1
|
Suhasini PC, Bhat V, Shetty SS, Shetty PK, Roopashree PG, Kumari NS. High expression of CD9 and Epidermal Growth Factor Receptor promotes the development of tongue cancer. Med Oncol 2024; 41:86. [PMID: 38472425 DOI: 10.1007/s12032-024-02311-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 01/23/2024] [Indexed: 03/14/2024]
Abstract
Tongue cancer is distinguished by aggressive behavior, a high risk of recurrence, lymph, and distant metastases. Hypoxia-Induced Factor 1 α functions as a CD9 transcription factor. CD9 is a transmembrane protein that may be found on the cell membrane. It can modulate the expression of the Epidermal Growth Factor Receptor (EGFR) pathway. ELISA was used to measure serum CD9, p-EGFR, and p-Akt levels in 70 tongue cancer patients and 35 healthy controls. RT-PCR was used to analyze the gene expression of the related genes. The gene as well as protein expression of CD9, EGFR/p-EGFR, and Akt/p-Akt was significantly higher in case subjects when compared with the controls. The expression of CD9 was higher in case subjects who were smokers/alcoholics when to control subjects who were smokers/alcoholics. Overexpression of CD9 due to hypoxic conditions leads to the activation of EGFR-signaling pathway resulting in cancer progression, resistance to chemotherapy. Hence, CD9 could be a potential target to suppress cancer progression.
Collapse
Affiliation(s)
- P C Suhasini
- Department of Biochemistry, KS Hegde Medical Academy, NITTE (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Vadisha Bhat
- Department of ENT, KS Hegde Medical Academy, NITTE (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Shilpa S Shetty
- Cellomics, Lipdomics and Molecular Genetics division, Central Research Laboratory, KS Hegde Medical Academy, NITTE (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Praveen Kumar Shetty
- Department of Biochemistry, KS Hegde Medical Academy, NITTE (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - P G Roopashree
- Department of Biochemistry, KS Hegde Medical Academy, NITTE (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - N Suchetha Kumari
- Department of Biochemistry, KS Hegde Medical Academy, NITTE (Deemed to be University), Mangalore, Karnataka, 575018, India.
| |
Collapse
|
2
|
Ma Y, Yao Y, Meng X, Fu H, Li J, Luan X, Liu M, Liu H, Gu W, Hou L, Meng Q. Hemolymph exosomes inhibit Spiroplasma eriocheiris infection by promoting Tetraspanin-mediated hemocyte phagocytosis in crab. FASEB J 2024; 38:e23433. [PMID: 38226893 DOI: 10.1096/fj.202302182r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/26/2023] [Accepted: 01/04/2024] [Indexed: 01/17/2024]
Abstract
Exosomes released from infected cells are thought to play an important role in the dissemination of pathogens, as well as in host-derived immune molecules during infection. As an intracellular pathogen, Spiroplasma eriocheiris is harmful to multiple crustaceans. However, the immune mechanism of exosomes during Spiroplasma infection has not been investigated. Here, we found exosomes derived from S. eriocheiris-infected crabs could facilitate phagocytosis and apoptosis of hemocytes, resulting in increased crab survival and suppression of Spiroplasma intracellular replication. Proteomic analysis revealed the altered abundance of EsTetraspanin may confer resistance to S. eriocheiris, possibly by mediating hemocyte phagocytosis in Eriocheir sinensis. Specifically, knockdown of EsTetraspanin in E. sinensis increased susceptibility to S. eriocheiris infection and displayed compromised phagocytic ability, whereas overexpression of EsTetraspanin in Drosophila S2 cells inhibited S. eriocheiris infection. Further, it was confirmed that intramuscular injection of recombinant LEL domain of EsTetraspanin reduced the mortality of S. eriocheiris-infected crabs. Blockade with anti-EsTetraspanin serum could exacerbate S. eriocheiris invasion of hemocytes and impair hemocyte phagocytic activity. Taken together, our findings prove for the first time that exosomes modulate phagocytosis to resist pathogenic infection in invertebrates, which is proposed to be mediated by exosomal Tetraspanin, supporting the development of preventative strategies against Spiroplasma infection.
Collapse
Affiliation(s)
- Yubo Ma
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| | - Yu Yao
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| | - Xiang Meng
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| | - Hui Fu
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| | - Jiaying Li
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| | - Xiaoqi Luan
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| | - Min Liu
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| | - Hongli Liu
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| | - Wei Gu
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, PR China
| | - Libo Hou
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, China
| | - Qingguo Meng
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, PR China
| |
Collapse
|
3
|
Wang W, Huang W, Liu J, Zhang Z, Ji R, Wu C, Zhang J, Jiang X. Electric field promotes dermal fibroblast transdifferentiation through activation of RhoA/ROCK1 pathway. Int J Med Sci 2023; 20:1326-1335. [PMID: 37786441 PMCID: PMC10542021 DOI: 10.7150/ijms.86215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/26/2023] [Indexed: 10/04/2023] Open
Abstract
With the increased incidence of age-related and lifestyle-related diseases, chronic wounds are sweeping the world, where recent studies reveal that dysfunction of fibroblast plays an indispensable role. Endogenous electric field (EF) generated by skin wound disrupting an epithelial layer has been used as an alternative clinical treatment in chronic wound by modulating cellular behaviours, including fibroblasts transdifferentiation. Although many molecules and signaling pathways have been reported associated with fibroblasts transdifferentiation, studies investigating how the electric field affects the cellular pathways have been limited. For this purpose, a model of electric field treatment in vitro was established, where cells were randomly divided into control and electrified groups. The changes of protein expression and distribution were detected under different conditions, along with Zeiss imaging system observing the response of cells. Results showed that fibroblast transdifferentiation was accompanied by increased expression of a-SMA and extracellular matrix (COL-1 and COL-3) under the EF. Simultaneously, fibroblast transdifferentiation was also consistent with changes of cell arrangement and enhanced motility. Furthermore, we found that electric field activated RhoA signaling pathways activity. Y-27632, a RhoA inhibitor, which was used to treat fibroblasts, resulted in reduced transdifferentiation. The connection between electric field and RhoA signaling pathways is likely to be significant in modulating fibroblast transdifferentiation in acute injury and tissue remodeling, which provides an innovative idea for the molecular mechanism of EF in promoting chronic wound healing.
Collapse
Affiliation(s)
- Wenping Wang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University, Chongqing 400038, China
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wanqi Huang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Jie Liu
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University, Chongqing 400038, China
- Department of Plastic and Maxillofacial Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Ze Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Ran Ji
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chao Wu
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Jiaping Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Xupin Jiang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University, Chongqing 400038, China
| |
Collapse
|
4
|
Avequin T, Lau KH, Waldhart AN, Guak H, Dykstra H, Krawczyk C, Wu N. Differential effects of sugar and fat on adipose tissue inflammation. iScience 2023; 26:107163. [PMID: 37456843 PMCID: PMC10338233 DOI: 10.1016/j.isci.2023.107163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/05/2022] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Obese individuals experience low grade inflammation initiated within their adipose tissue. However, the early events that lead to the release of these inflammatory factors from adipose tissue are poorly characterized. To separate glucose effects from lipid effects on adipose tissue, we used an adipose-specific TXNIP knockout model where excess basal glucose influx into adipocytes led to modest increase in adiposity without using high fat diet. We found an uncoupling of two events that are generally presumed to be coregulated: (1) an increase of adipose tissue macrophage (ATM) number; and (2) pro-inflammatory activation of ATMs. These two events are associated with different triggering signals: elevated free fatty acids output and extracellular matrix remodeling with increased ATM number, whereas decreased adiponectin level with activated ATM. This separation reflects non-overlapping pathways regulated by glucose and lipids in adipocytes, and neither group alone is sufficient to elicit the full inflammatory response in adipose tissue.
Collapse
Affiliation(s)
| | - Kin H. Lau
- Van Andel Institute, Grand Rapids, MI 49503, USA
| | | | - Hannah Guak
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | - Ning Wu
- Van Andel Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
5
|
Ondruššek R, Kvokačková B, Kryštofová K, Brychtová S, Souček K, Bouchal J. Prognostic value and multifaceted roles of tetraspanin CD9 in cancer. Front Oncol 2023; 13:1140738. [PMID: 37007105 PMCID: PMC10063841 DOI: 10.3389/fonc.2023.1140738] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/27/2023] [Indexed: 03/19/2023] Open
Abstract
CD9 is a crucial regulator of cell adhesion in the immune system and plays important physiological roles in hematopoiesis, blood coagulation or viral and bacterial infections. It is involved in the transendothelial migration of leukocytes which might also be hijacked by cancer cells during their invasion and metastasis. CD9 is found at the cell surface and the membrane of exosomes affecting cancer progression and therapy resistance. High expression of CD9 is mostly associated with good patients outcome, with a few exceptions. Discordant findings have been reported for breast, ovarian, melanoma, pancreatic and esophageal cancer, which might be related to using different antibodies or inherent cancer heterogeneity. According to in vitro and in vivo studies, tetraspanin CD9 is not clearly associated with either tumor suppression or promotion. Further mechanistic experiments will elucidate the role of CD9 in particular cancer types and specific conditions.
Collapse
Affiliation(s)
- Róbert Ondruššek
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
- Department of Pathology, EUC Laboratore CGB a.s., Ostrava, Czechia
| | - Barbora Kvokačková
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Karolína Kryštofová
- Proteomics Core Facility Central European Institute of Technology, Masaryk University, Brno, Czechia
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
| | - Světlana Brychtová
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
| | - Karel Souček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Jan Bouchal
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
- Department of Clinical and Molecular Pathology, University Hospital Olomouc, Olomouc, Czechia
- *Correspondence: Jan Bouchal,
| |
Collapse
|
6
|
Deng Z, Zhang Y, Zhang Q, Li X, Zeng W, Jun C, Yuan D. Function of connexin 43 and RhoA/LIMK2/Cofilin signaling pathway in transient changes of contraction and dilation of human umbilical arterial smooth muscle cells. Int J Biochem Cell Biol 2022; 153:106326. [DOI: 10.1016/j.biocel.2022.106326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
|
7
|
Zuidema A, Wang W, Sonnenberg A. Crosstalk between Cell Adhesion Complexes in Regulation of Mechanotransduction. Bioessays 2020; 42:e2000119. [PMID: 32830356 DOI: 10.1002/bies.202000119] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/27/2020] [Indexed: 01/03/2023]
Abstract
Physical forces regulate numerous biological processes during development, physiology, and pathology. Forces between the external environment and intracellular actin cytoskeleton are primarily transmitted through integrin-containing focal adhesions and cadherin-containing adherens junctions. Crosstalk between these complexes is well established and modulates the mechanical landscape of the cell. However, integrins and cadherins constitute large families of adhesion receptors and form multiple complexes by interacting with different ligands, adaptor proteins, and cytoskeletal filaments. Recent findings indicate that integrin-containing hemidesmosomes oppose force transduction and traction force generation by focal adhesions. The cytolinker plectin mediates this crosstalk by coupling intermediate filaments to the actin cytoskeleton. Similarly, cadherins in desmosomes might modulate force generation by adherens junctions. Moreover, mechanotransduction can be influenced by podosomes, clathrin lattices, and tetraspanin-enriched microdomains. This review discusses mechanotransduction by multiple integrin- and cadherin-based cell adhesion complexes, which together with the associated cytoskeleton form an integrated network that allows cells to sense, process, and respond to their physical environment.
Collapse
Affiliation(s)
- Alba Zuidema
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - Wei Wang
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - Arnoud Sonnenberg
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| |
Collapse
|
8
|
Zhang Y, Wang J, Ding Y, Zhang J, Xu Y, Xu J, Zheng S, Yang H. Migrasome and Tetraspanins in Vascular Homeostasis: Concept, Present, and Future. Front Cell Dev Biol 2020; 8:438. [PMID: 32612990 PMCID: PMC7308473 DOI: 10.3389/fcell.2020.00438] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/11/2020] [Indexed: 12/18/2022] Open
Abstract
Cell migration plays a critical role in vascular homeostasis. Under noxious stimuli, endothelial cells (ECs) migration always contributes to vascular repair, while enhanced migration of vascular smooth muscle cells (VSMCs) will lead to pathological vascular remodeling. Moreover, vascular activities are involved in communication between ECs and VSMCs, between ECs and immune cells, et al. Recently, Ma et al. (2015) discovered a novel migration-dependent organelle “migrasome,” which mediated release of cytoplasmic contents, and this process was defined as “migracytosis.” The formation of migrasome is precisely regulated by tetraspanins (TSPANs), cholesterol and integrins. Migrasomes can be taken up by neighboring cells, and migrasomes are distributed in many kinds of cells and tissues, such as in blood vessel, human serum, and in ischemic brain of human and mouse. In addition, the migrasome elements TSPANs are wildly expressed in cardiovascular system. Therefore, TSPANs, migrasomes and migracytosis might play essential roles in regulating vascular homeostasis. In this review, we will discuss the discoveries of migration-dependent migrasome and migracytosis, migrasome formation, the basic differences between migrasomes and exosomes, the distributions and functions of migrasome, the functions of migrasome elements TSPANs in vascular biology, and discuss the possible roles of migrasomes and migracytosis in vascular homeostasis.
Collapse
Affiliation(s)
- Yaxing Zhang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing Wang
- Department of Ophthalmology, Qingdao Fubai Eye Hospital, Qingdao, China
| | - Yungang Ding
- Department of Ophthalmology, Qingdao Ludong Eye Hospital, Qingdao, China
| | - Jiongshan Zhang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Xu
- Department of Gastrointestinal Endoscopy, Guangzhou Cadre Health Management Center/Guangzhou Eleventh People's Hospital, Guangzhou, China
| | - Jingting Xu
- Biofeedback Laboratory, Xinhua College of Sun Yat-sen University, Guangzhou, China
| | - Shuhui Zheng
- Research Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongzhi Yang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Huang C, Fu C, Wren JD, Wang X, Zhang F, Zhang YH, Connel SA, Chen T, Zhang XA. Tetraspanin-enriched microdomains regulate digitation junctions. Cell Mol Life Sci 2018; 75:3423-3439. [PMID: 29589089 PMCID: PMC6615572 DOI: 10.1007/s00018-018-2803-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/18/2018] [Accepted: 03/21/2018] [Indexed: 12/22/2022]
Abstract
Tetraspanins co-emerged with multi-cellular organisms during evolution and are typically localized at the cell–cell interface, [corrected] and form tetraspanin-enriched microdomains (TEMs) by associating with each other and other membrane molecules. Tetraspanins affect various biological functions, but how tetraspanins engage in multi-faceted functions at the cellular level is largely unknown. When cells interact, the membrane microextrusions at the cell-cell interfaces form dynamic, digit-like structures between cells, which we term digitation junctions (DJs). We found that (1) tetraspanins CD9, CD81, and CD82 and (2) TEM-associated molecules integrin α3β1, CD44, EWI2/PGRL, and PI-4P are present in DJs of epithelial, endothelial, and cancer cells. Tetraspanins and their associated molecules also regulate the formation and development of DJs. Moreover, (1) actin cytoskeleton, RhoA, and actomyosin activities and (2) growth factor receptor-Src-MAP kinase signaling, but not PI-3 kinase, regulate DJs. Finally, we showed that DJs consist of various forms in different cells. Thus, DJs are common, interactive structures between cells, and likely affect cell adhesion, migration, and communication. TEMs probably modulate various cell functions through DJs. Our findings highlight that DJ morphogenesis reflects the transition between cell-matrix adhesion and cell-cell adhesion and involves both cell-cell and cell-matrix adhesion molecules.
Collapse
Affiliation(s)
- Chao Huang
- Stephenson Cancer Center and Department of Physiology, University of Oklahoma Health Sciences Center, BRC Building West Room 1474, 975 N.E. 10th Street, Oklahoma City, OK, 73104, USA
| | - Chenying Fu
- Stephenson Cancer Center and Department of Physiology, University of Oklahoma Health Sciences Center, BRC Building West Room 1474, 975 N.E. 10th Street, Oklahoma City, OK, 73104, USA
| | - Jonathan D Wren
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Xuejun Wang
- Stephenson Cancer Center and Department of Physiology, University of Oklahoma Health Sciences Center, BRC Building West Room 1474, 975 N.E. 10th Street, Oklahoma City, OK, 73104, USA
| | - Feng Zhang
- Stephenson Cancer Center and Department of Physiology, University of Oklahoma Health Sciences Center, BRC Building West Room 1474, 975 N.E. 10th Street, Oklahoma City, OK, 73104, USA
| | - Yanhui H Zhang
- University of Tennessee Health Science Center, Memphis, TN, USA
| | | | - Taosheng Chen
- St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xin A Zhang
- Stephenson Cancer Center and Department of Physiology, University of Oklahoma Health Sciences Center, BRC Building West Room 1474, 975 N.E. 10th Street, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
10
|
Zhang C, Adamos C, Oh MJ, Baruah J, Ayee MAA, Mehta D, Wary KK, Levitan I. oxLDL induces endothelial cell proliferation via Rho/ROCK/Akt/p27 kip1 signaling: opposite effects of oxLDL and cholesterol loading. Am J Physiol Cell Physiol 2017; 313:C340-C351. [PMID: 28701359 DOI: 10.1152/ajpcell.00249.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 12/19/2022]
Abstract
Oxidized modifications of LDL (oxLDL) play a key role in the development of endothelial dysfunction and atherosclerosis. However, the underlying mechanisms of oxLDL-mediated cellular behavior are not completely understood. Here, we compared the effects of two major types of oxLDL, copper-oxidized LDL (Cu2+-oxLDL) and lipoxygenase-oxidized LDL (LPO-oxLDL), on proliferation of human aortic endothelial cells (HAECs). Cu2+-oxLDL enhanced HAECs' proliferation in a dose- and degree of oxidation-dependent manner. Similarly, LPO-oxLDL also enhanced HAEC proliferation. Mechanistically, both Cu2+-oxLDL and LPO-oxLDL enhance HAEC proliferation via activation of Rho, Akt phosphorylation, and a decrease in the expression of cyclin-dependent kinase inhibitor 1B (p27kip1). Both Cu2+-oxLDL or LPO-oxLDL significantly increased Akt phosphorylation, whereas an Akt inhibitor, MK2206, blocked oxLDL-induced increase in HAEC proliferation. Blocking Rho with C3 or its downstream target ROCK with Y27632 significantly inhibited oxLDL-induced Akt phosphorylation and proliferation mediated by both Cu2+- and LPO-oxLDL. Activation of RhoA was blocked by Rho-GDI-1, which also abrogated oxLDL-induced Akt phosphorylation and HAEC proliferation. In contrast, blocking Rac1 in these cells had no effect on oxLDL-induced Akt phosphorylation or cell proliferation. Moreover, oxLDL-induced Rho/Akt signaling downregulated cell cycle inhibitor p27kip1 Preloading these cells with cholesterol, however, prevented oxLDL-induced Akt phosphorylation and HAEC proliferation. These findings provide a new understanding of the effects of oxLDL on endothelial proliferation, which is essential for developing new treatments against neovascularization and progression of atherosclerosis.
Collapse
Affiliation(s)
- Chongxu Zhang
- Division of Pulmonary and Critical Care, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; and
| | - Crystal Adamos
- Division of Pulmonary and Critical Care, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; and
| | - Myung-Jin Oh
- Division of Pulmonary and Critical Care, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; and
| | - Jugajyoti Baruah
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Manuela A A Ayee
- Division of Pulmonary and Critical Care, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; and
| | - Dolly Mehta
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Kishore K Wary
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Irena Levitan
- Division of Pulmonary and Critical Care, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; and
| |
Collapse
|
11
|
Termini CM, Gillette JM. Tetraspanins Function as Regulators of Cellular Signaling. Front Cell Dev Biol 2017; 5:34. [PMID: 28428953 PMCID: PMC5382171 DOI: 10.3389/fcell.2017.00034] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/22/2017] [Indexed: 01/10/2023] Open
Abstract
Tetraspanins are molecular scaffolds that distribute proteins into highly organized microdomains consisting of adhesion, signaling, and adaptor proteins. Many reports have identified interactions between tetraspanins and signaling molecules, finding unique downstream cellular consequences. In this review, we will explore these interactions as well as the specific cellular responses to signal activation, focusing on tetraspanin regulation of adhesion-mediated (integrins/FAK), receptor-mediated (EGFR, TNF-α, c-Met, c-Kit), and intracellular signaling (PKC, PI4K, β-catenin). Additionally, we will summarize our current understanding for how tetraspanin post-translational modifications (palmitoylation, N-linked glycosylation, and ubiquitination) can regulate signal propagation. Many of the studies outlined in this review suggest that tetraspanins offer a potential therapeutic target to modulate aberrant signal transduction pathways that directly impact a host of cellular behaviors and disease states.
Collapse
Affiliation(s)
- Christina M Termini
- Department of Pathology, University of New Mexico Health Sciences CenterAlbuquerque, NM, USA
| | - Jennifer M Gillette
- Department of Pathology, University of New Mexico Health Sciences CenterAlbuquerque, NM, USA
| |
Collapse
|
12
|
Zhao J, Wu W, Zhang W, Lu YW, Tou E, Ye J, Gao P, Jourd'heuil D, Singer HA, Wu M, Long X. Selective expression of TSPAN2 in vascular smooth muscle is independently regulated by TGF-β1/SMAD and myocardin/serum response factor. FASEB J 2017; 31:2576-2591. [PMID: 28258189 DOI: 10.1096/fj.201601021r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 02/13/2017] [Indexed: 01/07/2023]
Abstract
Tetraspanins (TSPANs) comprise a large family of 4-transmembrane domain proteins. The importance of TSPANs in vascular smooth muscle cells (VSMCs) is unexplored. Given that TGF-β1 and myocardin (MYOCD) are potent activators for VSMC differentiation, we screened for TGF-β1 and MYOCD/serum response factor (SRF)-regulated TSPANs in VSMC by using RNA-seq analyses and RNA-arrays. TSPAN2 was found to be the only TSPAN family gene induced by TGF-β1 and MYOCD, and reduced by SRF deficiency in VSMCs. We also found that TSPAN2 is highly expressed in smooth muscle-enriched tissues and down-regulated in in vitro models of VSMC phenotypic modulation. TSPAN2 expression is attenuated in mouse carotid arteries after ligation injury and in failed human arteriovenous fistula samples after occlusion by dedifferentiated neointimal VSMC. In vitro functional studies showed that TSPAN2 suppresses VSMC proliferation and migration. Luciferase reporter and chromatin immunoprecipitation assays demonstrated that TSPAN2 is regulated by 2 parallel pathways, MYOCD/SRF and TGF-β1/SMAD, via distinct binding elements within the proximal promoter. Thus, we identified the first VSMC-enriched and MYOCD/SRF and TGF-β1/SMAD-dependent TSPAN family member, whose expression is intimately associated with VSMC differentiation and negatively correlated with vascular disease. Our results suggest that TSPAN2 may play important roles in vascular disease.-Zhao, J., Wu, W., Zhang, W., Lu, Y. W., Tou, E., Ye, J., Gao, P., Jourd'heuil, D., Singer, H. A., Wu, M., Long, X. Selective expression of TSPAN2 in vascular smooth muscle is independently regulated by TGF-β1/SMAD and myocardin/serum response factor.
Collapse
Affiliation(s)
- Jinjing Zhao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Wen Wu
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Wei Zhang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Yao Wei Lu
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Emiley Tou
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Jiemei Ye
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Ping Gao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - David Jourd'heuil
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Harold A Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Mingfu Wu
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Xiaochun Long
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| |
Collapse
|
13
|
Li Y, Brayden JE. Rho kinase activity governs arteriolar myogenic depolarization. J Cereb Blood Flow Metab 2017; 37:140-152. [PMID: 26661251 PMCID: PMC5363734 DOI: 10.1177/0271678x15621069] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/10/2015] [Accepted: 11/11/2015] [Indexed: 11/15/2022]
Abstract
Cerebral arterioles contribute critically to regulation of local and global blood flow within the brain. Dysfunction of these blood vessels is implicated in numerous cardiovascular diseases. However, treatments are limited due to incomplete understanding of fundamental control mechanisms at this level of circulation. Emerging evidence points to a key role of Rho-associated protein kinase in regulation of microvascular contractility. This study sought to decipher the mechanisms of Rho-associated protein kinase-mediated myogenic vasoconstriction in cerebral parenchymal arterioles. Here, we report that the Rho-associated protein kinase inhibitor H1152 strongly attenuated pressure-induced constriction, cytosolic [Ca2+] increases, and depolarization of isolated parenchymal arterioles. Further, the RhoA activator CN03 potentiated parenchymal arteriole myogenic constriction and depolarization, indicating important involvement of RhoA/Rho-associated protein kinase signaling in myogenic excitation-contraction mechanisms. Because of the well-established role of TRPM4 in pressure-induced depolarization, possible modulatory effects of Rho-associated protein kinase on TRPM4 currents were explored using patch clamp electrophysiology. TRPM4 currents were suppressed by H1152 and enhanced by CN03. Finally, H1152 elevated the apparent [Ca2+]-threshold for TRPM4 activation, suggesting that Rho-associated protein kinase activates TRPM4 by increasing its Ca2+-sensitivity. Our results support a novel mechanism whereby Rho-associated protein kinase-mediated myogenic vasoconstriction occurs primarily through activation of TRPM4 channels, smooth muscle depolarization, and cytosolic [Ca2+] increases in cerebral arterioles.
Collapse
Affiliation(s)
- Yao Li
- Department of Pharmacology, University of Vermont, Burlington, VT, USA
| | - Joseph E Brayden
- Department of Pharmacology, University of Vermont, Burlington, VT, USA
| |
Collapse
|
14
|
King JR, Kabbani N. Alpha 7 nicotinic receptor coupling to heterotrimeric G proteins modulates RhoA activation, cytoskeletal motility, and structural growth. J Neurochem 2016; 138:532-45. [DOI: 10.1111/jnc.13660] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/27/2016] [Accepted: 05/06/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Justin R. King
- Department of Molecular Neuroscience; Krasnow Institute for Advanced Study; George Mason University; Fairfax Virginia USA
| | - Nadine Kabbani
- Department of Molecular Neuroscience; Krasnow Institute for Advanced Study; George Mason University; Fairfax Virginia USA
| |
Collapse
|
15
|
Garner JM, Herr MJ, Hodges KB, Jennings LK. The utility of tetraspanin CD9 as a biomarker for metastatic clear cell renal cell carcinoma. Biochem Biophys Res Commun 2016; 471:21-5. [DOI: 10.1016/j.bbrc.2016.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 02/03/2016] [Indexed: 01/02/2023]
|