1
|
HIV-1-Specific Antibody Response and Function after DNA Prime and Recombinant Adenovirus 5 Boost HIV Vaccine in HIV-Infected Subjects. PLoS One 2016; 11:e0160341. [PMID: 27500639 PMCID: PMC4976892 DOI: 10.1371/journal.pone.0160341] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/18/2016] [Indexed: 01/12/2023] Open
Abstract
Little is known about the humoral immune response against DNA prime-recombinant adenovirus 5 (rAd5) boost HIV vaccine among HIV-infected patients on long-term suppressive antiretroviral therapy (ART). Previous studies emphasized cellular immune responses; however, current research suggests both cellular and humoral responses are likely required for a successful therapeutic vaccine. Thus, we aimed to understand antibody response and function induced by vaccination of ART-treated HIV-1-infected patients with immune recovery. All subjects participated in EraMune 02, an open-label randomized clinical trial of ART intensification followed by a six plasmid DNA prime (envA, envB, envC, gagB, polB, nefB) and rAd5 boost HIV vaccine with matching inserts. Antibody binding levels were determined with a recently developed microarray approach. We also analyzed neutralization efficiency and antibody-dependent cellular cytotoxicity (ADCC). We found that the DNA prime-rAd5 boost vaccine induced a significant cross-clade HIV-specific antibody response, which correlated with antibody neutralization efficiency. However, despite the increase in antibody binding levels, the vaccine did not significantly stimulate neutralization or ADCC responses. This finding was also reflected by a lack of change in total CD4+ cell associated HIV DNA in those who received the vaccine. Our results have important implications for further therapeutic vaccine design and administration, especially in HIV-1 infected patients, as boosting of preexisting antibody responses are unlikely to lead to clearance of latent proviruses in the HIV reservoir.
Collapse
|
2
|
Kaveh DA, Garcia-Pelayo MC, Webb PR, Wooff EE, Bachy VS, Hogarth PJ. Parenteral adenoviral boost enhances BCG induced protection, but not long term survival in a murine model of bovine TB. Vaccine 2016; 34:4003-11. [PMID: 27317453 DOI: 10.1016/j.vaccine.2016.06.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/25/2016] [Accepted: 06/09/2016] [Indexed: 10/21/2022]
Abstract
Boosting BCG using heterologous prime-boost represents a promising strategy for improved tuberculosis (TB) vaccines, and adenovirus (Ad) delivery is established as an efficacious boosting vehicle. Although studies demonstrate that intranasal administration of Ad boost to BCG offers optimal protection, this is not currently possible in cattle. Using Ad vaccine expressing the mycobacterial antigen TB10.4 (BCG/Ad-TB10.4), we demonstrate, parenteral boost of BCG immunised mice to induce specific CD8(+) IFN-γ producing T cells via synergistic priming of new epitopes. This induces significant improvement in pulmonary protection against Mycobacterium bovis over that provided by BCG when assessed in a standard 4week challenge model. However, in a stringent, year-long survival study, BCG/Ad-TB10.4 did not improve outcome over BCG, which we suggest may be due to the lack of additional memory cells (IL-2(+)) induced by boosting. These data indicate BCG-prime/parenteral-Ad-TB10.4-boost to be a promising candidate, but also highlight the need for further understanding of the mechanisms of T cell priming and associated memory using Ad delivery systems. That we were able to generate significant improvement in pulmonary protection above BCG with parenteral, rather than mucosal administration of boost vaccine is critical; suggesting that the generation of effective mucosal immunity is possible, without the risks and challenges of mucosal administration, but that further work to specifically enhance sustained protective immunity is required.
Collapse
Affiliation(s)
- Daryan A Kaveh
- Department of Bacteriology, Animal & Plant Health Agency (APHA), Woodham Lane, Addlestone, Surrey KT15 3NB, United Kingdom(1)
| | - M Carmen Garcia-Pelayo
- Department of Bacteriology, Animal & Plant Health Agency (APHA), Woodham Lane, Addlestone, Surrey KT15 3NB, United Kingdom(1)
| | - Paul R Webb
- Department of Bacteriology, Animal & Plant Health Agency (APHA), Woodham Lane, Addlestone, Surrey KT15 3NB, United Kingdom(1)
| | - Esen E Wooff
- Department of Bacteriology, Animal & Plant Health Agency (APHA), Woodham Lane, Addlestone, Surrey KT15 3NB, United Kingdom(1)
| | - Véronique S Bachy
- Department of Bacteriology, Animal & Plant Health Agency (APHA), Woodham Lane, Addlestone, Surrey KT15 3NB, United Kingdom(1)
| | - Philip J Hogarth
- Department of Bacteriology, Animal & Plant Health Agency (APHA), Woodham Lane, Addlestone, Surrey KT15 3NB, United Kingdom(1).
| |
Collapse
|
3
|
Fonseca JA, Cabrera-Mora M, Kashentseva EA, Villegas JP, Fernandez A, Van Pelt A, Dmitriev IP, Curiel DT, Moreno A. A Plasmodium Promiscuous T Cell Epitope Delivered within the Ad5 Hexon Protein Enhances the Protective Efficacy of a Protein Based Malaria Vaccine. PLoS One 2016; 11:e0154819. [PMID: 27128437 PMCID: PMC4851317 DOI: 10.1371/journal.pone.0154819] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/19/2016] [Indexed: 12/20/2022] Open
Abstract
A malaria vaccine is a public health priority. In order to produce an effective vaccine, a multistage approach targeting both the blood and the liver stage infection is desirable. The vaccine candidates also need to induce balanced immune responses including antibodies, CD4+ and CD8+ T cells. Protein-based subunit vaccines like RTS,S are able to induce strong antibody response but poor cellular reactivity. Adenoviral vectors have been effective inducing protective CD8+ T cell responses in several models including malaria; nonetheless this vaccine platform exhibits a limited induction of humoral immune responses. Two approaches have been used to improve the humoral immunogenicity of recombinant adenovirus vectors, the use of heterologous prime-boost regimens with recombinant proteins or the genetic modification of the hypervariable regions (HVR) of the capsid protein hexon to express B cell epitopes of interest. In this study, we describe the development of capsid modified Ad5 vectors that express a promiscuous Plasmodium yoelii T helper epitope denominated PyT53 within the hexon HVR2 region. Several regimens were tested in mice to determine the relevance of the hexon modification in enhancing protective immune responses induced by the previously described protein-based multi-stage experimental vaccine PyCMP. A heterologous prime-boost immunization regime that combines a hexon modified vector with transgenic expression of PyCMP followed by protein immunizations resulted in the induction of robust antibody and cellular immune responses in comparison to a similar regimen that includes a vector with unmodified hexon. These differences in immunogenicity translated into a better protective efficacy against both the hepatic and red blood cell stages of P. yoelii. To our knowledge, this is the first time that a hexon modification is used to deliver a promiscuous T cell epitope. Our data support the use of such modification to enhance the immunogenicity and protective efficacy of adenoviral based malaria vaccines.
Collapse
Affiliation(s)
- Jairo Andres Fonseca
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Monica Cabrera-Mora
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Elena A. Kashentseva
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - John Paul Villegas
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Alejandra Fernandez
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Amelia Van Pelt
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Igor P. Dmitriev
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - David T. Curiel
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Alberto Moreno
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
4
|
Bassi MR, Larsen MAB, Kongsgaard M, Rasmussen M, Buus S, Stryhn A, Thomsen AR, Christensen JP. Vaccination with Replication Deficient Adenovectors Encoding YF-17D Antigens Induces Long-Lasting Protection from Severe Yellow Fever Virus Infection in Mice. PLoS Negl Trop Dis 2016; 10:e0004464. [PMID: 26886513 PMCID: PMC4757529 DOI: 10.1371/journal.pntd.0004464] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 01/26/2016] [Indexed: 12/22/2022] Open
Abstract
The live attenuated yellow fever vaccine (YF-17D) has been successfully used for more than 70 years. It is generally considered a safe vaccine, however, recent reports of serious adverse events following vaccination have raised concerns and led to suggestions that even safer YF vaccines should be developed. Replication deficient adenoviruses (Ad) have been widely evaluated as recombinant vectors, particularly in the context of prophylactic vaccination against viral infections in which induction of CD8+ T-cell mediated immunity is crucial, but potent antibody responses may also be elicited using these vectors. In this study, we present two adenobased vectors targeting non-structural and structural YF antigens and characterize their immunological properties. We report that a single immunization with an Ad-vector encoding the non-structural protein 3 from YF-17D could elicit a strong CD8+ T-cell response, which afforded a high degree of protection from subsequent intracranial challenge of vaccinated mice. However, full protection was only observed using a vector encoding the structural proteins from YF-17D. This vector elicited virus-specific CD8+ T cells as well as neutralizing antibodies, and both components were shown to be important for protection thus mimicking the situation recently uncovered in YF-17D vaccinated mice. Considering that Ad-vectors are very safe, easy to produce and highly immunogenic in humans, our data indicate that a replication deficient adenovector-based YF vaccine may represent a safe and efficient alternative to the classical live attenuated YF vaccine and should be further tested. Live attenuated yellow fever vaccine (YF-17D) is an efficient and generally safe vaccine. Nevertheless, in recent years the reporting of serious adverse effects together with the given limitations in the use of this live vaccine in certain risk groups has spurred an interest in developing a more generally applicable and safer alternative. Using an adenovector platform and recombinant vaccines targeting both structural and non-structural YF antigens, we now demonstrate that non-replicating adenobased vaccines may be used to induce a state of host immunity, which like YF-17D vaccination encompasses both major arms of the adaptive immune system. Furthermore, in a murine challenge model, adenovector induced protection fully matched that induced by the current vaccine. Taken together our results strongly suggest that adenovectored vaccines targeting structural and non-structural viral antigens represent a viable and safe alternative to the existing live, attenuated YF vaccine.
Collapse
Affiliation(s)
- Maria R. Bassi
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Mads A. B. Larsen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Michael Kongsgaard
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Michael Rasmussen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Søren Buus
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Anette Stryhn
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Allan R. Thomsen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jan P. Christensen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
5
|
Ren Y, Wang N, Hu W, Zhang X, Xu J, Wan Y. Successive site translocating inoculation potentiates DNA/recombinant vaccinia vaccination. Sci Rep 2015; 5:18099. [PMID: 26667202 PMCID: PMC4678304 DOI: 10.1038/srep18099] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/11/2015] [Indexed: 12/22/2022] Open
Abstract
DNA vaccines have advantages over traditional vaccine modalities; however the relatively low immunogenicity restrains its translation into clinical use. Further optimizations are needed to get the immunogenicity of DNA vaccine closer to the level required for human use. Here we show that intramuscularly inoculating into a different limb each time significantly improves the immunogenicities of both DNA and recombinant vaccinia vaccines during multiple vaccinations, compared to repeated vaccination on the same limb. We term this strategy successive site translocating inoculation (SSTI). SSTI could work in synergy with genetic adjuvant and DNA prime-recombinant vaccinia boost regimen. By comparing in vivo antigen expression, we found that SSTI avoided the specific inhibition of in vivo antigen expression, which was observed in the limbs being repeatedly inoculated. Employing in vivo T cell depletion and passive IgG transfer, we delineated that the inhibition was not mediated by CD8+ T cells but by specific antibodies. Finally, by using C3−/− mouse model and in vivo NK cells depletion, we identified that specific antibodies negatively regulated the in vivo antigen expression primarily in a complement depended way.
Collapse
Affiliation(s)
- Yanqin Ren
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Na Wang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Weiguo Hu
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.,Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.,Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Yanmin Wan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| |
Collapse
|