1
|
Cleary SR, Teng ACT, Kongmeneck AD, Fang X, Phillips TA, Cho EE, Smith RA, Karkut P, Makarewich CA, Kekenes-Huskey PM, Gramolini AO, Robia SL. Dilated cardiomyopathy variant R14del increases phospholamban pentamer stability, blunting dynamic regulation of calcium. J Biol Chem 2024; 301:108118. [PMID: 39710323 DOI: 10.1016/j.jbc.2024.108118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/28/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024] Open
Abstract
The sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) is a membrane transporter that creates and maintains intracellular Ca2+ stores. In the heart, SERCA is regulated by an inhibitory interaction with the monomeric form of the transmembrane micropeptide phospholamban (PLB). PLB also forms avid homo-pentamers, and the dynamic exchange of PLB between pentamers and SERCA is an important determinant of cardiac responsiveness to exercise. Here, we investigated two naturally occurring pathogenic variants of PLB: a cysteine substitution of Arg9 (R9C) and an in-frame deletion of Arg14 (R14del). Both variants are associated with dilated cardiomyopathy. We previously showed that the R9C mutation causes disulfide crosslinking and hyperstabilization of pentamers. While the pathogenic mechanism of R14del is unclear, we hypothesized this mutation may also alter pentamer stability. Immunoblots revealed a significantly increased pentamer: monomer ratio for R14del-PLB compared to WT-PLB. We quantified homo-oligomerization and SERCA-binding in live cells using fluorescence resonance energy transfer (FRET) microscopy. R14del-PLB showed an increased affinity for homo-oligomerization and decreased binding affinity for SERCA compared to WT. The data suggest that, like R9C, the R14del mutation stabilizes PLB in pentamers, decreasing its ability to regulate SERCA. The R14del mutation reduced the rate of PLB unbinding from pentamers after transient elevations of Ca2+, limiting the recovery of PLB-SERCA complexes. A computational model predicted that hyperstabilization of PLB pentamers by R14del impairs the ability of cardiac Ca2+ handling to respond to changing heart rates between rest and exercise. We postulate that impaired responsiveness to physiological stress contributes to arrhythmogenesis in human carriers of the R14del mutation.
Collapse
Affiliation(s)
- Sean R Cleary
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, USA
| | - Allen C T Teng
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | | | - Xuan Fang
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, USA
| | - Taylor A Phillips
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, USA
| | - Ellen E Cho
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, USA
| | - Rhys A Smith
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, USA
| | - Patryk Karkut
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, USA
| | - Catherine A Makarewich
- Division of Molecular Cardiovascular Biology of the Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Peter M Kekenes-Huskey
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, USA
| | | | - Seth L Robia
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, USA.
| |
Collapse
|
2
|
Vafiadaki E, Kranias EG, Eliopoulos AG, Sanoudou D. The phospholamban R14del generates pathogenic aggregates by impairing autophagosome-lysosome fusion. Cell Mol Life Sci 2024; 81:450. [PMID: 39527246 PMCID: PMC11554986 DOI: 10.1007/s00018-024-05471-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/30/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
Phospholamban (PLN) plays a crucial role in regulating sarcoplasmic reticulum (SR) Ca2+ cycling and cardiac contractility. Mutations within the PLN gene have been detected in patients with cardiomyopathy, with the heterozygous variant c.40_42delAGA (p.R14del) of PLN being the most prevalent. Investigations into the mechanisms underlying the pathology of PLN-R14del have revealed that cardiac cells from affected patients exhibit pathological aggregates containing PLN. Herein, we performed comprehensive molecular and cellular analyses to delineate the molecular aberrations associated with the formation of these aggregates. We determined that PLN aggregates contain autophagic proteins, indicating inefficient degradation via the autophagy pathway. Our findings demonstrate that the expression of PLN-R14del results in diminished autophagic flux due to impaired fusion between autophagosomes and lysosomes. Mechanistically, this defect is linked to aberrant recruitment of key membrane fusion proteins to autophagosomes, which is mediated in part by changes in Ca2+ homeostasis. Collectively, these results highlight a novel function of PLN-R14del in regulating autophagy, that may contribute to the formation of pathogenic aggregates in patients with cardiomyopathy. Prospective strategies tailored to ameliorate impaired autophagy may hold promise against PLN-R14del disease.
Collapse
Affiliation(s)
- Elizabeth Vafiadaki
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece.
| | - Evangelia G Kranias
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Aristides G Eliopoulos
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece
- Department of Biology, School of Medicine, National and Kapodistrian University of Athens, Mikras Asias 75, Athens, 11527, Greece
- Center for New Biotechnologies and Precision Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - Despina Sanoudou
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece.
- Center for New Biotechnologies and Precision Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, 11527, Greece.
- Clinical Genomics and Pharmacogenomics Unit, 4th Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, 11527, Greece.
| |
Collapse
|
3
|
Stege NM, de Boer RA, Makarewich CA, van der Meer P, Silljé HHW. Reassessing the Mechanisms of PLN-R14del Cardiomyopathy: From Calcium Dysregulation to S/ER Malformation. JACC Basic Transl Sci 2024; 9:1041-1052. [PMID: 39297138 PMCID: PMC11405888 DOI: 10.1016/j.jacbts.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 09/21/2024]
Abstract
The phospholamban (PLN) pathogenic gene variant, p.Arg14del (PLN-R14del), can lead to dilated and arrhythmogenic cardiomyopathy, resulting in heart failure. PLN-R14del cardiomyopathy has been conceptualized as a disease caused by sarco/endoplasmic reticulum calcium adenosine triphosphatase 2a (SERCA2a) superinhibition. However, recent studies raised controversy regarding the effect of PLN-R14del on SERCA activity and revealed a prominent role for abnormal PLN protein distribution and sarco/endoplasmic reticulum disorganization as underlying disease mechanism. Strategies targeting sarco/endoplasmic reticulum malformation may, therefore, prove more effective than SERCA activity modulation. This review reassesses the disease mechanisms of PLN-R14del cardiomyopathy and emphasizes the importance of dissecting the underlying molecular mechanisms to uncover targets for innovative treatments.
Collapse
Affiliation(s)
- Nienke M Stege
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Rudolf A de Boer
- Erasmus Medical Center, Cardiovascular Institute, Thorax Center, Department of Cardiology, Rotterdam, the Netherlands
| | - Catherine A Makarewich
- Division of Molecular Cardiovascular Biology of the Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Peter van der Meer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Herman H W Silljé
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
4
|
Maniezzi C, Eskandr M, Florindi C, Ferrandi M, Barassi P, Sacco E, Pasquale V, Maione AS, Pompilio G, Teixeira VON, de Boer RA, Silljé HHW, Lodola F, Zaza A. Early consequences of the phospholamban mutation PLN-R14del +/- in a transgenic mouse model. Acta Physiol (Oxf) 2024; 240:e14082. [PMID: 38214033 DOI: 10.1111/apha.14082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/11/2023] [Accepted: 01/01/2024] [Indexed: 01/13/2024]
Abstract
AIMS The heterozygous phospholamban (PLN) mutation R14del (PLN R14del+/- ) is associated with a severe arrhythmogenic cardiomyopathy (ACM) developing in the adult. "Superinhibition" of SERCA2a by PLN R14del is widely assumed to underlie the pathogenesis, but alternative mechanisms such abnormal energy metabolism have also been reported. This work aims to (1) to evaluate Ca2+ dynamics and energy metabolism in a transgenic (TG) mouse model of the mutation prior to cardiomyopathy development; (2) to test whether they are causally connected. METHODS Ca2+ dynamics, energy metabolism parameters, reporters of mitochondrial integrity, energy, and redox homeostasis were measured in ventricular myocytes of 8-12 weeks-old, phenotypically silent, TG mice. Mutation effects were compared to pharmacological PLN antagonism and analyzed during modulation of sarcoplasmic reticulum (SR) and cytosolic Ca2+ compartments. Transcripts and proteins of relevant signaling pathways were evaluated. RESULTS The mutation was characterized by hyperdynamic Ca2+ handling, compatible with a loss of SERCA2a inhibition by PLN. All components of energy metabolism were depressed; myocyte energy charge was preserved under quiescence but reduced during stimulation. Cytosolic Ca2+ buffering or SERCA2a blockade reduced O2 consumption with larger effect in the mutant. Signaling changes suggest cellular adaptation to perturbed Ca2+ dynamics and response to stress. CONCLUSIONS (1) PLN R14del+/- loses its ability to inhibit SERCA2a, which argues against SERCA2a superinhibition as a pathogenetic mechanism; (2) depressed energy metabolism, its enhanced dependency on Ca2+ and activation of signaling responses point to an early involvement of metabolic stress in the pathogenesis of this ACM model.
Collapse
Affiliation(s)
- Claudia Maniezzi
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy
| | - Marem Eskandr
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy
| | - Chiara Florindi
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy
| | - Mara Ferrandi
- Windtree Therapeutics Inc., Warrington, Pennsylvania, USA
| | - Paolo Barassi
- Windtree Therapeutics Inc., Warrington, Pennsylvania, USA
| | - Elena Sacco
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy
| | - Valentina Pasquale
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy
| | - Angela S Maione
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Biomedical, Surgical and Dentist Sciences, University of Milano, Milan, Italy
| | | | - Rudolf A de Boer
- Department of Cardiology, Erasmus University Medical Center, University of Rotterdam, Rotterdam, Netherlands
| | - Herman H W Silljé
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Francesco Lodola
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy
| | - Antonio Zaza
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
5
|
Stege NM, Eijgenraam TR, Oliveira Nunes Teixeira V, Feringa AM, Schouten EM, Kuster DW, van der Velden J, Wolters AH, Giepmans BN, Makarewich CA, Bassel-Duby R, Olson EN, de Boer RA, Silljé HH. DWORF Extends Life Span in a PLN-R14del Cardiomyopathy Mouse Model by Reducing Abnormal Sarcoplasmic Reticulum Clusters. Circ Res 2023; 133:1006-1021. [PMID: 37955153 PMCID: PMC10699510 DOI: 10.1161/circresaha.123.323304] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/18/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND The p.Arg14del variant of the PLN (phospholamban) gene causes cardiomyopathy, leading to severe heart failure. Calcium handling defects and perinuclear PLN aggregation have both been suggested as pathological drivers of this disease. Dwarf open reading frame (DWORF) has been shown to counteract PLN regulatory calcium handling function in the sarco/endoplasmic reticulum (S/ER). Here, we investigated the potential disease-modulating action of DWORF in this cardiomyopathy and its effects on calcium handling and PLN aggregation. METHODS We studied a PLN-R14del mouse model, which develops cardiomyopathy with similar characteristics as human patients, and explored whether cardiac DWORF overexpression could delay cardiac deterioration. To this end, R14Δ/Δ (homozygous PLN-R14del) mice carrying the DWORF transgene (R14Δ/ΔDWORFTg [R14Δ/Δ mice carrying the DWORF transgene]) were used. RESULTS DWORF expression was suppressed in hearts of R14Δ/Δ mice with severe heart failure. Restoration of DWORF expression in R14Δ/Δ mice delayed cardiac fibrosis and heart failure and increased life span >2-fold (from 8 to 18 weeks). DWORF accelerated sarcoplasmic reticulum calcium reuptake and relaxation in isolated cardiomyocytes with wild-type PLN, but in R14Δ/Δ cardiomyocytes, sarcoplasmic reticulum calcium reuptake and relaxation were already enhanced, and no differences were detected between R14Δ/Δ and R14Δ/ΔDWORFTg. Rather, DWORF overexpression delayed the appearance and formation of large pathogenic perinuclear PLN clusters. Careful examination revealed colocalization of sarcoplasmic reticulum markers with these PLN clusters in both R14Δ/Δ mice and human p.Arg14del PLN heart tissue, and hence these previously termed aggregates are comprised of abnormal organized S/ER. This abnormal S/ER organization in PLN-R14del cardiomyopathy contributes to cardiomyocyte cell loss and replacement fibrosis, consequently resulting in cardiac dysfunction. CONCLUSIONS Disorganized S/ER is a major characteristic of PLN-R14del cardiomyopathy in humans and mice and results in cardiomyocyte death. DWORF overexpression delayed PLN-R14del cardiomyopathy progression and extended life span in R14Δ/Δ mice, by reducing abnormal S/ER clusters.
Collapse
Affiliation(s)
- Nienke M. Stege
- Department of Cardiology, University Medical Center Groningen, University of Groningen, the Netherlands (N.M.S., T.R.E., V.O.N.T., A.M.F., E.M.S., R.A.d.B., H.H.W.S.)
| | - Tim R. Eijgenraam
- Department of Cardiology, University Medical Center Groningen, University of Groningen, the Netherlands (N.M.S., T.R.E., V.O.N.T., A.M.F., E.M.S., R.A.d.B., H.H.W.S.)
| | - Vivian Oliveira Nunes Teixeira
- Department of Cardiology, University Medical Center Groningen, University of Groningen, the Netherlands (N.M.S., T.R.E., V.O.N.T., A.M.F., E.M.S., R.A.d.B., H.H.W.S.)
| | - Anna M. Feringa
- Department of Cardiology, University Medical Center Groningen, University of Groningen, the Netherlands (N.M.S., T.R.E., V.O.N.T., A.M.F., E.M.S., R.A.d.B., H.H.W.S.)
| | - Elisabeth M. Schouten
- Department of Cardiology, University Medical Center Groningen, University of Groningen, the Netherlands (N.M.S., T.R.E., V.O.N.T., A.M.F., E.M.S., R.A.d.B., H.H.W.S.)
| | - Diederik W.D. Kuster
- Department of Physiology (D.W.D.K., J.v.d.V.), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias (D.W.D.K., J.v.d.V.), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Jolanda van der Velden
- Department of Physiology (D.W.D.K., J.v.d.V.), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias (D.W.D.K., J.v.d.V.), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Anouk H.G. Wolters
- Biomedical Sciences of Cells and Systems, UMC Groningen, University of Groningen, the Netherlands (A.H.G.W., B.N.G.G.)
| | - Ben N.G. Giepmans
- Biomedical Sciences of Cells and Systems, UMC Groningen, University of Groningen, the Netherlands (A.H.G.W., B.N.G.G.)
| | - Catherine A. Makarewich
- Division of Molecular Cardiovascular Biology of the Heart Institute, Cincinnati Children’s Hospital Medical Center, OH (C.A.M.)
- Department of Pediatrics, University of Cincinnati College of Medicine, OH (C.A.M.)
| | - Rhonda Bassel-Duby
- Department of Cardiology, University Medical Center Groningen, University of Groningen, the Netherlands (N.M.S., T.R.E., V.O.N.T., A.M.F., E.M.S., R.A.d.B., H.H.W.S.)
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas (R.B.-D., E.N.O.)
| | - Eric N. Olson
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas (R.B.-D., E.N.O.)
| | - Rudolf A. de Boer
- Department of Cardiology, Erasmus University Medical Center, Rotterdam, the Netherlands (R.A.d.B.)
| | - Herman H.W. Silljé
- Department of Cardiology, University Medical Center Groningen, University of Groningen, the Netherlands (N.M.S., T.R.E., V.O.N.T., A.M.F., E.M.S., R.A.d.B., H.H.W.S.)
| |
Collapse
|
6
|
Cleary SR, Teng ACT, Kongmeneck AD, Fang X, Phillips TA, Cho EE, Kekenes-Huskey P, Gramolini AO, Robia SL. Dilated cardiomyopathy variant R14del increases phospholamban pentamer stability, blunting dynamic regulation of cardiac calcium handling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542463. [PMID: 37292897 PMCID: PMC10245957 DOI: 10.1101/2023.05.26.542463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The sarco(endo)plasmic reticulum Ca 2+ ATPase (SERCA) is a membrane transporter that creates and maintains intracellular Ca 2+ stores. In the heart, SERCA is regulated by an inhibitory interaction with the monomeric form of the transmembrane micropeptide phospholamban (PLB). PLB also forms avid homo-pentamers, and dynamic exchange of PLB between pentamers and the regulatory complex with SERCA is an important determinant of cardiac responsiveness to exercise. Here, we investigated two naturally occurring pathogenic mutations of PLB, a cysteine substitution of arginine 9 (R9C) and an in-frame deletion of arginine 14 (R14del). Both mutations are associated with dilated cardiomyopathy. We previously showed that the R9C mutation causes disulfide crosslinking and hyperstabilization of pentamers. While the pathogenic mechanism of R14del is unclear, we hypothesized that this mutation may also alter PLB homo-oligomerization and disrupt the PLB-SERCA regulatory interaction. SDS-PAGE revealed a significantly increased pentamer:monomer ratio for R14del-PLB when compared to WT-PLB. In addition, we quantified homo-oligomerization and SERCA-binding in live cells using fluorescence resonance energy transfer (FRET) microscopy. R14del-PLB showed an increased affinity for homo-oligomerization and decreased binding affinity for SERCA compared to WT, suggesting that, like R9C, the R14del mutation stabilizes PLB in its pentameric form, decreasing its ability to regulate SERCA. Moreover, the R14del mutation reduces the rate of PLB unbinding from the pentamer after a transient Ca 2+ elevation, limiting the rate of re-binding to SERCA. A computational model predicted that hyperstabilization of PLB pentamers by R14del impairs the ability of cardiac Ca 2+ handling to respond to changing heart rates between rest and exercise. We postulate that impaired responsiveness to physiological stress contributes to arrhythmogenesis in human carriers of the R14del mutation.
Collapse
|
7
|
Kiessling M, Djalinac N, Voglhuber J, Ljubojevic-Holzer S. Nuclear Calcium in Cardiac (Patho)Physiology: Small Compartment, Big Impact. Biomedicines 2023; 11:biomedicines11030960. [PMID: 36979939 PMCID: PMC10046765 DOI: 10.3390/biomedicines11030960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
The nucleus of a cardiomyocyte has been increasingly recognized as a morphologically distinct and partially independent calcium (Ca2+) signaling microdomain, with its own Ca2+-regulatory mechanisms and important effects on cardiac gene expression. In this review, we (1) provide a comprehensive overview of the current state of research on the dynamics and regulation of nuclear Ca2+ signaling in cardiomyocytes, (2) address the role of nuclear Ca2+ in the development and progression of cardiac pathologies, such as heart failure and atrial fibrillation, and (3) discuss novel aspects of experimental methods to investigate nuclear Ca2+ handling and its downstream effects in the heart. Finally, we highlight current challenges and limitations and recommend future directions for addressing key open questions.
Collapse
Affiliation(s)
- Mara Kiessling
- Department of Cardiology, Medical University of Graz, 8036 Graz, Austria
| | - Nataša Djalinac
- Department of Biology, University of Padua, 35122 Padova, Italy
| | - Julia Voglhuber
- Department of Cardiology, Medical University of Graz, 8036 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
| | - Senka Ljubojevic-Holzer
- Department of Cardiology, Medical University of Graz, 8036 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
- Gottfried Schatz Research Center, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| |
Collapse
|
8
|
Vafiadaki E, Glijnis PC, Doevendans PA, Kranias EG, Sanoudou D. Phospholamban R14del disease: The past, the present and the future. Front Cardiovasc Med 2023; 10:1162205. [PMID: 37144056 PMCID: PMC10151546 DOI: 10.3389/fcvm.2023.1162205] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/03/2023] [Indexed: 05/06/2023] Open
Abstract
Arrhythmogenic cardiomyopathy affects significant number of patients worldwide and is characterized by life-threatening ventricular arrhythmias and sudden cardiac death. Mutations in multiple genes with diverse functions have been reported to date including phospholamban (PLN), a key regulator of sarcoplasmic reticulum (SR) Ca2+ homeostasis and cardiac contractility. The PLN-R14del variant in specific is recognized as the cause in an increasing number of patients worldwide, and extensive investigations have enabled rapid advances towards the delineation of PLN-R14del disease pathogenesis and discovery of an effective treatment. We provide a critical overview of current knowledge on PLN-R14del disease pathophysiology, including clinical, animal model, cellular and biochemical studies, as well as diverse therapeutic approaches that are being pursued. The milestones achieved in <20 years, since the discovery of the PLN R14del mutation (2006), serve as a paradigm of international scientific collaboration and patient involvement towards finding a cure.
Collapse
Affiliation(s)
- Elizabeth Vafiadaki
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Correspondence: Elizabeth Vafiadaki Despina Sanoudou
| | - Pieter C. Glijnis
- Stichting Genetische Hartspierziekte PLN, Phospholamban Foundation, Wieringerwerf, Netherlands
| | - Pieter A. Doevendans
- Netherlands Heart Institute, Utrecht, Netherlands
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Evangelia G. Kranias
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Despina Sanoudou
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Clinical Genomics and Pharmacogenomics Unit, 4th Department of Internal Medicine, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Correspondence: Elizabeth Vafiadaki Despina Sanoudou
| |
Collapse
|
9
|
Aberrant PLN-R14del Protein Interactions Intensify SERCA2a Inhibition, Driving Impaired Ca2+ Handling and Arrhythmogenesis. Int J Mol Sci 2022; 23:ijms23136947. [PMID: 35805951 PMCID: PMC9266971 DOI: 10.3390/ijms23136947] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
Phospholamban (PLN), a key modulator of Ca2+-homeostasis, inhibits sarcoplasmic reticulum (SR) calcium-ATPase (SERCA2a) and regulates cardiac contractility. The human PLN mutation R14del has been identified in arrhythmogenic cardiomyopathy patients worldwide and is currently extensively investigated. In search of the molecular mechanisms mediating the pathological phenotype, we examined PLN-R14del associations to known PLN-interacting partners. We determined that PLN-R14del interactions to key Ca2+-handling proteins SERCA2a and HS-1-associated protein X-1 (HAX-1) were enhanced, indicating the super-inhibition of SERCA2a’s Ca2+-affinity. Additionally, histidine-rich calcium binding protein (HRC) binding to SERCA2a was increased, suggesting the inhibition of SERCA2a maximal velocity. As phosphorylation relieves the inhibitory effect of PLN on SERCA2a activity, we examined the impact of phosphorylation on the PLN-R14del/SERCA2a interaction. Contrary to PLN-WT, phosphorylation did not affect PLN-R14del binding to SERCA2a, due to a lack of Ser-16 phosphorylation in PLN-R14del. No changes were observed in the subcellular distribution of PLN-R14del or its co-localization to SERCA2a. However, in silico predictions suggest structural perturbations in PLN-R14del that could impact its binding and function. Our findings reveal for the first time that by increased binding to SERCA2a and HAX-1, PLN-R14del acts as an enhanced inhibitor of SERCA2a, causing a cascade of molecular events contributing to impaired Ca2+-homeostasis and arrhythmogenesis. Relieving SERCA2a super-inhibition could offer a promising therapeutic approach for PLN-R14del patients.
Collapse
|
10
|
Nothing Regular about the Regulins: Distinct Functional Properties of SERCA Transmembrane Peptide Regulatory Subunits. Int J Mol Sci 2021; 22:ijms22168891. [PMID: 34445594 PMCID: PMC8396278 DOI: 10.3390/ijms22168891] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/11/2022] Open
Abstract
The sarco-endoplasmic reticulum calcium ATPase (SERCA) is responsible for maintaining calcium homeostasis in all eukaryotic cells by actively transporting calcium from the cytosol into the sarco-endoplasmic reticulum (SR/ER) lumen. Calcium is an important signaling ion, and the activity of SERCA is critical for a variety of cellular processes such as muscle contraction, neuronal activity, and energy metabolism. SERCA is regulated by several small transmembrane peptide subunits that are collectively known as the “regulins”. Phospholamban (PLN) and sarcolipin (SLN) are the original and most extensively studied members of the regulin family. PLN and SLN inhibit the calcium transport properties of SERCA and they are required for the proper functioning of cardiac and skeletal muscles, respectively. Myoregulin (MLN), dwarf open reading frame (DWORF), endoregulin (ELN), and another-regulin (ALN) are newly discovered tissue-specific regulators of SERCA. Herein, we compare the functional properties of the regulin family of SERCA transmembrane peptide subunits and consider their regulatory mechanisms in the context of the physiological and pathophysiological roles of these peptides. We present new functional data for human MLN, ELN, and ALN, demonstrating that they are inhibitors of SERCA with distinct functional consequences. Molecular modeling and molecular dynamics simulations of SERCA in complex with the transmembrane domains of MLN and ALN provide insights into how differential binding to the so-called inhibitory groove of SERCA—formed by transmembrane helices M2, M6, and M9—can result in distinct functional outcomes.
Collapse
|
11
|
Abstract
Introduction Phospholamban cardiomyopathy is an inherited cardiomyopathy, characterised by a defect in regulation of the sarcoplasmic reticulum Ca2+ pump, often presenting with malignant arrhythmias and progressive cardiac dysfunction occurring at a young age. Methods Phospholamban R14del mutation carriers and family members were identified from inherited arrhythmia clinics at 13 sites across Canada. Cardiac investigations, including electrocardiograms, Holter monitoring (premature ventricular complexes, PVCs), and imaging results were summarised. Results Fifty patients (10 families) were identified (median age 30 years, range 3–71, 46% female). Mutation carriers were more likely to be older, have low-voltage QRS, T‑wave inversion, frequent PVCs, and cardiac dysfunction, compared to unaffected relatives. Increasing age, low-voltage QRS, T‑wave inversion, late potentials, and frequent PVCs were predictors of cardiac dysfunction (p < 0.05 for all). Older carriers (age ≥45 years) were more likely to have disease manifestations than were their younger counterparts, with disease onset occurring at an older age in Canadian patients and their Dutch counterparts. Discussion Among Canadian patients with phospholamban cardiomyopathy, clinical manifestations resembled those of their Dutch counterparts, with increasing age a major predictor of disease manifestation. Older mutation carriers were more likely to have electrical and structural abnormalities, and may represent variable expressivity, age-dependent penetrance, or genetic heterogeneity among Canadian patients. Electronic supplementary material The online version of this article (10.1007/s12471-019-1247-0) contains supplementary material, which is available to authorized users.
Collapse
|
12
|
Dysfunctional conformational dynamics of protein kinase A induced by a lethal mutant of phospholamban hinder phosphorylation. Proc Natl Acad Sci U S A 2015; 112:3716-21. [PMID: 25775607 DOI: 10.1073/pnas.1502299112] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The dynamic interplay between kinases and substrates is crucial for the formation of catalytically committed complexes that enable phosphoryl transfer. However, a clear understanding on how substrates modulate kinase structural dynamics to control catalytic efficiency is still missing. Here, we used solution NMR spectroscopy to study the conformational dynamics of two complexes of the catalytic subunit of the cAMP-dependent protein kinase A with WT and R14 deletion phospholamban, a lethal human mutant linked to familial dilated cardiomyopathy. Phospholamban is a central regulator of heart muscle contractility, and its phosphorylation by protein kinase A constitutes a primary response to β-adrenergic stimulation. We found that the single deletion of arginine in phospholamban's recognition sequence for the kinase reduces its binding affinity and dramatically reduces phosphorylation kinetics. Structurally, the mutant prevents the enzyme from adopting conformations and motions committed for catalysis, with concomitant reduction in catalytic efficiency. Overall, these results underscore the importance of a well-tuned structural and dynamic interplay between the kinase and its substrates to achieve physiological phosphorylation levels for proper Ca(2+) signaling and normal cardiac function.
Collapse
|