = 260 nM), G0/G1 arrest, and decreased OC cell migration. Mechanistically, these results are associated with increased ROS levels and reduced activation of the JAK2-STAT3 pathway. In vivo, 1H11 decreased Ki67 expression, induced 65% tumor growth inhibition, and resulted in 30% tumor necrosis. Moreover, 1H11 increased chemosensitivity to cisplatin resulting in 60% greater tumor growth inhibition compared to cisplatin alone. Taken together, CSP-targeting with 1H11 exhibits potent anticancer activity against ovarian cancer and is deserving of future clinical development.
Collapse
|
6
|
Jasim HA, Nahar L, Jasim MA, Moore SA, Ritchie KJ, Sarker SD. Chalcones: Synthetic Chemistry Follows Where Nature Leads. Biomolecules 2021; 11:1203. [PMID: 34439870 PMCID: PMC8392591 DOI: 10.3390/biom11081203] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/19/2022] Open
Abstract
Chalcones belong to the flavonoid class of phenolic compounds. They form one of the largest groups of bioactive natural products. The potential anticancer, anti-inflammatory, antimicrobial, antioxidant, and antiparasitic properties of naturally occurring chalcones, and their unique chemical structural features inspired the synthesis of numerous chalcone derivatives. In fact, structural features of chalcones are easy to construct from simple aromatic compounds, and it is convenient to perform structural modifications to generate functionalized chalcone derivatives. Many of these synthetic analogs were shown to possess similar bioactivities as their natural counterparts, but often with an enhanced potency and reduced toxicity. This review article aims to demonstrate how bioinspired synthesis of chalcone derivatives can potentially introduce a new chemical space for exploitation for new drug discovery, justifying the title of this article. However, the focus remains on critical appraisal of synthesized chalcones and their derivatives for their bioactivities, linking to their interactions at the biomolecular level where appropriate, and revealing their possible mechanisms of action.
Collapse
Affiliation(s)
- Hiba A. Jasim
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK; (H.A.J.); (S.D.S.)
- Department of Biology, College of Education for Pure Sciences, University of Anbar, Al-Anbar 10081, Iraq
| | - Lutfun Nahar
- Laboratory of Growth Regulators, Institute of Experimental Botany ASCR & Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Mohammad A. Jasim
- Department of Biology, College of Education for Women, University of Anbar, Al-Anbar 10081, Iraq;
| | - Sharon A. Moore
- Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK;
| | - Kenneth J. Ritchie
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK; (H.A.J.); (S.D.S.)
| | - Satyajit D. Sarker
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK; (H.A.J.); (S.D.S.)
| |
Collapse
|
7
|
Xiao J, Gao M, Diao Q, Gao F. Chalcone Derivatives and their Activities against Drug-resistant Cancers: An Overview. Curr Top Med Chem 2021; 21:348-362. [PMID: 33092509 DOI: 10.2174/1568026620666201022143236] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 11/22/2022]
Abstract
Drug resistance, including multidrug resistance resulting from different defensive mechanisms in cancer cells, is the leading cause of the failure of the cancer therapy, posing an urgent need to develop more effective anticancer agents. Chalcones, widely distributed in nature, could act on diverse enzymes and receptors in cancer cells. Accordingly, chalcone derivatives possess potent activity against various cancers, including drug-resistant, even multidrug-resistant cancer. This review outlines the recent development of chalcone derivatives with potential activity against drug-resistant cancers covering articles published between 2010 and 2020 so as to facilitate further rational design of more effective candidates.
Collapse
Affiliation(s)
- Jiaqi Xiao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Meixiang Gao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Qiang Diao
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Feng Gao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
8
|
Moreira J, Almeida J, Saraiva L, Cidade H, Pinto M. Chalcones as Promising Antitumor Agents by Targeting the p53 Pathway: An Overview and New Insights in Drug-Likeness. Molecules 2021; 26:molecules26123737. [PMID: 34205272 PMCID: PMC8233907 DOI: 10.3390/molecules26123737] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/12/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022] Open
Abstract
The p53 protein is one of the most important tumor suppressors that are frequently inactivated in cancer cells. This inactivation occurs either because the TP53 gene is mutated or deleted, or due to the p53 protein inhibition by endogenous negative regulators, particularly murine double minute (MDM)2. Therefore, the reestablishment of p53 activity has received great attention concerning the discovery of new cancer therapeutics. Chalcones are naturally occurring compounds widely described as potential antitumor agents through several mechanisms, including those involving the p53 pathway. The inhibitory effect of these compounds in the interaction between p53 and MDM2 has also been recognized, with this effect associated with binding to a subsite of the p53 binding cleft of MDM2. In this work, a literature review of natural and synthetic chalcones and their analogues potentially interfering with p53 pathway is presented. Moreover, in silico studies of drug-likeness of chalcones recognized as p53-MDM2 interaction inhibitors were accomplished considering molecular descriptors, biophysiochemical properties, and pharmacokinetic parameters in comparison with those from p53-MDM2 in clinical trials. With this review, we expect to guide the design of new and more effective chalcones targeting the p53 pathway.
Collapse
Affiliation(s)
- Joana Moreira
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Joana Almeida
- LAQV/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
| | - Lucília Saraiva
- LAQV/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
- Correspondence: (L.S.); (H.C.); (M.P.); Tel.: +351-22-042-8584 (L.S.); +351-22-042-8688 (H.C.); +351-22-042-8692 (M.P.)
| | - Honorina Cidade
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- Correspondence: (L.S.); (H.C.); (M.P.); Tel.: +351-22-042-8584 (L.S.); +351-22-042-8688 (H.C.); +351-22-042-8692 (M.P.)
| | - Madalena Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- Correspondence: (L.S.); (H.C.); (M.P.); Tel.: +351-22-042-8584 (L.S.); +351-22-042-8688 (H.C.); +351-22-042-8692 (M.P.)
| |
Collapse
|
9
|
Rioux B, Pinon A, Gamond A, Martin F, Laurent A, Champavier Y, Barette C, Liagre B, Fagnère C, Sol V, Pouget C. Synthesis and biological evaluation of chalcone-polyamine conjugates as novel vectorized agents in colorectal and prostate cancer chemotherapy. Eur J Med Chem 2021; 222:113586. [PMID: 34116328 DOI: 10.1016/j.ejmech.2021.113586] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 12/27/2022]
Abstract
The aim of this study was to synthesize chalcone-polyamine conjugates in order to enhance bioavailability and selectivity of chalcone core towards cancer cells, using polyamine-based vectors. Indeed, it is well-known that polyamine transport system is upregulated in tumor cells. 3',4,4',5'-tetramethoxychalcone was selected as parent chalcone since it was found to be an efficient anti-proliferative agent on various cancer cells. A series of five chalcone-polyamine conjugates was obtained using the 4-bromopropyloxy-3',4',5'-trimethoxychalcone as a key intermediate. Chalcone core and polyamine tails were fused through an amine bond. These conjugates were found to possess a marked in vitro antiproliferative effect against colorectal (HT-29 and HCT-116) and prostate cancer (PC-3 and DU-145) cell lines. The most active conjugate (compound 8b) was then chosen for further biological evaluations to elucidate mechanisms responsible for its antiproliferative activity. Investigations on cell cycle distribution revealed that this conjugate can prevent the proliferation of human colorectal and prostate cancer cells by blocking the cell cycle at the G1 and G2 phase, respectively. Flow cytometry analysis revealed a sub-G1 peak, characteristic of apoptotic cell population and our inquiries highlighted apoptosis induction at early and later stages through several pro-apoptotic markers. Therefore, this chalcone-N1-spermidine conjugate could be considered as a promising agent for colon and prostatic cancer adjuvant therapy.
Collapse
Affiliation(s)
- Benjamin Rioux
- Université de Limoges, Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, 2 Rue Du Dr Marcland, 87025, Limoges Cedex, France
| | - Aline Pinon
- Université de Limoges, Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, 2 Rue Du Dr Marcland, 87025, Limoges Cedex, France
| | - Aurélie Gamond
- Université de Limoges, Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, 2 Rue Du Dr Marcland, 87025, Limoges Cedex, France
| | - Frédérique Martin
- Université de Limoges, Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, 2 Rue Du Dr Marcland, 87025, Limoges Cedex, France
| | - Aurélie Laurent
- Université de Limoges, Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, 2 Rue Du Dr Marcland, 87025, Limoges Cedex, France
| | - Yves Champavier
- Université de Limoges, Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, 2 Rue Du Dr Marcland, 87025, Limoges Cedex, France; Université de Limoges, BISCEm NMR Platform, GEIST, 2 Rue Du Dr Marcland, 87025, Limoges Cedex, France
| | - Caroline Barette
- Université Grenoble Alpes, CEA, INSERM, IRIG, BGE U1038, Genetics & Chemogenomics, 17 Avenue des Martyrs, Grenoble, 38054, France
| | - Bertrand Liagre
- Université de Limoges, Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, 2 Rue Du Dr Marcland, 87025, Limoges Cedex, France
| | - Catherine Fagnère
- Université de Limoges, Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, 2 Rue Du Dr Marcland, 87025, Limoges Cedex, France
| | - Vincent Sol
- Université de Limoges, Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, 2 Rue Du Dr Marcland, 87025, Limoges Cedex, France
| | - Christelle Pouget
- Université de Limoges, Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, 2 Rue Du Dr Marcland, 87025, Limoges Cedex, France.
| |
Collapse
|
10
|
Mirza-Aghazadeh-Attari M, Ostadian C, Saei AA, Mihanfar A, Darband SG, Sadighparvar S, Kaviani M, Samadi Kafil H, Yousefi B, Majidinia M. DNA damage response and repair in ovarian cancer: Potential targets for therapeutic strategies. DNA Repair (Amst) 2019; 80:59-84. [PMID: 31279973 DOI: 10.1016/j.dnarep.2019.06.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 06/01/2019] [Accepted: 06/15/2019] [Indexed: 12/24/2022]
Abstract
Ovarian cancer is among the most lethal gynecologic malignancies with a poor survival prognosis. The current therapeutic strategies involve surgery and chemotherapy. Research is now focused on novel agents especially those targeting DNA damage response (DDR) pathways. Understanding the DDR process in ovarian cancer necessitates having a detailed knowledge on a series of signaling mediators at the cellular and molecular levels. The complexity of the DDR process in ovarian cancer and how this process works in metastatic conditions is comprehensively reviewed. For evaluating the efficacy of therapeutic agents targeting DNA damage in ovarian cancer, we will discuss the components of this system including DDR sensors, DDR transducers, DDR mediators, and DDR effectors. The constituent pathways include DNA repair machinery, cell cycle checkpoints, and apoptotic pathways. We also will assess the potential of active mediators involved in the DDR process such as therapeutic and prognostic candidates that may facilitate future studies.
Collapse
Affiliation(s)
- Mohammad Mirza-Aghazadeh-Attari
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Caspian Ostadian
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Amir Ata Saei
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Ainaz Mihanfar
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Saber Ghazizadeh Darband
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden; Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Shirin Sadighparvar
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | | | - Bahman Yousefi
- Molecular MedicineResearch Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
11
|
Sallum LO, Siqueira VL, Custodio JMF, Borges NM, Lima AP, Abreu DC, S. Lacerda EDP, Lima RS, M. de Oliveira A, Camargo AJ, Napolitano HB. Molecular modeling of cytotoxic activity of a new terpenoid-like bischalcone. NEW J CHEM 2019. [DOI: 10.1039/c9nj03452h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This study describes the synthesis and structure of (1E,4E)-1-(3-chlorophenyl)-5-(2,6,6-trimethylcyclohex-1-en-1-yl)penta-1,4-dien-3-one (BC I). This work evaluates molecular docking and cytotoxic activity against two tumor cell lines.
Collapse
Affiliation(s)
- Lóide O. Sallum
- Grupo de Química Teórica e Estrutural
- Universidade Estadual de Goiás
- Anápolis
- Brazil
| | | | - Jean M. F. Custodio
- Grupo de Química Teórica e Estrutural
- Universidade Estadual de Goiás
- Anápolis
- Brazil
| | - Nádia M. Borges
- Grupo de Química Teórica e Estrutural
- Universidade Estadual de Goiás
- Anápolis
- Brazil
| | - Aliny P. Lima
- Faculdade do Instituto Brasil
- Anápolis
- Brazil
- Instituto de Ciências Biológicas
- Universidade Federal de Goiás
| | - Davi C. Abreu
- Instituto de Ciências Biológicas
- Universidade Federal de Goiás
- Goiânia
- Brazil
| | | | | | | | - Ademir J. Camargo
- Grupo de Química Teórica e Estrutural
- Universidade Estadual de Goiás
- Anápolis
- Brazil
| | - Hamilton B. Napolitano
- Grupo de Química Teórica e Estrutural
- Universidade Estadual de Goiás
- Anápolis
- Brazil
- Laboratório de Novos Materiais
| |
Collapse
|
12
|
Qi ZH, Xu HX, Zhang SR, Xu JZ, Li S, Gao HL, Jin W, Wang WQ, Wu CT, Ni QX, Yu XJ, Liu L. RIPK4/PEBP1 axis promotes pancreatic cancer cell migration and invasion by activating RAF1/MEK/ERK signaling. Int J Oncol 2018; 52:1105-1116. [PMID: 29436617 PMCID: PMC5843398 DOI: 10.3892/ijo.2018.4269] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/22/2018] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer is a lethal disease with a high metastatic potential. In our previous study, we identified a specific subgroup of patients with pancreatic cancer with a serum signature of carcinoembryonic antigen (CEA)+/cancer antigen (CA)125+/CA19-9 ≥1,000 U/ml. In this study, by using high-throughput screening analysis, we found that receptor-interacting protein kinases 4 (RIPK4) may be a key molecule involved in the high metastatic potential of this subgroup of patients with pancreatic cancer. A high RIPK4 expression predicted a poor prognosis and promoted pancreatic cancer cell migration and invasion via the RAF1/MEK/ERK pathway. Moreover, RIPK4 activated the RAF1/MEK/ERK pathway by regulating proteasome-mediated phosphatidylethanolamine binding protein 1 (PEBP1) degradation. The suppression of PEBP1 degradation eliminated the RIPK4-induced activation of RAF1/MEK/ERK signaling and pancreatic cancer cell migration or invasion. Thus, on the whole, the findings of this study indicated that RIPK4 was upregulated in the subgroup of pancreatic cancer with a high metastatic potential. RIPK4 overexpression promoted pancreatic cancer cell migration and invasion via the PEBP1 degradation-induced activation of the RAF1/MEK/ERK pathway.
Collapse
Affiliation(s)
- Zi-Hao Qi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Hua-Xiang Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Shi-Rong Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Jin-Zhi Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Shuo Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - He-Li Gao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Wei Jin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Wen-Quan Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Chun-Tao Wu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Quan-Xing Ni
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Xian-Jun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Liang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| |
Collapse
|
13
|
HDAC inhibition as a treatment concept to combat temsirolimus-resistant bladder cancer cells. Oncotarget 2017; 8:110016-110028. [PMID: 29299126 PMCID: PMC5746361 DOI: 10.18632/oncotarget.22454] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/12/2017] [Indexed: 12/16/2022] Open
Abstract
Introduction Although the mechanistic target of rapamycin (mTOR) might be a promising molecular target to treat advanced bladder cancer, resistance develops under chronic exposure to an mTOR inhibitor (everolimus, temsirolimus). Based on earlier studies, we proposed that histone deacetylase (HDAC) blockade might circumvent resistance and investigated whether HDAC inhibition has an impact on growth of bladder cancer cells with acquired resistance towards temsirolimus. Results The HDAC inhibitor valproic acid (VPA) significantly inhibited growth, proliferation and caused G0/G1 phase arrest in RT112res and UMUC-3res. cdk1, cyclin B, cdk2, cyclin A and Skp1 p19 were down-regulated, p27 was elevated. Akt-mTOR signaling was deactivated, whereas acetylation of histone H3 and H4 in RT112res and UMUC-3res increased in the presence of VPA. Knocking down cdk2 or cyclin A resulted in a significant growth blockade of RT112res and UMUC-3res. Materials And Methods Parental (par) and resistant (res) RT112 and UMUC-3 cells were exposed to the HDAC inhibitor VPA. Tumor cell growth, proliferation, cell cycling and expression of cell cycle regulating proteins were then evaluated. siRNA blockade was used to investigate the functional impact of the proteins. Conclusions HDAC inhibition induced a strong response of temsirolimus-resistant bladder cancer cells. Therefore, the temsirolimus-VPA-combination might be an innovative strategy for bladder cancer treatment.
Collapse
|
14
|
Rioux B, Pouget C, Fidanzi-Dugas C, Gamond A, Laurent A, Semaan J, Pinon A, Champavier Y, Léger DY, Liagre B, Duroux JL, Fagnère C, Sol V. Design and multi-step synthesis of chalcone-polyamine conjugates as potent antiproliferative agents. Bioorg Med Chem Lett 2017; 27:4354-4357. [DOI: 10.1016/j.bmcl.2017.08.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/10/2017] [Accepted: 08/12/2017] [Indexed: 01/08/2023]
|
15
|
Ud Din Z, Serrano N, Ademi K, Sousa C, Deflon VM, Maia PIDS, Rodrigues-Filho E. Crystal structures, in-silico study and anti-microbial potential of synthetic monocarbonyl curcuminoids. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.05.061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Su YK, Huang WC, Lee WH, Bamodu OA, Zucha MA, Astuti I, Suwito H, Yeh CT, Lin CM. Methoxyphenyl chalcone sensitizes aggressive epithelial cancer to cisplatin through apoptosis induction and cancer stem cell eradication. Tumour Biol 2017; 39:1010428317691689. [PMID: 28466786 DOI: 10.1177/1010428317691689] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Current standard chemotherapy for late stage ovarian cancer is found unsuccessful due to relapse after completing the regimens. After completing platinum-based chemotherapy, 70% of patients develop relapse and resistance. Recent evidence proves ovarian cancer stem cells as the source of resistance. Therefore, treatment strategy to target both cancer stem cells and normal stem cells is essential. In this study, we developed a novel chalcone derivative as novel drug candidate for ovarian cancer treatment. We found that methoxyphenyl chalcone was effective to eliminate ovarian cancer cells when given either as monotherapy or in combination with cisplatin. We found that cell viability of ovarian cancer cells was decreased through apoptosis induction. Dephosphorylation of Bcl2-associated agonist of cell death protein was increased after methoxyphenyl chalcone treatment that led to activation of caspases. Interestingly, this drug also worked as a G2/M checkpoint modulator with alternative ways of DNA damage signal-evoking potential that might work to increase response after cisplatin treatment. In addition, methoxyphenyl chalcone was able to suppress autophagic flux and stemness regulator in ovarian spheroids that decreased their survival. Therefore, combination of methoxyphenyl chalcone and cisplatin showed synergistic effects. Taken together, we believe that our novel compound is a promising novel therapeutic agent for effective clinical treatment of ovarian cancer.
Collapse
Affiliation(s)
- Yu-Kai Su
- 1 Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,2 Division of Neurosurgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Wen-Chien Huang
- 3 Department of Medicine, Mackay Medical College, Taipei, Taiwan.,4 Department of Thoracic Surgery, Mackay Memorial Hospital, Taipei, Taiwan.,5 Mackay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
| | - Wei-Hwa Lee
- 6 Department of Pathology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Oluwaseun Adebayo Bamodu
- 7 Division of Hematology and Oncology, Cancer Center, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,8 Department of Medical Research and Education, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Muhammad Ary Zucha
- 7 Division of Hematology and Oncology, Cancer Center, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,8 Department of Medical Research and Education, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Indwiani Astuti
- 9 Department of Chemistry, Faculty of Science and Technology, Airlangga University, Surabaya, Indonesia
| | - Heri Suwito
- 10 Department of Pharmacology and Clinical Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Chi-Tai Yeh
- 7 Division of Hematology and Oncology, Cancer Center, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,8 Department of Medical Research and Education, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chien-Min Lin
- 1 Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,2 Division of Neurosurgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
17
|
Hu G, Li P, Li Y, Wang T, Gao X, Zhang W, Jia G. Methylation levels of P16 and TP53 that are involved in DNA strand breakage of 16HBE cells treated by hexavalent chromium. Toxicol Lett 2016; 249:15-21. [DOI: 10.1016/j.toxlet.2016.03.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/19/2016] [Accepted: 03/07/2016] [Indexed: 01/10/2023]
|